ASGaze:
Gaze Tracking on Any Surface with your Phone

Jiani Cao¹, Chengdong Lin¹, Yang Liu², Zhenjiang Li¹
City University of Hong Kong¹, University of Cambridge²
Definition

• What is gaze tracking?
Motivation

Treatment and recovery of reading-disorder disease

Doctors cannot fully understand the effectiveness of recovery.
Motivation

Our goal: an accurate, low-cost gaze tracker on any surface.
Existing Solutions

• Model-based approach

IR source, high-resolution camera

Expensive, e.g., 800~10,000 USD
Existing Solutions

• Low-cost appearance-based approach

- a large dataset
- RGB camera
- Ground truth
- Mainly work on electronic screens
Tracking Principle

• Optical axis cannot be obtained directly

• Infer it from the shape of iris boundary
Our System: ASGaze

Module 1

- Iris Boundary Detector
- U-Net
- Iris Boundary Extraction
- Iris Boundary Refinement

Module 2

- Gaze Ray Estimator
- Cone Model
- Gaze Origin and Direction Estimation
- Ambiguity Removal

Module 3

- Mapping
- Handing Offset Errors
- Shape-constrained Offset Refinement

Input
- Computer monitor
- Whiteboard
- Phone screen

Eye Frame

Offset

Gaze Point
Module -1: Iris Boundary Detector

Can we use the state-of-the-art [1] design directly?

Module -1: Iris Boundary Detector

- The thickness (uncertainties) of iris boundary is not thin enough

Class-imbalanced!
Module -1: Iris Boundary Detector

Loss function

- \(L_1: L_{ML} = - \sum_k \sum_i (1 - p_k(i))^2 \times \log(p_k(i)) \)

 \(w \cdot L_{ML}, x(i) \in \{\text{iris boundary}\}, \)

 \(L_{ML}, x(i) \notin \{\text{iris boundary}\}. \)

- \(L_2: \sum_k \sum_i D(i) \times p_k(i) \) Remove noisy pixel

- \(L_3: 1 - \frac{\sum_k \beta_k \sum_i (l_k(i) \times p_k(i))}{\sum_k \beta_k \sum_i (l_k(i) + p_k(i))} \) Classification

Overall loss: \(L_1 + (1 - \alpha)L_2 + \alpha L_3 \)

Post Processing

- Do feature matching
- Un-matched pixels are removed
Module -2: Gaze Ray Estimator

• 2D ellipse parameters → 3D gaze ray
 • key problem: ambiguity

• solution:
 • we choose the gaze direction that accumulates the least rotation change
Module -3: Mapping

We only need user to stare at four known points.
Experimental Setup

- Participants: 8 volunteers
- Tracking device:
 - RGB camera of iPhone 11 pro
- Tracking surfaces:
 - computer monitor
 - whiteboard
 - phone screen
 - public dataset
Overall Performance

• Compare with:
 • IrisTrack [1]
 • EVE [2]

EVE: 3.20~4.26 cm
IrisTrack: 2.45~3.58 cm
Ours: 1.69~2.40 cm

Demo

Project: https://asgaze.github.io/
Code: https://github.com/Jiani-CAO/ASGaze
1. One goal:
 - Gaze tracking using a common RGB camera

2. Two aspects:
 - Accurate tracking
 - Tracking on any surface

3. Three modules:
 - Iris boundary detector
 - Gaze ray estimator
 - Mapping
Thank you

Q&A

ASGaze:
Gaze Tracking on Any Surface with your Phone

Jiani Cao¹, Chengdong Lin¹, Yang Liu², Zhenjiang Li¹
City University of Hong Kong¹, University of Cambridge²