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Abstract—Context-aware applications capture environmental 
changes as contexts and self-adapt their behaviors dynamically. 
Existing testing researches have not explored context evolutions or 
their patterns inherent to individual test cases when constructing 
test suites. We propose the notation of context diversity as a metric 
to measure how many changes in contextual values of individual 
test cases. In this paper, we discuss how this notion can be 
incorporated in a test case generation process by pairing it with 
coverage-based test data selection criteria.  
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I.  INTRODUCTION  

Context-aware applications capture the environmental 
evolutions as contexts, and self-adapt their behaviors 
dynamically and contextually. The massive volume of 
contexts provides unprecedented levels of details about the 
physical and computational environments surrounding the 
context-aware applications. Moreover, they should make 
sequences of contextual and fine-gained decisions and 
implement such sequences during program executions. It is 
challenging, however. For instance, there are diverse kinds 
of noise existed in the captured contexts [13] and significant 
errors in recovering actual situations based on given contexts 
even though current state-of-the-art techniques have been 
used [14]. Still, programmers are expected to develop 
reliable solutions for the actual situations. Testing is a 
method to check whether a program behaves as expected and 
to reveal the presence of faults through executions of test 
cases. It can be conducted by setting up certain actual 
situations and observing the corresponding outputs from the 
program under test. 

Many state-of-the-art testing techniques have been 
proposed to exercise various context-dependent data-flow 
[5][6] and control-flow [4][5] entities, manipulate the thread 
interleaving choices at the context-related function call level 
[12] or at the scheduler level [4], or check the context 
relationships among executions as alternate test oracles [10]. 
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Experimental studies of these coverage-based testing 
techniques show that there is still plenty of room for 
improvement. For instance, in [5], the previous proposed 
techniques have reported that they are not effective enough 
to reveal the presence of faults in their “hard” category.  

In this paper, we propose to augment coverage-based 
testing techniques with a supplementary criterion. It is based 
on a measurement metric, which we call context diversity. As 
we have mentioned above, during program executions, a 
context-aware program may make a sequence of decisions to 
adapt its behaviors. We argue that such decisions are often 
contextual in nature, and a primary source of such 
information is originated from contexts, or their patterns and 
evolutions. If it is the case, the sequence of contexts used by 
a context-aware program (or its underlying middleware) to 
activate such self-adaptation decisions may be valuable to 
assure the program quality. On the other hand, even though 
all such decisions are executed by the program sequentially 
or in parallel as the expected version of the program does, 
the potential presence of omission faults in the program may 
make such sequences differ from how the sequences of 
contexts to be used by the expected version. 

One instance of the supplementary criterion aims to 
diversify the contextual values in such sequences of contexts. 
It assumes that self-adaptation occurs when there is a 
significant change in contextual values. Different projections 
(in view of the potential presence of omission faults) of a 
sequence with relatively high consecutive changes in 
contextual values may associate with different adaptation 
sequences. The instance measures how many consecutive 
changes in contextual values in such a sequence. In other 
instances, we may use the metric to minimize the 
diversifications. 

To use the criterion, one may pair it up with coverage-
based techniques. For instance, when a candidate test case is 
generated by a test suite construction procedure, it may be 
deemed as redundant if the candidate fails to increase the 
coverage achieved by the constructing test suite. In this case, 
our criterion can be used to select a set of test cases, 
including the candidate and the ones in the constructing test 
suite to remove. In this removal process, we may use the 
measurement metric to guide the above-mentioned 
construction process to improve, worsen, or randomize the 
context change levels exhibited in the constructing test suite. 
In this paper, we illustrate such integration. 

The main contribution of the paper is threefold: (i) It 
points out the role of contexts in test suites as a way to 
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enhance other test case generation techniques. In particular, 
it shows the use of information in test cases (rather than 
information in programs or its specification) to construct test 
suites. (ii) It formulates the notion of context diversity to 
measure the contextual changes in test cases. (iii) It reports 
an experiment to show how much context diversity can be 
injected in coverage-adequate test suites. 

The rest of this paper is organized as follows: Section II 
gives the preliminaries of this work. Section III uses a 
motivating example to illustrate the inadequacy of testing 
techniques that are neutral to contextual changes in test 
cases. Section IV presents our idea, and Section V discusses 
some properties of our technique. Section VI reviews related 
work, followed by a conclusion in Section VII. 

II. PRELIMINARY 

In this section, we state the preliminaries to ease the 
presentation of our technique. A context-aware application p 
may associate with a set of environment attributes, which can 
be characterized by context variable [6]: 

Definition 1 (Context Variable): A context variable C 
is a tuple (field1, field2, … , fieldn), where each fieldi (0 < i < 
n + 1) represents an environment attribute subscribed by p. 

However, context variables are symbolic in nature. They 
quantify the (environmental) patterns that p reacts to. To use 
these contexts in actual program executions, the required 
context variables should be initialized. A context instance 
ins(C) is said to be generated when all fields in a context 
variable C have been instantiated [5][6]: 

Definition 2 (Context Instance): A context instance 
ins(C) of a context variable C is a tuple (i1, i2, … , in) such 
that each it (0 < t < n + 1) takes the form of (fieldt =value: 
type, time), where value, type and time are the instantiation 
value, data type and sampling time for fieldt, respectively. 

We are interested in how a testing technique uses the 
contextual value, and thus, in the rest of the paper, we simply 
write value rather than (fieldt =value: type, time). A sequence 
of context instances is called a context stream. Typically, the 
data volume of such context streams is large, and thus, it is 
generally intractable to test the entire data streams for 
assuring the program quality. For testing purpose, a test case 
may therefore only take a fragment of a context stream as a 
part of its test input. 

Definition 3 (Context Stream Fragment): A context 
stream fragment cstream(C) of a context variable C is an 
ordered sequence of ins(C) as  ሻ௧భܥሺݏ݊݅ ሻ௧మܥሺݏ݊݅ , , … , 
ሻ௧ܥሺݏ݊݅ . Each ݅݊ݏሺܥሻ௧  (0 < i < n and ti < ti+1) in 
cstream(C) is a context instance sampled at time ti and all 
context instances in cstream(C) are ordered by ti. 

III. THE PROBLEM 

A. Motivating example: Conveyor Belt 

We use the application scenario of Conveyor Belt 
described in [6] as the motivating example, which is as 
follows.  

Along with a conveyor belt carrying packages to pass 
through an inspection zone at an airport, four sensors are 
deployed to partition the inspection zone into a series of 
segments, and they are labeled as reader0, reader1, reader2 
and reader3, and their positions are denoted as 0, 1, 2, and 3, 
respectively. When a package passes through the inspection 
zone of each sensor, its position is sensed and calibrated 
according to the position of the sensor that receives the 
strongest signal strength. Figure 1 shows the pseudo-code 
that reports the position of the package. 

In Figure 1, the package and its position is denoted as p 
and p.position, respectively. The readings of four sensors are 
represented by r0, r1, r2, r3, respectively. When the package 
moves into the inspection zone, the program unit 
report_position will execute and report an estimated package 
position. The primitive query({c}) at statement #4, #9, or 
#16 retrieves the latest context instances from the 
corresponding context stream. As the sensors may be close 
to one another, they may induce false positive readings. For 
instance, a package detected by r2 via reader3 may be 
closest to reader2. To tackle such kinds of problem, the 
program designs one Context Inconsistency Resolution 
(CIR) service [6] to detect and resolve inconsistent reports of 
package positions, which is a context dropping service. The 
CIR service specifies the constraint q1 to assure that 
p.position should be increased monotonically. If q1 is 
violated, the CIR service invokes the resolution strategy s1 to 
drop the latest p.position.  

Figure 1: Pseudo-code and CIR services of Conveyor Belt 

 

  #1:report_position { 
  #2: p, p.position; //the package and its position 
  #3: r0, r1, r2, r3;   //reader0, reader1, reader2,reader3 
  #4: query({r0, r1}); 
  #5: if (r0.strength r1.strength) 
  #6:  p.position=0; 
  #7: else p.position =1; 
  #8: wait(FIXED_INTERVAL); 
  #9: query({r0, r1, r2}); 
#10: if (r0.strengthr1.strength and r0.strength  
     r2.strength) 
#11:  p.position=0; 
#12: else if (r1.strengthr0.strength and r1.strength 

            r2.strength) 
#13:  p.position =1; 
#14: else p.position =2; 
#15: wait(FIXED_INTERVAL); 
#16: query({r1, r2, r3}); 
#17: if (r1.strengthr2.strength and r1.strength 
     r3.strength) 
#18:  p.position=1; 
#19: else if (r2.strengthr1.strength and r2.strength  

            r3.strength) 
#20:  p.position=2; 
#21: else p.position=3; 
#22: report p.position;  
#23:} 
 
#24:cir_service  = {1} { 
#25: 1 = (q1, s1); 
#26: q1: i>0, ins(p.position)i   ins(p.position)i-1 
#27:  s1: drop ins(p.position)i 
#28}



B. Testing Challenges 

We use the fault in [6] to motivate our work. The fault is 
at the statement #10, in which all “” are implemented 
wrongly as “”. We denote the faulty statement as #10':  

#10': if (r0.strength  r1.strength and r0.strength  r2.strength) 

Using the techniques proposed in [6], testers may construct a 
test suite that satisfies both the all-uses and the all-services 
[6] test data selection criteria. We denote it as S: 

S = {t1, t2, t3, t4} 
where 

t1 = (30, 30, 20, 15), (30, 30, 20, 15), (30, 30, 20, 15), 
t2 = (10, 20, 5, 40), (10, 20, 5, 40), (10, 20, 5, 40), 
t3 = (30, 20, 35, 10), (30, 20, 35, 10), (30, 20, 35, 10), 
and 
t4 = (20, 30, 35, 40), (25, 33, 38, 40), (25, 33, 35, 40). 

To simplify our discussion, let us denote the tuple (r0, r1, 
r2, r3) as a context variable, and each of t1, t2, t3, and t4 is a 
context stream fragment produced by the four sensors. Each 
context stream fragment consists of three context instances, 
each of which corresponds to the sensor readings fed to the 
program when the query primitive is invoked at statements 
#4, #9, and #16, respectively. For example, the context 
stream fragment t4 shows that the context variable changes 
its values to (20, 30, 35, 40) at #4, then to (25, 33, 38, 40) at 
#9, and finally to (25, 33, 35, 40) at #16. 

TABLE I: TEST OUTCOMES OF THE ALL-USES-ADEQUATE AND THE ALL-
SERVICES-ADEQUATE TEST SUITE S 

Test 
Case 

Expected Version Faulty Version Context 
Diversity p.position output p.position output 

t1 0→1→1 1 0→1→1 1 0 
t2 1→1→3 3 1→1→3 3 0 
t3 0→2→2 2 0→2→2 2 0 
t4 1→2→3 3 1→0→3 3 4 

 
Table I summarizes the test outcome of the test suite S. In 

Table I, the package positions and the output of the program 
are shown in the “p.position” and “output” columns, 
respectively. When t4 is fed to the faulty version of Convey 
Belt, the positions of the package are reported as 1 at #7, 0 at 
#10', and 3 at #21, and the final output of the program is 3. 
(It is noted that, for #10, the context instance violates q1 and 
thus is dropped by s1). 

Even though the test suite S is both all-uses-adequate and 
all-services-adequate, yet none of its test cases exposes any 
failure. To improve the situation, one may enlarge the test 
suite, or require appropriate test cases satisfying multiple test 
adequacy criteria. (Indeed, the test suite also satisfies all-
edges).  Increasing the allowable size of a test suite will incur 
more test cost because apart from test case selection and 
execution, the output of the program over the additional test 

                                                           
 We italicize p.position sequences which invoke the CIR service  

in Table I and Table II. 

cases need a test oracle to determine whether it is passed or 
not. It is more attractive if multiple and effective testing 
criteria can be achieved without affecting the constraint on 
the size of a test suite.  On the other hand, as demonstrated 
by the example above, S satisfying multiple testing criteria 
may not be effective to reveal the presence of the illustrated 
faults. 

The key technical challenge is to formulate an effective 
criterion that can be used with a wide range of testing 
criteria. The next section outlines our idea. 

IV. OUR SOLUTION 

Let us consider another test suite S' that satisfies both the 
all-uses and the all-services testing criteria, which is shown 
as follows: 

S' = {t1', t2', t3', t4'} 
where 

t1' =  30, 20, 5, 10), (30, 40, 5, 10), (30, 40, 5, 40), 
t2' = (20, 40, 20, 5), (10, 25, 30, 10), (20, 30, 20, 15), 
t3' = (30, 20, 10, 20), (30, 20, 15, 30), (40, 25, 40, 35),  
and 
t4' = (20, 30, 20, 10), (10, 15, 30, 20), (8, 35, 30, 22). 

TABLE II: TESTING OUTCOMES OF S' 

Test 
Case

Expected Version Faulty Version Context 
Diversity p.position output p.position output

t1' 0→1→3 3 0→1→3 3 2 
t2' 1→2→1 2 1→0→1 1 8 
t3' 0→0→2 2 0→2→2 2 6 
t4' 1→2→1 2 1→0→1 1 7 

 
Similar to Table I, Table II summarizes the test results 

for the test suite S'. Table II shows that S' contains two failed 
test cases (t2' and t4').  Although both S and S' satisfy the all-
uses criterion and the all-services criterion, they exhibit 
different testing effectiveness. S fails to expose the fault; 
whereas S' detects the fault twice. What makes such a 
difference in testing effectiveness of S and S'? 

Suppose that multiple context stream fragments may be 
feasible to serve as test cases for a testing criterion. Suppose 
further that all factors related to the internal property of the 
program under test are equal, we may randomly pick one of 
such context stream fragments. This is the approach taken by 
some existing techniques [4][5][6][12].  

Let us consider a scenario, in which the self-adaptation of 
a program occurs when there is a significant change in values 
within the context streams. If so, different projections (in 
view of the potential presence of omission faults) of a 
sequence with relatively high consecutive changes in 
contextual values may associate with different adaptation 
sequences. Without further information, the best we can 
assume is that any projection is feasible and these projections 
distribute uniformly. We thus measure the overall change in 
contextual values for a given sequence as context diversity: 



Definition 4 (Context Diversity): The Context Diversity 
(CD) of a context stream fragment cstream(C) is denoted by 
CD(cstream(C)) and is defined by the following equation: 

ሻ൯ܥሺ݉ܽ݁ݎݐݏ൫ܿܦܥ ൌ  ,ሻܥሺݏሺ݅݊ܦܪ ሻାଵሻܥሺݏ݊݅
ିଵ

ୀଵ
    ݊ ൌ  |ሻܥሺ݉ܽ݁ݎݐݏܿ|

where HD(ins(C)i, ins(C)i+1) is the Hamming distance of a 
pair of context instances ins(C)i and ins(C)i+1, and n is the 
length of the context stream fragment C. 

Take t4' for example: The Hamming distance between the 
first pair of two context instances is 4 because the value of r0 
should be edited from 20 to 10 (i.e., one change), and the 
values for r1, r2, and r3 alike. In the same manner, the 
Hamming distance of the next pair of context instances is 
only 3 because the value for r2 does not change. Summing 
up these two values (3 + 4) gives a value of 7, which is the 
context diversity value assigned to t4' as shown in the 
“Context Diversity” column in Table II. The context 
diversities for the other test cases are also shown in Table I 
and Table II. 

The measurement metric, context diversity, has at least 
three desirable properties that we consider interesting: 

 Any context stream fragment has a higher (or at least the 
same) value in context diversity than any of its context 
stream fragments.  

 A more dynamic context fragment receives a higher 
context diversity value than a less dynamic one if their 
length are equal.  

 Measuring context diversity of a test suite is non-
intrusive. Depending on the purpose of testing, a test 
suite construction method may choose to maximize, 
randomize, or minimize context diversity in a test suite. 

To see the usefulness of context diversity, let us first 
revisit the Convey Belt example. During its execution, the 
application accepts readings from location sensors as 
parametric inputs. Moreover, the main component also 
interacts (via contexts) with a context dropping service to 
handle (i.e., drop) inconsistent package position values. The 
removal of value from the context stream may reveal the 
failure. For instance, from Table II, we observe that 
execution of the expected version of Convey Belt over t4' 
produces 2 as the result. It is because the application has 
triggered the context dropping service, which removes the 
last position value (which is 1) produced by its main 
component. This removal exposes the failure caused by #10'. 
We further observe that the test suite S' has led the 
application to activate s1 four times (via t2' and t4'); whereas, 
S results in activating s1 only once (via t4). This example 
illustrates that a test suite with higher value in context 
diversity may lead the context-aware program to exhibit self-
adaptation behaviors more often than a test suite having 
lower value in context diversity. If producing correct self-
adaptation is a major quality assurance problem on top of 
finding conventional sources of errors, using context 
diversity may provide a metric value for a testing method to 
include or exclude a particular test case (that deals with 
context-adaptation) from a test suite. 

Conventional algorithms (CA) for test suite construction 
are neutral to context diversity. For instance, when 
constructing an adequate test suite for a test criterion C, 
given two test cases t and t' which cover the same set of 
program entities specified by C, many CAs select t and drop 
t' simply because t has been selected before t' is encountered.   

We propose to replace the above-described greedy 
property in CA by examining the values of context diversity 
in individual test cases instead. It could be done at the test 
case level, or at the test suite level. For instance, suppose that 
the current constructing test suite is X and a new test case x is 
generated, but x could not improve the coverage of X. Rather 
than simply dropping x as CA does, our refined algorithm 
(RA) checks whether it may take out some test cases from X 
such that the reduced test suite union with {x} can achieve 
the same coverage as X does yet with better (e.g., higher, 
lower) overall context diversity. 

V. DISCUSSION 

There are many outstanding questions to be answered: Is 
it feasible to produce test suites with significantly 
higher/lower values in context diversity? Does a test suite 
with better context diversity really improve the fault 
detection effectiveness of coverage-based testing techniques? 
What is the time and space cost to measure context diversity? 
Owing to space constraint, we address the first question in 
this paper. 

TABLE III: DESCRIPTIONS OF TEST SUITES 

Test Suite 
Context Diversity 

Size 
Coverage 
Achieved Min Mean Max StdD. 

AS-CA 12.0 13.3 14.6 0.570 26 1.000 
AS-RA 19.4 20.6 21.9 0.481 27 1.000 

ASU-CA 12.1 13.3 14.4 0.459 43 0.958 
ASU-RA 22.4 22.6 22.8 0.095 42 0.958 

A2SU-CA 11.4 13.0 14.3 0.502 50 0.953 
A2SU-RA 22.2 22.5 22.7 0.091 49 0.950 

  
We have conducted an experiment to validate RA on one 

application WalkPath [6]. In the experiment, we used RA to 
enhance three testing criteria All-Services (AS), All-
Services-Uses (ASU), and All-2-Services-Uses (A2SU) 
proposed in [6]. Test suites generated by CA with respect to 
AS, ASU, A2SU are referred to as AS-CA, ASU-CA and 
A2SU-CA, respectively; they are referred to as AS-RA, 
ASU-RA, A2SU-RA when RA is used instead. We chose the 
“the higher, the better” strategy. For each criterion and for 
each construction algorithm, we independently generate 100 
test suites from the same pool of over 20000 test cases. 

Table III summarizes some properties of these test suites. 
The table shows that test suites generated by RA can attain 
higher overall values in context diversity: ranges of context 
diversity between AS-CA and AS-RA are non-overlapping. 
Moreover, the ratio between the means is 1.54. The other 
two pairs share similar observations. It indicates that using 
RA, we can construct test suites with significantly changes in 
the overall context diversity value from using CA. 

We are in the process of analyzing the experimental data 
on the effectiveness and cost-effectiveness of test suites. We 



will report them in the future. We are also formulating ways 
to make context diversity more robust to different types of 
context-aware and self-adaptive programs. 

VI. RELATED WORK 

Apart from testing techniques [4][5][6][12] discussed in 
Section I, there are verification efforts to assure the 
correctness of context-aware applications. Roman et al. [9] 
propose Mobile UNITY as a model to represent mobile 
applications and verify applications against the specified 
properties. Sama et al. [11] verify the conformance between 
adaptive behaviors in context-aware applications against a 
set of proposed patterns. Different from these verification 
approaches, our work focuses on dynamic testing techniques 
to assure the quality of context-aware applications. Moreover, 
the techniques in [4][5][6][12] are white-box in nature; 
whereas, our measurement metric is a black-box one. Our 
method complements the above-reviewed work. 

The refined algorithm presented in this paper can be 
viewed as a test case selection problem that aims at changing 
the level of context diversity of a test suite while satisfying 
some other criteria. This problem can be modeled as a test 
case selection problem with multiple goals or constraints 
[1][7][15]. Nevertheless, the key technical challenge here is 
how to find out a complementary criterion. Once an effective 
criterion can be found out, the problem can be further 
generalized into an optimization with multiple objectives, in 
which a wide range of algorithms can be used to do the 
optimization task. 

There are also various related papers on considering data 
values in test case selection or generation. Unlike Korat [2], 
our technique does not generate test case on its own. Rather, 
our proposal takes the test case generation capability of 
existing algorithms for granted. Harder et al. [3] require the 
generated test suites to cover operational abstractions as 
many as possible; whereas our technique does not impose 
additional constraints (with respect with CA) on covering 
program entities. Netisopakul et al. [8] use white-box 
structural information to partition loop constructs into 
several equivalence classes; whereas, our technique uses test 
case information (rather than the program information). 

VII. CONCLUSION 

Context-awareness and context adaptation are two 
important features of context-aware programs. Although 
existing testing researches have explored how to use context-
related program entities to assure their correctness, they have 
not explored the potential of contexts within test cases to test 
self-adaptation behaviors. In this paper, we propose context 
diversity as a means to measure context stream fragments in 
terms of their context changes. We also discuss a way to 
incorporate context diversity in the test suite construction. 
The preliminary experiment shows that the refined algorithm 
can improve the context diversities of test suites 
significantly. We will examine the effectiveness of such test 
suites and generalize the proposal to handle a wider class of 
applications, such as event-driven systems. 
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