cDeepArch: A Compact Deep Neural Network Architecture for Mobile Sensing

Kang Yang1, Xiaoqing Gong1, Yang Liu2, Zhenjiang Li2, Tianzhang Xing1, Xiaojiang Chen1, Dingyi Fang1

1Northwest University, China
2City University of Hong Kong
Motivation
Application

Cognitive decline
Application

First-person view

Recognizing pot, cup, open, close

Cognitive aid system

open
Common design principle

Rich sensor data → Recognized by learning → Applications
Challenges

Large targets
Challenges

• Deep Learning

Big deep neural network

Too large

Resource-limited
Challenges

- Deep Learning

Original model \rightarrow Shrunken model \rightarrow No quantitative measure on available resource conditions
Any countermeasure?

- **Long** and uncontrollable latency
- **High** Service cost
- Potential privacy leakage

Instance Comparison

<table>
<thead>
<tr>
<th>Instance</th>
<th>Processor</th>
<th>vCPU</th>
<th>Memory(GiB)</th>
<th>Price($/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c4.large</td>
<td>CPU</td>
<td>2</td>
<td>3.75</td>
<td>0.1</td>
</tr>
<tr>
<td>c4.2xlarge</td>
<td>CPU</td>
<td>8</td>
<td>15</td>
<td>0.398</td>
</tr>
<tr>
<td>g2.2xlarge</td>
<td>GPU</td>
<td>8</td>
<td>15</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Our solution
Our solution

Object recognition

compact network

Context recognition

(Office)

large and deep network +

Context-oriented target recognition

(computer, mouse...)

compact network

adequate storage

computation resource

adequate storage
Our solution

- **not** based on designer’s experience
- **Formulation facilitated** configuration

Context recognition + Context-oriented target recognition

Available resource conditions

Energy computation
Convolutional Neural Network

- Convolutional layer (dominant)
- Pooling layer
- Full connected layer
Formulation facilitated configuration

\[
O_{\text{con}}^j = W_o^j \times W_o^j \times D^j \times ((F^j)^2 \times C^j + 1),
\]

\[
O_{\text{con}} = \sum_{j=1}^{n_{\text{con}}} O_{\text{con}}^j
\]
From computation to resource cost

\[O = \alpha_i \times R_i, \]

\(O \) : computation

\(R_i \) : actual resource consumption

unknown

Derived

a small scale network

designed network

Conv1:64 Conv2:128 fc:5

Conv1:16 Conv2:32 fc:5
Now...

- Recognition task **decomposition**
- **Formulation facilitated** configuration
- From formulation to **estimate** the resource consumption
Enhancement: Convolutional layer

Original model

Separated model

\[f \leq \sqrt{(F^2 - 1/C)/2} \]
Enhancement: Pooling layer

Pooling:

Conv1 → Conv2 → Pool2 → Conv3 → Pool3

Late Pooling:

Conv1 → Conv2 → Pool2 → Conv3 → Pool3
Enhancement: Activation function

Conv → Pool → Nonlinear

ReLU → ReLU → ... → ReLU

Loss

Learning

ALL the Same !!!
Evaluation
Experiments setup

• Dataset:

 o Context recognition:
 ▪ MIT Place2 (related to the daily contexts)

 o Object recognition:
 ▪ Cifar10
 ▪ Cifar100 (20 classes associated contexts)
Evaluation results

- **Overall performance**
 - 10 targets
 - CDF
 - Full vs. cDeepArch
 - Recognition Accuracy: (0.8, 0.9)
 - (0.8, 0.54)
 - 20 targets
 - CDF
 - Full vs. cDeepArch
 - (0.5, 0.88)
 - (0.5, 0.22)

- **Recognition accuracy**
 - Cifar10
 - Desktop: 1.0
 - GALAXY S7: 0.9
 - Cifar100
 - Desktop: 0.8
 - GALAXY S7: 0.7
Evaluation results

- The time delay
 - Around 150ms on Desktop
 - Around 303ms on GALAXY S7

- Estimated energy values

![Graph showing time delay and estimated energy values](image-url)
Conclusion 1, 2, 3

1. Large targets → Decompose recognition task

2. Systematic way to configure network → Execution overhead formulation facilitated configuration

3. Enhancement techniques

Excellent recognition performance

Lightweight
Q&A

cDeepArch: A Compact Deep Neural Network Architecture for Mobile Sensing

Kang Yang¹, Xiaoqing Gong¹, Yang Liu², Zhenjiang Li², Tianzhang Xing¹, Xiaojiang Chen¹, Dingyi Fang¹

¹Northwest University, China

²City University of Hong Kong