Synthesized Millimeter-Waves for Human Motion Sensing

Xiaotong Zhang1,2, Zhenjiang Li1, Jin Zhang2

1Computer Science, City University of Hong Kong
2Computer Science and Engineering, Southern University of Science and Technology
Sensing Human Motion

• Meaning of this activity?
 Activity Recognition

• How does the body move?
 Skeleton Tracking

• Which solution to use?
 mmWave, Wi-Fi, Wearable...
Deep Learning Model
Scarcity Issue of Training Data

Quality Label Collection
- Expensive devices

Data-Modalities
- Multi-modality data

User-Engagement
- Over engagement

Vicon, OptiTrack, etc.

Vision-based data

mmWaves

“Generate (synthesize) mmWave sensing signals using vision-based datasets, allowing these signals to inherit motion labels directly from the datasets.”

- FMCW Radar
Our Solution – SynMotion

• **Module-1**: signal synthesis
• **Module-2**: sensing signatures
• **Module-3**: sensing services
Module-1: Signal Synthesis

- **Signal synthesis pipeline**

1. **Transmitted FMCW Signal**
2. **Reflected & Received Signal**
3. **Intermediate Frequency (IF)**
4. **Reflections from Body**

\[
S(t) = \sum_{k \in K} \sum_{i=1}^{n} S_{i}^{k}(t), \\
\text{s.t.} \quad \text{Tx and Rx signals are not blocked by body, } \\
\sigma \in \mathcal{H}(\text{ellipsoid}),
\]
Module-1: Signal Synthesis

• Signal synthesis pipeline

1. Transmitted FMCW Signal

2. Reflected & Received Signal

3. Intermediate Frequency (IF)

4. Reflections from Body

• Inheriting labels

Synthesized signals

Radar

Coordinate system of the vision-based dataset

Motion labels, e.g., skeleton coordinates

\[S(t) = \sum_{k \in K} \sum_{i=1}^{n} S_{IF}(t), \quad \text{s.t.} \quad \text{Tx and Rx signals are not blocked by body, } \sigma \in \mathcal{H}(\text{ellipsoid}). \]
Module-2: Sensing Signatures

- Popular signatures
 - Micro-Doppler spectrum
 - Activity recognition
- Heat map
 - Skeleton tracking

from synthesized signals
from real signals
Module-3: Compensation

Synthetic-to-Real Problem
- **Fine-tuning** (with labeled data)

Training Framework
- **Variant tracker** & **actual tracker**
- **Three** training steps
Two Trackers

- **Variant Tracker**
 - Attention
 - ResNet-18
 - LSTM-Block

- **Actual Tracker**
 - Attention
 - ResNet-18
 - LSTM-Block

Initial Pose

Heat maps

Offsets

$\ldots x_{t-2}, x_{t-1}, x_t \ldots$
Two Trackers

- **Variant Tracker**
 - Initial Pose
 - Heat maps
 - ResNet-18 → LSTM-Block → Attention

- **Actual Tracker**
 - Initial Pose
 - Heat maps
 - ResNet-18 → LSTM-Block → Attention

- Offsets

- Body shape
- Skeleton movement
Three Training Steps

1. **Step 1**: train both trackers using synthesized signals
2. **Step 2**: fine-tune variant tracker
3. **Step 3**: fine-tune actual tracker

- **Variant Tracker**
 - Attention
 - ResNet-18
 - LSTM-Block

- **Actual Tracker**
 - Attention
 - ResNet-18
 - LSTM-Block

Good user-independent feature

- Labels (coordinates of skeleton points)
- Pseudo ground truth (estimated coordinates)

- Real mmWaves

- Heat maps

- Initial Pose

- “Good user-independent feature” chart with error values for Axis X, Axis Y, and Axis Z for not fine-tuned and fine-tuned conditions.
Evaluation

• Devices
 o TI IWR1443BOOST radar
 o OptiTrack

• Datasets
 o Our dataset
 ▪ Group-a): 10 users
 ▪ Group-b): 10 users
 o Public datasets
 ▪ NTU RGB+D
 ▪ CMU MoCap
Evaluation

| Skeleton Points | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | Average |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| Axis X | 1.9 | 2.0 | 2.0 | 2.2 | 2.2 | 2.5 | 2.6 | 5.3 | 2.2 | 2.5 | 3.5 | 5.3 | 2.0 | 2.6 | 2.6 | 2.1 | 4.3 | 3.4 | 2.9 |
| Axis Y | 1.4 | 1.4 | 1.6 | 1.5 | 1.8 | 1.5 | 4.1 | 4.5 | 1.6 | 2.3 | 4.7 | 5.9 | 1.4 | 0.6 | 0.6 | 1.4 | 2.1 | 2.5 | 2.5 |
| Axis Z | 2.7 | 2.7 | 2.9 | 3.2 | 3.5 | 3.1 | 3.1 | 3.7 | 4.8 | 3.2 | 3.3 | 4.4 | 4.2 | 2.6 | 2.7 | 2.7 | 2.6 | 2.9 | 3.2 |
| Overall | 4.5 | 4.6 | 4.8 | 5.2 | 6.0 | 5.1 | 5.4 | 7.0 | 8.8 | 5.2 | 5.8 | 7.9 | 9.1 | 4.6 | 4.3 | 4.3 | 4.6 | 6.5 | 6.4 | 5.8 |

- **SynMotion**
 - Overall error: 5.8 cm
- **RF-Pose3D [2]**
 - Overall error: 5.3 cm

[2] RF-Based 3D Skeletons, in ACM SIGCOMM, 2018
Evaluation

• Different datasets

• Our dataset
 • Per-axis error: 2.5 – 3.2 cm

• NTU RGB+D
 • Per-axis error: 3.2 – 3.6 cm

• CMU MoCap
 • Per-axis error: 3.2 – 3.8 cm
Conclusion 1, 2, 3

1. One goal:
 - Solve the scarcity issue of training data

2. Two aspects of significance:
 - Bootstrap mmWave sensing at low cost
 - Enhance interpretability of mmWave sensing

3. Three modules:
 - Signal synthesis
 - Sensing signatures
 - Synthetic-to-real training
Thank you
Q&A