Synthesized Millimeter-Waves for Human Motion Sensing

Xiaotong Zhang^{1,2}, Zhenjiang Li¹, Jin Zhang²

¹Computer Science, City University of Hong Kong ²Computer Science and Engineering, Southern University of Science and Technology

Sensing Human Motion

Meaning of this activity?

Activity Recognition

How does the body move?

Skeleton Tracking

Which solution to use?

mmWave, Wi-Fi, Wearable...

Scarcity Issue of Training Data

• Expensive devices

• Multi-modality data

• Over engagement

Key Idea of Our Solution

"Generate (synthesize) mmWave sensing signals using vision-based datasets, allowing these signals to inherit motion labels directly from the datasets."

- FMCW Radar

Our Solution – SynMotion

- Module-3: sensing services
- Module-2: sensing signatures

• Module-1: signal synthesis

Module-1: Signal Synthesis

8

Tx and Rx signals are not blocked by body,

 $\sigma \in \mathcal{H}(ellipsoid)$,

s.t.

Module-1: Signal Synthesis

Module-2: Sensing Signatures

- Popular signatures
 - Micro-Doppler spectrum
 - Activity recognition
 - Heat map
 - Skeleton tracking

from synthesized signals

from **real** signals

Module-3: Compensation

Synthetic-to-Real Problem

• Fine-tuning (with labeled data)

Training Framework

- Variant tracker & actual tracker
- Three training steps

Two Trackers

Two Trackers

Three Training Steps

Evaluation

Devices

- TI IWR1443BOOST radar
- OptiTrack

Datesets

- Our dataset
 - Group-a): 10 users
 - Group-b): 10 users
- Public datasets
 - NTU RGB+D
 - CMU MoCap

Evaluation

Skeleton Points																				
Axis X	1.9	2.0	2.0	2.2	2.8	2.2	2.5	2.6	5.3	2.2	2.5	3.5	5.3	2.0	2.6	2.6	2.1	4.3	3.4	2.9
Axis Y	1.4	1.4	1.6	1.5	1.8	1.5	1.8	4.1	4.5	1.6	2.3	4.7	5.9	1.4	0.6	0.6	1.4	2.1	2.5	2.5
Axis Z																	2.7			3.2
Overall	4.5	4.6	4.8	5.2	6.0	5.1	5.4	7.0	8.8	5.2	5.8	7.9	9.1	4.6	4.3	4.3	4.6	6.5	6.4	5.8

SynMotion

• Overall error: 5.8 cm

• RF-Pose3D [2]

• Overall error: 5.3 cm

19

Evaluation

Different datasets

Our dataset

• Per-axis error: 2.5 – 3.2 cm

• NTU RGB+D

• Per-axis error: 3.2 – 3.6 cm

CMU MoCap

• Per-axis error: 3.2 – 3.8 cm

Conclusion 1, 2, 3

1. One goal:

Solve the scarcity issue of training data

2. Two aspects of significance:

- Bootstrap mmWave sensing at low cost
- Enhance interpretability of mmWave sensing

3. Three modules:

- Signal synthesis
- Sensing signatures
- Synthetic-to-real training

Thank you Q&A