
Weaving Context Sensitivity into Test Suite Construction†

Huai Wang
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

hwang@cs.hku.hk

W.K. Chan‡
Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

Abstract—Context-aware applications capture environmental
changes as contexts and self-adapt their behaviors dynamically.
Existing testing researches have not explored context evolutions or
their patterns inherent to individual test cases when constructing
test suites. We propose the notation of context diversity as a metric
to measure how many changes in contextual values of individual
test cases. In this paper, we discuss how this notion can be
incorporated in a test case generation process by pairing it with
coverage-based test data selection criteria.

Keywords: context diversity; software testing; context-aware
program

I. INTRODUCTION

Context-aware applications capture the environmental
evolutions as contexts, and self-adapt their behaviors
dynamically and contextually. The massive volume of
contexts provides unprecedented levels of details about the
physical and computational environments surrounding the
context-aware applications. Moreover, they should make
sequences of contextual and fine-gained decisions and
implement such sequences during program executions. It is
challenging, however. For instance, there are diverse kinds
of noise existed in the captured contexts [13] and significant
errors in recovering actual situations based on given contexts
even though current state-of-the-art techniques have been
used [14]. Still, programmers are expected to develop
reliable solutions for the actual situations. Testing is a
method to check whether a program behaves as expected and
to reveal the presence of faults through executions of test
cases. It can be conducted by setting up certain actual
situations and observing the corresponding outputs from the
program under test.

Many state-of-the-art testing techniques have been
proposed to exercise various context-dependent data-flow
[5][6] and control-flow [4][5] entities, manipulate the thread
interleaving choices at the context-related function call level
[12] or at the scheduler level [4], or check the context
relationships among executions as alternate test oracles [10].

† This work is supported in part by the General Research Fund of

the Research Grants Council of Hong Kong (project nos. 111107
and 123207).

‡ All correspondence should be addressed to Dr. W. K. Chan at
Department of Computer Science, City University of Hong
Kong, Tat Chee Avenue, Hong Kong. Tel: (+852) 2788 9684.
Fax: (+852) 2788 8614. Email: wkchan@cs.cityu.edu.hk.

Experimental studies of these coverage-based testing
techniques show that there is still plenty of room for
improvement. For instance, in [5], the previous proposed
techniques have reported that they are not effective enough
to reveal the presence of faults in their “hard” category.

In this paper, we propose to augment coverage-based
testing techniques with a supplementary criterion. It is based
on a measurement metric, which we call context diversity. As
we have mentioned above, during program executions, a
context-aware program may make a sequence of decisions to
adapt its behaviors. We argue that such decisions are often
contextual in nature, and a primary source of such
information is originated from contexts, or their patterns and
evolutions. If it is the case, the sequence of contexts used by
a context-aware program (or its underlying middleware) to
activate such self-adaptation decisions may be valuable to
assure the program quality. On the other hand, even though
all such decisions are executed by the program sequentially
or in parallel as the expected version of the program does,
the potential presence of omission faults in the program may
make such sequences differ from how the sequences of
contexts to be used by the expected version.

One instance of the supplementary criterion aims to
diversify the contextual values in such sequences of contexts.
It assumes that self-adaptation occurs when there is a
significant change in contextual values. Different projections
(in view of the potential presence of omission faults) of a
sequence with relatively high consecutive changes in
contextual values may associate with different adaptation
sequences. The instance measures how many consecutive
changes in contextual values in such a sequence. In other
instances, we may use the metric to minimize the
diversifications.

To use the criterion, one may pair it up with coverage-
based techniques. For instance, when a candidate test case is
generated by a test suite construction procedure, it may be
deemed as redundant if the candidate fails to increase the
coverage achieved by the constructing test suite. In this case,
our criterion can be used to select a set of test cases,
including the candidate and the ones in the constructing test
suite to remove. In this removal process, we may use the
measurement metric to guide the above-mentioned
construction process to improve, worsen, or randomize the
context change levels exhibited in the constructing test suite.
In this paper, we illustrate such integration.

The main contribution of the paper is threefold: (i) It
points out the role of contexts in test suites as a way to

To appear in The 2009 IEEE/ACM International Conference on Automated Software Engineering (ASE 2009)

enhance other test case generation techniques. In particular,
it shows the use of information in test cases (rather than
information in programs or its specification) to construct test
suites. (ii) It formulates the notion of context diversity to
measure the contextual changes in test cases. (iii) It reports
an experiment to show how much context diversity can be
injected in coverage-adequate test suites.

The rest of this paper is organized as follows: Section II
gives the preliminaries of this work. Section III uses a
motivating example to illustrate the inadequacy of testing
techniques that are neutral to contextual changes in test
cases. Section IV presents our idea, and Section V discusses
some properties of our technique. Section VI reviews related
work, followed by a conclusion in Section VII.

II. PRELIMINARY

In this section, we state the preliminaries to ease the
presentation of our technique. A context-aware application p
may associate with a set of environment attributes, which can
be characterized by context variable [6]:

Definition 1 (Context Variable): A context variable C
is a tuple (field1, field2, … , fieldn), where each fieldi (0 < i <
n + 1) represents an environment attribute subscribed by p.

However, context variables are symbolic in nature. They
quantify the (environmental) patterns that p reacts to. To use
these contexts in actual program executions, the required
context variables should be initialized. A context instance
ins(C) is said to be generated when all fields in a context
variable C have been instantiated [5][6]:

Definition 2 (Context Instance): A context instance
ins(C) of a context variable C is a tuple (i1, i2, … , in) such
that each it (0 < t < n + 1) takes the form of (fieldt =value:
type, time), where value, type and time are the instantiation
value, data type and sampling time for fieldt, respectively.

We are interested in how a testing technique uses the
contextual value, and thus, in the rest of the paper, we simply
write value rather than (fieldt =value: type, time). A sequence
of context instances is called a context stream. Typically, the
data volume of such context streams is large, and thus, it is
generally intractable to test the entire data streams for
assuring the program quality. For testing purpose, a test case
may therefore only take a fragment of a context stream as a
part of its test input.

Definition 3 (Context Stream Fragment): A context
stream fragment cstream(C) of a context variable C is an
ordered sequence of ins(C) as ሻ௧భܥሺݏ݊݅ ሻ௧మܥሺݏ݊݅ , , … ,
ሻ௧ܥሺݏ݊݅ . Each ݅݊ݏሺܥሻ௧ (0 < i < n and ti < ti+1) in
cstream(C) is a context instance sampled at time ti and all
context instances in cstream(C) are ordered by ti.

III. THE PROBLEM

A. Motivating example: Conveyor Belt

We use the application scenario of Conveyor Belt
described in [6] as the motivating example, which is as
follows.

Along with a conveyor belt carrying packages to pass
through an inspection zone at an airport, four sensors are
deployed to partition the inspection zone into a series of
segments, and they are labeled as reader0, reader1, reader2
and reader3, and their positions are denoted as 0, 1, 2, and 3,
respectively. When a package passes through the inspection
zone of each sensor, its position is sensed and calibrated
according to the position of the sensor that receives the
strongest signal strength. Figure 1 shows the pseudo-code
that reports the position of the package.

In Figure 1, the package and its position is denoted as p
and p.position, respectively. The readings of four sensors are
represented by r0, r1, r2, r3, respectively. When the package
moves into the inspection zone, the program unit
report_position will execute and report an estimated package
position. The primitive query({c}) at statement #4, #9, or
#16 retrieves the latest context instances from the
corresponding context stream. As the sensors may be close
to one another, they may induce false positive readings. For
instance, a package detected by r2 via reader3 may be
closest to reader2. To tackle such kinds of problem, the
program designs one Context Inconsistency Resolution
(CIR) service [6] to detect and resolve inconsistent reports of
package positions, which is a context dropping service. The
CIR service specifies the constraint q1 to assure that
p.position should be increased monotonically. If q1 is
violated, the CIR service invokes the resolution strategy s1 to
drop the latest p.position.

Figure 1: Pseudo-code and CIR services of Conveyor Belt

 #1:report_position {
 #2: p, p.position; //the package and its position
 #3: r0, r1, r2, r3; //reader0, reader1, reader2,reader3
 #4: query({r0, r1});
 #5: if (r0.strength r1.strength)
 #6: p.position=0;
 #7: else p.position =1;
 #8: wait(FIXED_INTERVAL);
 #9: query({r0, r1, r2});
#10: if (r0.strengthr1.strength and r0.strength
 r2.strength)
#11: p.position=0;
#12: else if (r1.strengthr0.strength and r1.strength

 r2.strength)
#13: p.position =1;
#14: else p.position =2;
#15: wait(FIXED_INTERVAL);
#16: query({r1, r2, r3});
#17: if (r1.strengthr2.strength and r1.strength
 r3.strength)
#18: p.position=1;
#19: else if (r2.strengthr1.strength and r2.strength

 r3.strength)
#20: p.position=2;
#21: else p.position=3;
#22: report p.position;
#23:}

#24:cir_service = {1} {
#25: 1 = (q1, s1);
#26: q1: i>0, ins(p.position)i ins(p.position)i-1
#27: s1: drop ins(p.position)i
#28}

B. Testing Challenges

We use the fault in [6] to motivate our work. The fault is
at the statement #10, in which all “” are implemented
wrongly as “”. We denote the faulty statement as #10':

#10': if (r0.strength r1.strength and r0.strength r2.strength)

Using the techniques proposed in [6], testers may construct a
test suite that satisfies both the all-uses and the all-services
[6] test data selection criteria. We denote it as S:

S = {t1, t2, t3, t4}
where

t1 = (30, 30, 20, 15), (30, 30, 20, 15), (30, 30, 20, 15),
t2 = (10, 20, 5, 40), (10, 20, 5, 40), (10, 20, 5, 40),
t3 = (30, 20, 35, 10), (30, 20, 35, 10), (30, 20, 35, 10),
and
t4 = (20, 30, 35, 40), (25, 33, 38, 40), (25, 33, 35, 40).

To simplify our discussion, let us denote the tuple (r0, r1,
r2, r3) as a context variable, and each of t1, t2, t3, and t4 is a
context stream fragment produced by the four sensors. Each
context stream fragment consists of three context instances,
each of which corresponds to the sensor readings fed to the
program when the query primitive is invoked at statements
#4, #9, and #16, respectively. For example, the context
stream fragment t4 shows that the context variable changes
its values to (20, 30, 35, 40) at #4, then to (25, 33, 38, 40) at
#9, and finally to (25, 33, 35, 40) at #16.

TABLE I: TEST OUTCOMES OF THE ALL-USES-ADEQUATE AND THE ALL-
SERVICES-ADEQUATE TEST SUITE S

Test
Case

Expected Version Faulty Version Context
Diversity p.position output p.position output

t1 0→1→1 1 0→1→1 1 0
t2 1→1→3 3 1→1→3 3 0
t3 0→2→2 2 0→2→2 2 0
t4 1→2→3 3 1→0→3 3 4

Table I summarizes the test outcome of the test suite S. In

Table I, the package positions and the output of the program
are shown in the “p.position” and “output” columns,
respectively. When t4 is fed to the faulty version of Convey
Belt, the positions of the package are reported as 1 at #7, 0 at
#10', and 3 at #21, and the final output of the program is 3.
(It is noted that, for #10, the context instance violates q1 and
thus is dropped by s1).

Even though the test suite S is both all-uses-adequate and
all-services-adequate, yet none of its test cases exposes any
failure. To improve the situation, one may enlarge the test
suite, or require appropriate test cases satisfying multiple test
adequacy criteria. (Indeed, the test suite also satisfies all-
edges). Increasing the allowable size of a test suite will incur
more test cost because apart from test case selection and
execution, the output of the program over the additional test

 We italicize p.position sequences which invoke the CIR service

in Table I and Table II.

cases need a test oracle to determine whether it is passed or
not. It is more attractive if multiple and effective testing
criteria can be achieved without affecting the constraint on
the size of a test suite. On the other hand, as demonstrated
by the example above, S satisfying multiple testing criteria
may not be effective to reveal the presence of the illustrated
faults.

The key technical challenge is to formulate an effective
criterion that can be used with a wide range of testing
criteria. The next section outlines our idea.

IV. OUR SOLUTION

Let us consider another test suite S' that satisfies both the
all-uses and the all-services testing criteria, which is shown
as follows:

S' = {t1', t2', t3', t4'}
where

t1' = 30, 20, 5, 10), (30, 40, 5, 10), (30, 40, 5, 40),
t2' = (20, 40, 20, 5), (10, 25, 30, 10), (20, 30, 20, 15),
t3' = (30, 20, 10, 20), (30, 20, 15, 30), (40, 25, 40, 35),
and
t4' = (20, 30, 20, 10), (10, 15, 30, 20), (8, 35, 30, 22).

TABLE II: TESTING OUTCOMES OF S'

Test
Case

Expected Version Faulty Version Context
Diversity p.position output p.position output

t1' 0→1→3 3 0→1→3 3 2
t2' 1→2→1 2 1→0→1 1 8
t3' 0→0→2 2 0→2→2 2 6
t4' 1→2→1 2 1→0→1 1 7

Similar to Table I, Table II summarizes the test results

for the test suite S'. Table II shows that S' contains two failed
test cases (t2' and t4'). Although both S and S' satisfy the all-
uses criterion and the all-services criterion, they exhibit
different testing effectiveness. S fails to expose the fault;
whereas S' detects the fault twice. What makes such a
difference in testing effectiveness of S and S'?

Suppose that multiple context stream fragments may be
feasible to serve as test cases for a testing criterion. Suppose
further that all factors related to the internal property of the
program under test are equal, we may randomly pick one of
such context stream fragments. This is the approach taken by
some existing techniques [4][5][6][12].

Let us consider a scenario, in which the self-adaptation of
a program occurs when there is a significant change in values
within the context streams. If so, different projections (in
view of the potential presence of omission faults) of a
sequence with relatively high consecutive changes in
contextual values may associate with different adaptation
sequences. Without further information, the best we can
assume is that any projection is feasible and these projections
distribute uniformly. We thus measure the overall change in
contextual values for a given sequence as context diversity:

Definition 4 (Context Diversity): The Context Diversity
(CD) of a context stream fragment cstream(C) is denoted by
CD(cstream(C)) and is defined by the following equation:

ሻ൯ܥሺ݉ܽ݁ݎݐݏ൫ܿܦܥ ൌ ,ሻܥሺݏሺ݅݊ܦܪ ሻାଵሻܥሺݏ݊݅
ିଵ

ୀଵ
 ݊ ൌ |ሻܥሺ݉ܽ݁ݎݐݏܿ|

where HD(ins(C)i, ins(C)i+1) is the Hamming distance of a
pair of context instances ins(C)i and ins(C)i+1, and n is the
length of the context stream fragment C.

Take t4' for example: The Hamming distance between the
first pair of two context instances is 4 because the value of r0
should be edited from 20 to 10 (i.e., one change), and the
values for r1, r2, and r3 alike. In the same manner, the
Hamming distance of the next pair of context instances is
only 3 because the value for r2 does not change. Summing
up these two values (3 + 4) gives a value of 7, which is the
context diversity value assigned to t4' as shown in the
“Context Diversity” column in Table II. The context
diversities for the other test cases are also shown in Table I
and Table II.

The measurement metric, context diversity, has at least
three desirable properties that we consider interesting:

 Any context stream fragment has a higher (or at least the
same) value in context diversity than any of its context
stream fragments.

 A more dynamic context fragment receives a higher
context diversity value than a less dynamic one if their
length are equal.

 Measuring context diversity of a test suite is non-
intrusive. Depending on the purpose of testing, a test
suite construction method may choose to maximize,
randomize, or minimize context diversity in a test suite.

To see the usefulness of context diversity, let us first
revisit the Convey Belt example. During its execution, the
application accepts readings from location sensors as
parametric inputs. Moreover, the main component also
interacts (via contexts) with a context dropping service to
handle (i.e., drop) inconsistent package position values. The
removal of value from the context stream may reveal the
failure. For instance, from Table II, we observe that
execution of the expected version of Convey Belt over t4'
produces 2 as the result. It is because the application has
triggered the context dropping service, which removes the
last position value (which is 1) produced by its main
component. This removal exposes the failure caused by #10'.
We further observe that the test suite S' has led the
application to activate s1 four times (via t2' and t4'); whereas,
S results in activating s1 only once (via t4). This example
illustrates that a test suite with higher value in context
diversity may lead the context-aware program to exhibit self-
adaptation behaviors more often than a test suite having
lower value in context diversity. If producing correct self-
adaptation is a major quality assurance problem on top of
finding conventional sources of errors, using context
diversity may provide a metric value for a testing method to
include or exclude a particular test case (that deals with
context-adaptation) from a test suite.

Conventional algorithms (CA) for test suite construction
are neutral to context diversity. For instance, when
constructing an adequate test suite for a test criterion C,
given two test cases t and t' which cover the same set of
program entities specified by C, many CAs select t and drop
t' simply because t has been selected before t' is encountered.

We propose to replace the above-described greedy
property in CA by examining the values of context diversity
in individual test cases instead. It could be done at the test
case level, or at the test suite level. For instance, suppose that
the current constructing test suite is X and a new test case x is
generated, but x could not improve the coverage of X. Rather
than simply dropping x as CA does, our refined algorithm
(RA) checks whether it may take out some test cases from X
such that the reduced test suite union with {x} can achieve
the same coverage as X does yet with better (e.g., higher,
lower) overall context diversity.

V. DISCUSSION

There are many outstanding questions to be answered: Is
it feasible to produce test suites with significantly
higher/lower values in context diversity? Does a test suite
with better context diversity really improve the fault
detection effectiveness of coverage-based testing techniques?
What is the time and space cost to measure context diversity?
Owing to space constraint, we address the first question in
this paper.

TABLE III: DESCRIPTIONS OF TEST SUITES

Test Suite
Context Diversity

Size
Coverage
Achieved Min Mean Max StdD.

AS-CA 12.0 13.3 14.6 0.570 26 1.000
AS-RA 19.4 20.6 21.9 0.481 27 1.000

ASU-CA 12.1 13.3 14.4 0.459 43 0.958
ASU-RA 22.4 22.6 22.8 0.095 42 0.958

A2SU-CA 11.4 13.0 14.3 0.502 50 0.953
A2SU-RA 22.2 22.5 22.7 0.091 49 0.950

We have conducted an experiment to validate RA on one

application WalkPath [6]. In the experiment, we used RA to
enhance three testing criteria All-Services (AS), All-
Services-Uses (ASU), and All-2-Services-Uses (A2SU)
proposed in [6]. Test suites generated by CA with respect to
AS, ASU, A2SU are referred to as AS-CA, ASU-CA and
A2SU-CA, respectively; they are referred to as AS-RA,
ASU-RA, A2SU-RA when RA is used instead. We chose the
“the higher, the better” strategy. For each criterion and for
each construction algorithm, we independently generate 100
test suites from the same pool of over 20000 test cases.

Table III summarizes some properties of these test suites.
The table shows that test suites generated by RA can attain
higher overall values in context diversity: ranges of context
diversity between AS-CA and AS-RA are non-overlapping.
Moreover, the ratio between the means is 1.54. The other
two pairs share similar observations. It indicates that using
RA, we can construct test suites with significantly changes in
the overall context diversity value from using CA.

We are in the process of analyzing the experimental data
on the effectiveness and cost-effectiveness of test suites. We

will report them in the future. We are also formulating ways
to make context diversity more robust to different types of
context-aware and self-adaptive programs.

VI. RELATED WORK

Apart from testing techniques [4][5][6][12] discussed in
Section I, there are verification efforts to assure the
correctness of context-aware applications. Roman et al. [9]
propose Mobile UNITY as a model to represent mobile
applications and verify applications against the specified
properties. Sama et al. [11] verify the conformance between
adaptive behaviors in context-aware applications against a
set of proposed patterns. Different from these verification
approaches, our work focuses on dynamic testing techniques
to assure the quality of context-aware applications. Moreover,
the techniques in [4][5][6][12] are white-box in nature;
whereas, our measurement metric is a black-box one. Our
method complements the above-reviewed work.

The refined algorithm presented in this paper can be
viewed as a test case selection problem that aims at changing
the level of context diversity of a test suite while satisfying
some other criteria. This problem can be modeled as a test
case selection problem with multiple goals or constraints
[1][7][15]. Nevertheless, the key technical challenge here is
how to find out a complementary criterion. Once an effective
criterion can be found out, the problem can be further
generalized into an optimization with multiple objectives, in
which a wide range of algorithms can be used to do the
optimization task.

There are also various related papers on considering data
values in test case selection or generation. Unlike Korat [2],
our technique does not generate test case on its own. Rather,
our proposal takes the test case generation capability of
existing algorithms for granted. Harder et al. [3] require the
generated test suites to cover operational abstractions as
many as possible; whereas our technique does not impose
additional constraints (with respect with CA) on covering
program entities. Netisopakul et al. [8] use white-box
structural information to partition loop constructs into
several equivalence classes; whereas, our technique uses test
case information (rather than the program information).

VII. CONCLUSION

Context-awareness and context adaptation are two
important features of context-aware programs. Although
existing testing researches have explored how to use context-
related program entities to assure their correctness, they have
not explored the potential of contexts within test cases to test
self-adaptation behaviors. In this paper, we propose context
diversity as a means to measure context stream fragments in
terms of their context changes. We also discuss a way to
incorporate context diversity in the test suite construction.
The preliminary experiment shows that the refined algorithm
can improve the context diversities of test suites
significantly. We will examine the effectiveness of such test
suites and generalize the proposal to handle a wider class of
applications, such as event-driven systems.

REFERENCES
[1] J.Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria models

for all-uses test suite reduction,” in Proceedings of the 26th
International Conference on Software Engineering (ICSE
2004), pp. 106115, 2004.

[2] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: automated
testing based on Java predicates,” in Proceedings of
International Symposium on Software Testing and Analysis
(ISSTA 2002), pp. 123133, 2002.

[3] M. Harder, J. Mellen, and M. D. Ernst, “Improving test suites
via operational abstraction,” in Proceedings of the 25th
International Conference on Software Engineering (ICSE
2003), pp. 6071, 2003.

[4] Z. F. Lai, S. C. Cheung, and W. K. Chan, “Inter-context
control-flow and data-flow test adequacy criteria for nesC
applications,” in Proceedings of 16th ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (SIGSOFT 2008/FSE-16), pp. 94104, 2008.

[5] H. Lu, W. K. Chan, and T. H. Tse, “Testing context-aware
middleware-centric programs: a data flow approach and an
RFID-based experimentation,” in Proceedings of 16th ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (SIGSOFT 2006/FSE-14), pp. 242252,
2006.

[6] H. Lu, W. K. Chan, and T. H. Tse, “Testing pervasive
software in the presence of context inconsistency resolution
services,” in Proceedings of 30th International Conference on
Software Engineering (ICSE 2008), pp. 100110, 2008.

[7] N. Mansour and K. EI-Fakin, “Simulated Annealing and
Genetic Algorithms for Optimal Regression Testing,” Journal
of Software Maintenance: Research and Practice, 11(1):
1934, 1999.

[8] P. Netisopakul, L. J. White, J. Morris, and D. Hoffman, “Data
coverage testing of programs for container classes,” in
Proceedings of 13th International Symposium on Software
Reliability Engineering (ISSRE 2002), pp. 183194, 2002.

[9] G. C. Roman, P. J. McCann, and J. Y. Plun, “Mobile UNITY:
reasoning and specification in mobile computing,” ACM
Transactions on Software Engineering and Methodology
(TOSEM), 6 (3): 250282, 1997.

[10] T.H. Tse, S. S. Yau, W.K. Chan, H. Lu, and T.Y. Chen.
“Testing context-sensitive middleware-based software
applications,” in Proceedings of COMPSAC 2004, volume 1,
pp. 458–465, 2004.

[11] M. Sama, D. S. Rosenblum, Z. M. Wang, and S. Elbaum,
“Model-based fault detection in context-aware adaptive
applications,” in Proceedings of 16th ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (SIGSOFT 2008/FSE-16), pp. 261271, 2008.

[12] Z. M. Wang, S. Elbaum, and D. S. Rosenblum, “Automated
generation of context-aware tests,” in Proceedings of 29th
International Conference on Software Engineering (ICSE
2007), pp. 406415, 2007.

[13] C. Xu, S.C. Cheung, and W.K. Chan, “Incremental
consistency checking for pervasive context,” in Proceedings
of the 28th International Conference on Software Engineering
(ICSE 2006), pp. 292301, 2006.

[14] J. Ye, L. Coyle, S. Dobson, and P. Nixon, "Using situation
lattices in sensor analysis," in Proceedings of IEEE
International Conference on Pervasive Computing and
Communications (PerCom 2009), pp. 111, 2009.

[15] S. Yoo and M. Harman, “Pareto efficient multi-objective test
case selection,” in Proceedings of International Symposium
on Software Testing and Analysis (ISSTA 2007), pp. 140150,
2007.

