Minimizing the Deployment Cost of UAVs for Delay-Sensitive Data Collection in IoT Networks

Wenzheng Xu, Member, IEEE, Tao Xiao, Junqi Zhang, Weifa Liang, Senior Member, IEEE, Zichuan Xu, Member, IEEE, Xuxun Liu, Xiaohua Jia, Fellow, IEEE, and Sajal K. Das, Fellow, IEEE

Abstract—In this paper, we study the deployment of Unmanned Aerial Vehicles (UAVs) to collect data from IoT devices, by finding a data collection tour for each UAV. To ensure the ‘freshness’ of the collected data, the total time spent in the tour of each UAV that consists of the UAV flying time and data collection time must be no greater than a given delay B, e.g., 20 minutes. In this paper, we consider a problem of deploying the minimum number of UAVs and finding their data collection tours, subject to the constraint that the total time spent in each tour of any UAV is no greater than B.

Specifically, we study two variants of the problem: one is that a UAV needs to fly to the location of each IoT device to collect its data; the other is that a UAV is able to collect the data of an IoT device if the Euclidean distance between them is no greater than the wireless transmission range of the IoT device. For the first variant of the problem, we propose a novel 4-approximation algorithm, which improves the best approximation ratio 4 for it so far. For the second variant, we devise the very first constant factor approximation algorithm. We also evaluate the performance of the proposed algorithms via extensive experiment simulations. Experimental results show that the numbers of UAVs deployed by the proposed algorithms are from 11% to 19% less than those by existing algorithms on average.

Index Terms—Mobile data collection, multiple UAV scheduling, minimum numbers of UAV deployments, minimum cycle cover with neighborhoods, approximation algorithms.

I. INTRODUCTION

DUE to their flexibility and cost-efficiency, Unmanned Aerial Vehicles (UAVs) are now being widely used in many applications including goods delivery, target tracking, emergency aid, charging wireless sensor networks [14], [20], [22], [27], [28], [31]–[33], [35], [40], [41], [43], and so on. On the other hand, millions of Internet of Thing (IoT) devices, such as various sensors and smart monitoring devices, have been deployed in many IoT networks in the past years for various applications.

In this paper, we study the data collection of IoT devices in a large-scale IoT network, e.g., ten square kilometers, where IoT devices are only sparsely deployed at some strategic locations to monitor important Points of Interest (PoIs) in the network. Due to the large scale of the network and limited energy supplies of IoT devices, sometimes it is unrealistic to allow the IoT devices to directly transmit or relay their sensing data to a base station via multihop relays.

We consider the deployment of multiple light-weight UAVs to collect data from IoT devices, where a UAV can fly to a location nearby an IoT device to collect its data, thereby saving the energy consumption of the IoT device. Fig. 1(a) shows that two UAVs are deployed to collect data of IoT devices along their data collection flying tours, respectively.

To ensure the ‘freshness’ of the collected data, a strict requirement is that the total time spent in the tour of each UAV, which consists of the UAV flying time and data collection time, should be no greater than a given delay B, e.g., 20 minutes [4]. Otherwise, the collected data is somewhat ‘stale’. For example, consider networks in which IoT devices are deployed to monitor bushfires in a forest [18] or PM 2.5 pollution in a city [34], it is important to collect sensing data as timely as possible.

In this paper, we study a novel minimum UAV deployment problem, which is to determine the minimum number of UAVs to-be-deployed and find their the data collection tours, such that the data of each IoT device is collected by one of the UAVs, subject to that the total time spent by any UAV in its tour is no greater than a given delay B. Specifically, we consider two variants of the minimum UAV deployment problem: One is termed as the minimum UAV deployment problem without neighborhoods, in which a UAV needs to fly to the location of each IoT device to collect its data, see Fig. 1(a). In this case, the wireless transmission range of the IoT device is much shorter than the scale of the network, or the device cannot transmit data in a wireless way. One application example is that each IoT device is an RFID

Manuscript received April 2, 2021; revised September 23, 2021; accepted October 24, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor T. He. Date of publication November 5, 2021; date of current version April 18, 2022. The work of Wenzheng Xu was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61602330 and in part by the Sichuan Science and Technology Program under Grant 2018RZ0010 and Grant 2017JQ0003. The work of Weifa Liang was supported by the City University of Hong Kong under Project CityU 980137/CS. The work of Xiaohua Jia was supported by the Research Grants Council of Hong Kong under Project CityU 11214316. The work of Sajal K. Das was supported in part by NSF Grants under Award CCF-1725755, Award CNS-1818942, Award SCC-1952045, and Award SaTC-2030624. (Corresponding author: Zichuan Xu.)

Wenzheng Xu, Tao Xiao, and Junqi Zhang are with the College of Computer Science, Sichuan University, Chengdu 610065, China (e-mail: wenzheng.xu3@gmail.com; xt980124@163.com; junqizhangscu@163.com).

Weifa Liang and Xiaohua Jia are with the Department of Computer Science, City University of Hong Kong, Hong Kong, China (e-mail: weifaliang@cityu.edu.hk; csjia@cityu.edu.hk).

Zichuan Xu is with the School of Software, Dalian University of Technology, Dalian 116024, China (e-mail: z.xu@dlut.edu.cn).

Xuxun Liu is with the College of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China (e-mail: liuxuxun@scut.edu.cn).

Sajal K. Das is with the Department of Computer Science, Missouri University of Science and Technology, Rolla, MO 65409 USA (e-mail: sdas@mst.edu).

Manuscript received April 2, 2021; revised September 23, 2021; accepted October 24, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor T. He. Date of publication November 5, 2021; date of current version April 18, 2022. The work of Wenzheng Xu was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61602330 and in part by the Sichuan Science and Technology Program under Grant 2018RZ0010 and Grant 2017JQ0003. The work of Weifa Liang was supported by the City University of Hong Kong under Project CityU 980137/CS. The work of Xiaohua Jia was supported by the Research Grants Council of Hong Kong under Project CityU 11214316. The work of Sajal K. Das was supported in part by NSF Grants under Award CCF-1725755, Award CNS-1818942, Award SCC-1952045, and Award SaTC-2030624. (Corresponding author: Zichuan Xu.)

Wenzheng Xu, Tao Xiao, and Junqi Zhang are with the College of Computer Science, Sichuan University, Chengdu 610065, China (e-mail: wenzheng.xu3@gmail.com; xt980124@163.com; junqizhangscu@163.com).

Weifa Liang and Xiaohua Jia are with the Department of Computer Science, City University of Hong Kong, Hong Kong, China (e-mail: weifaliang@cityu.edu.hk; csjia@cityu.edu.hk).

Zichuan Xu is with the School of Software, Dalian University of Technology, Dalian 116024, China (e-mail: z.xu@dlut.edu.cn).

Xuxun Liu is with the College of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China (e-mail: liuxuxun@scut.edu.cn).

Sajal K. Das is with the Department of Computer Science, Missouri University of Science and Technology, Rolla, MO 65409 USA (e-mail: sdas@mst.edu).

This article has supplementary downloadable material available at https://doi.org/10.1109/TNET.2021.3123606, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3123606
Fig. 1. Data collection by UAVs in two scenarios.

The other is referred to as the minimum UAV deployment problem with neighborhoods, an IoT device is able to transmit its data to a UAV through wireless data transmission and the data then can be received by the UAV when the Euclidean distance between the device and the UAV is no greater than a given communication range, see Fig. 1(b). Unlike the wireless communication between two devices on the ground that wireless signals degrade very quickly due to various shadowing and scattering, the radio signals from a ground device to a UAV in the air, or vice versa, degrade much slower, due to less obstacles between them [1], [5]. Therefore, the wireless communication range between a ground IoT device and a UAV usually is much longer than the communication range between two ground IoT devices, e.g., 500 m vs. 50 m [1], [2], [5]. It then can be seen that by exploiting the long communication range between an IoT device and a UAV, the number of deployed UAVs may be significantly reduced. For example, Fig. 1(a) shows that two UAVs are deployed when a UAV must fly to the location of each IoT device to collect its data, while Fig. 1(b) demonstrates that only one UAV is deployed when taking the communication range into consideration.

The main contributions of this paper are summarized as follows. (i) We study a novel minimum UAV deployment problem, which is to determine the minimum number of UAVs to-be-deployed and find the data collection tour for each of the UAVs, subject to that the total time spent by each UAV per tour is no greater than a given delay \(B \). (ii) For the first variant of the problem – the minimum UAV deployment problem without neighborhoods where a UAV needs to fly to the location of each IoT device for its data collection, we propose a 4-approximation algorithm, which improves the best approximation ratio \(4\frac{1}{2} \) for the problem so far. (iii) For the second variant of the problem – the minimum UAV deployment problem with neighborhoods where a UAV can collect the data of an IoT device as long as their Euclidean distance is no greater than a given communication range, we devise the first constant factor approximation algorithm for it. (iv) Experimental results show that the numbers of UAVs deployed by the proposed algorithms are around from 11% to 19% less than those by existing algorithms on average.

The rest of the paper is organized as follows. Section II reviews related work. Section III introduces the network and data collection models, and defines the problems. Sections IV and V propose approximation algorithms for the minimum UAV deployment problem with and without neighborhoods, respectively. Section VI evaluates the performance
of the proposed algorithms. Finally, Section VII concludes the paper.

II. RELATED WORK

Some existing studies considered a scenario of dispatching a mobile sink to collect data from sensors in an IoT network. For example, Xu et al. [29] studied the problem of dispatching a mobile sink to collect data from sensors such that the lifetime of the network is maximized. Ren et al. [26] investigated the problem of using a mobile sink to collect data in a renewable sensor network deployed on a roadside, such that the amount of data collected from all sensors is maximized. On the other hand, there are also some studies focusing on deploying multiple mobile sinks to collect data from sensors. For example, Konstantopoulos et al. [17] studied the problem of dispatching multiple mobile sinks to collect sensor data to maximize the data throughput, while ensuring network connectivity and balancing energy consumption among sensors. They proposed algorithms to cluster sensors in a network, find cluster heads, and determine the rendezvous nodes, followed by dispatching mobile sinks to collect data from rendezvous nodes. However, due to various obstacles in the ground such as rocks, rivers and buildings, mobile sinks cannot move freely and they may not be able to reach to the locations of some sensors.

There are several recent studies on the deployment of UAVs for data collection in a IoT network. For example, Zhan et al. [38] studied the problem of dispatching a UAV to collect data from sensors so as to minimize the maximum energy consumption among sensors, while ensuring that sensor data are reliably collected. Ebrahimi et al. [12] considered the problem of clustering densely-located sensors, constructing a data collection tree for each cluster, and finding a flying trajectory for a UAV to gather data from cluster heads, so that the UAV flying distance is minimized. Liang et al. [20] studied a problem of finding an optimized tour for a UAV such that the quality of photos taken during the tour is maximized, subject to energy capacity on a UAV. They proposed a novel approximation algorithm and a fast yet scalable heuristic algorithm for the problem. Zhan et al. [39] studied the problem of dispatching a UAV which starts from and ends at a given location so that the number of sensors with their data collected by the UAV within a given duration is maximized. Li et al. [19] considered the problem of deploying an energy constrained UAV to collect data in an IoT network in different data collection models: one is that the hovering coverage of different sensors do not overlap with each other, the other is that there are coverage overlapping. They also considered a partial data collection maximization problem. Unlike those mentioned studies, You and Zhang [35] considered a scenario that a UAV can change its altitude to collect data from different sensors, and studied the problem of deploying a UAV to collect sensor data, such that the minimum average data collection rate from all sensors is maximized, under a prescribed reliability constraint for each sensor. Unlike existing studies, in this paper we focus on dispatching the minimum number of UAVs for data collection in an IoT network, subject to that the maximum time spent by each UAV per tour is no greater than a given delay B.

We also note that there are several studies on the minimum cycle cover problem without neighborhoods, which is to find the minimum number of cycles to cover all nodes in a graph, such that the length of each cycle is no more than a given bound B, which are closely related to the work in this paper. For example, Arkin et al. [3] proposed the very first 6-approximation algorithm for the problem. Khani and Salavatipour [15] then devised a 5-approximation algorithm. Yu et al. [37] recently further improved the result by proposing two approximation algorithms for the problem: one with approximation ratio 4.5 and time complexity $O(n^3)$; the other with approximation ratio 4.3 and time complexity $O(n^5)$, respectively, where $4.5 < 4.3$. In contrast, the proposed algorithm in this paper can deliver a 4-approximate solution in time $O(n^4)$. On the other hand, for the single-rooted minimum cycle cover problem with each cycle must contain a root node, Nagarajan and Ravi [23] proposed an $O(\log B)$-approximation algorithm, where B is the length constraint of each tour. Dai et al. [7] studied the problem of deploying the minimum number of charging vehicles to fully charge a set of energy-critical sensors, by utilizing the approximation algorithm in [23]. However, the cost of each obtained tour by the algorithms in [7] and [23] may exceed the length bound. In contrast, Zhang et al. [43] and Liang et al. [21] proposed approximation algorithms for the single-rooted minimum cycle cover problem, such that the length of each obtained tour is no greater than the length bound B.

The minimum UAV deployment problem without neighborhoods considered in this paper is closely related to the min-max cycle cover problem that is to find K closed tours to visit nodes in a graph such that the length of the longest tour among the found K tours is minimized, where K is a given positive integer. For the min-max cycle cover problem, Arkin et al. [3] proposed the first constant approximation algorithm with an approximation ratio of 8, and Khani and Salavatipour [15] later improved the approximation ratio to 6. Xu et al. [30] further improved the result by devising a $5\frac{1}{2}$-approximation algorithm. Yu and Liu [36] further reduced the approximation ratio to 5. When K is a small constant (e.g., $K = 5$), Guo et al. [14] proposed an improved $4\frac{1}{3}$-approximation algorithm to minimize the longest tour time among K UAVs for disaster area surveillance. It can be seen that, given an approximation algorithm for the min-max cycle cover problem, we can find the minimum number of UAVs deployed by invoking the algorithm multiple times, through increasing the value of K from 1 to n until the longest tour length is no greater than B, where n is the number of IoT devices. However, this method does not deliver a constant approximate solution to the minimum UAV deployment problem.

The study in this paper is also closely related to the studies on the Traveling Salesman Problem with Neighborhoods (TSPN) in a 2D Euclidean space that is to find a single shortest tour such that at least one location in each disk is visited. When the radii of all disks are identical, Dumitrescu and Mitchell [9] first proposed a 7.62-approximation algorithm and recently improved the ratio to 6.75 [10]. On the other hand, when the radii of different disks are different, Dumitrescu and Tóth [11] devised a constant factor approximation algorithm. In addition, Deng et al. [8] recently studied the problem of finding K closed tours to visit all disks in a 2D space, such that the length among the K found tours is minimized, for which
they proposed approximation algorithms. Furthermore, Elbassi ani et al. [13] devised a constant approximation algorithm for the TSPN problem with intersecting fat convex regions and the ratio of the largest radius of all regions to the smallest radius is upper bounded by a constant.

III. Preliminaries

A. Network Model

We consider an IoT application scenario where many IoT devices are deployed in an area to monitor important Points of Interest (PoIs) in the area. For example, IoT devices are used to monitor PM 2.5 pollution in a smart city [34] or monitor bushfires in a forest [18]. Assume that there are \(n \) devices \(v_1, v_2, \ldots, v_n \) deployed at some strategic locations in the monitoring area, where \(n \) is a positive integer. Let \(V = \{ v_1, v_2, \ldots, v_n \} \). Denote by \((x_i, y_i, 0) \) the coordinates of device \(v_i \) with \(1 \leq i \leq n \). We assume that the coordinates of each device \(v_i \) are given, which can be obtained when the device is deployed.

Notice that a monitoring area may be very large. For example, in the case an IoT network is deployed for monitoring forest fires, the monitored forest area may be tens of square kilometers [18], and the IoT devices usually are sparsely deployed. To form a connected IoT network, a traditional solution is to deploy relay devices among the deployed devices. However, since the transmission range between two devices on the ground usually is only dozens of meters, a large number of relaying devices need to deploy in order to form a connected network, thereby incurring high deployment cost. In contrast, in this paper we consider the deployment of UAVs to collect data from IoT devices, because UAVs are flexible and no relaying devices need to be deployed, thus saving the deployment cost.

B. Data Collection Models

We consider two data collection scenarios. One is referred to as the data collection without neighborhoods. That is, a UAV needs to fly to the location of each IoT device to collect its data. One application example of this model is that each device is an RFID tag. To collect the data of the tag, a UAV must be equipped with an RFID reader to read the data of the tag when the Euclidean distance between them is very short, e.g., a few meters. The other is referred to as the data collection with neighborhoods. That is, each IoT device can send its data to a UAV wirelessly, and the UAV can collect the data from the device as long as their Euclidean distance is no greater than a given wireless transmission range. In the following, we introduce the data collection models for these two scenarios accordingly.

Assume that \(K \) UAVs are deployed to collect data from \(n \) IoT devices, where the value of \(K \) is unknown and will be determined later. The set \(V \) of the \(n \) IoT devices is partitioned into \(K \) disjoint subsets \(V_1, V_2, \ldots, V_K \), where UAV \(k \) collects the data from the devices in \(V_k \) with \(1 \leq k \leq K \). Let \(V_k = \{v_1, v_2, \ldots, v_{n_k}\} \), where \(n_k = |V_k| \). Denote by \(\Delta_k \) the amount of data of device \(v_i \) in \(V_k \) to be collected. Assume that each UAV can collect data from \(v_i \) at a data rate \(b \). Then, it takes \(\rho(v_i) = \frac{\Delta_k}{b} \) time to collect all data of \(v_i \). Also, denote by \(\eta \) the flying speed of each UAV, assuming that each UAV is equipped with a GPS module [25].

1) Data Collection Model in the Scenario Without Neighborhoods: We first introduce the data collection model in a scenario without neighborhoods, where a UAV must fly to the location of each device to collect its data. Assume that UAV \(k \) collects the data from devices in \(V_k \) in the order of \(v_1, v_2, \ldots, v_{n_k} \), where \(1 \leq k \leq K \). The data collection flying tour \(C_k \) of UAV \(k \) is defined as follows. UAV \(k \) first collects the data of device \(v_1 \) at the location of \(v_1 \), then flies to collect the data of device \(v_2 \), and so on. After finishing the data collection from device \(v_{n_k} \), UAV \(k \) returns to the location of \(v_1 \). That is, the data collection trajectory of UAV \(k \) is a closed tour \(C_k = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{n_k} \rightarrow v_1 \) with \(1 \leq k \leq K \). The data collection trajectory of each UAV is a closed tour, since the UAV usually needs to periodically collect data from the deployed IoT devices, rather than only once. After collecting the data from each IoT device \(v_i \), UAV \(k \) can forward the data to a base station immediately via 4G/5G communications. We assume that the base station is located at a place nearby the disaster area. Fig. 1(a) shows that 17 IoT devices are deployed in a monitoring area and two UAVs are dispatched to collect the data of the devices.

The total time spent by UAV \(k \) in its flying tour \(C_k \) consists of its flying time between IoT devices and the data collection time of devices in \(V_k \). Denote by \(t_f(v_i, v_{i+1}) \) the flying time of UAV \(k \) between devices \(v_i \) and \(v_{i+1} \), i.e., \(t_f(v_i, v_{i+1}) = \frac{d(v_i, v_{i+1})}{\eta} \), where \(d(v_i, v_{i+1}) \) is the Euclidean distance between devices \(v_i \) and \(v_{i+1} \), and \(\eta \) is the flying speed of UAV \(k \). The flying time of UAV \(k \) in tour \(C_k \) then is \(\sum_{i=1}^{n_k} t_f(v_i, v_{i+1}) \), where \(v_{n_k+1} = v_1 \).

The total time \(w(C_k) \) spent by UAV \(k \) in its tour \(C_k \) under the scenario without neighborhoods then is

\[
 w(C_k) = \sum_{i=1}^{n_k} t_f(v_i, v_{i+1}) + \sum_{i=1}^{n_k} \rho(v_i),
\]

where \(\rho(v_i) \) is the data collection time of device \(v_i \).

It is important to collect data from devices in \(V_k \) as quickly as possible. Otherwise, the collected data will become `stale', and lose its value. Denote by \(B \) a given delay, e.g., 20 minutes [4]. Then, the total spent time \(w(C_k) \) of UAV \(k \) in its flying tour \(C_k \) for any \(k \) must be no greater than \(B \), i.e., \(w(C_k) \leq B \) with \(1 \leq k \leq K \).

2) Data Collection Model in the Scenario With Neighborhoods: We then introduce the data collection model with neighborhoods, where a UAV can collect the data of each IoT device when their Euclidean distance is no greater than a given communication range \(R \), e.g., \(R = 600 \) m [1], [5].

Assume that all UAVs fly at the same altitude \(h \) such that the coverage range of each UAV is maximized, where \(h < R \) and the optimal altitude \(h \) can be obtained from the work in [1], e.g., \(h = 300 \) meters. Specifically, the air-to-ground wireless signal propagation consists of two main propagation components: the Line-of-Sight (LoS) propagation, and the non-LoS propagation with strong reflections and diffractions. It can be seen that, the higher the altitude is, the larger the LoS propagation loss is, but the smaller the non-LoS propagation loss is, due to higher LoS probability. Then, there is an optimal altitude \(h \) for the maximum coverage from the sky.
Denote by $D(v_i)$ the set of locations that a UAV can collect data from a device v_i at altitude h, i.e., $D(v_i) = \{(x, y, h) \mid (x-x_i)^2 + (y-y_i)^2 + (h-0)^2 \leq R^2\}$, where $(x_i, y_i, 0)$ are the coordinates of device v_i. It can be seen that $D(v_i)$ is a disk centered at point (x_i, y_i, h) with a radius $R_0 = \sqrt{R^2 - h^2}$ at altitude h.

Recall that we assumed that UAV k collects the data of devices in set V_k in the order of $v_1, v_2, \ldots, v_{n_k}$, where $V_k = \{v_1, v_2, \ldots, v_{n_k}\}$, $n_k = |V_k|$, and $1 \leq k \leq K$. The data collection flying tour C_k of UAV k in the scenario with neighborhoods is defined as follows. UAV k first collects data of device v_1 at a location p_1 in $D(v_1)$, it then flies to a location p_2 in $D(v_2)$ and collect the data of device v_2, and so on. After having collected the data from device v_{n_k} at a location p_{n_k} in $D(v_{n_k})$, the UAV finally returns to the starting location p_1. The flying tour C_k of UAV k can be represented as $C_k = p_1 \rightarrow p_2 \rightarrow \cdots \rightarrow p_{n_k} \rightarrow p_1$, where p_i is a location in the neighborhood $D(v_i)$ of device v_i with $1 \leq i \leq n_k$, and $1 \leq k \leq K$. Fig. 1(b) shows the flying tour of a UAV, where dotted circles represent the neighborhoods of devices. Similar to Eq. (1), the total time $w_N(C_k)$ spent by UAV k in its flying tour C_k is

$$w_N(C_k) = \sum_{i=1}^{n_k} t_f(p_i, p_{i+1}) + \sum_{i=1}^{n_k} \rho(v_i),$$

where $t_f(p_i, p_{i+1})$ is the UAV flying time between locations p_i and p_{i+1}, p_i and p_{i+1} are located in the neighborhoods $D(v_i)$ and $D(v_{i+1})$, respectively, and $\rho(v_i)$ is the data collection time of device v_i. Notice that the total spent time $w_N(C_k)$ of UAV k in its flying tour C_k must be no greater than the given delay B, i.e., $w_N(C_k) \leq B$ with $1 \leq k \leq K$.

C. Problem Definitions

In this paper, we study a novel minimum UAV deployment problem, which is to minimize the number of deployed UAVs to collect data from all devices, subject to the constraint that the total time spent by each UAV in its tour is no greater than a given delay B. Specifically, we consider the problem under two different data collection models: the data collection with and without neighborhoods.

We first formulate the problem under the data collection model without neighborhoods. Given an IoT network $G = (V, E; t_f : E \rightarrow \mathbb{R}^{\geq 0}, \rho : V \rightarrow \mathbb{R}^{\geq 0})$ and a maximum data collection delay B, a UAV needs to fly to the location of each IoT device to collect its data. The minimum UAV deployment problem without neighborhoods in G is to determine the minimum number K of UAVs to be deployed, and to find the flying tours C_1, C_2, \ldots, C_K for the K UAVs to collaboratively collect data from all devices in V, subject to the constraint that the total time $w(C_k)$ spent in each tour C_k with $1 \leq k \leq K$ is no greater than B. The minimum UAV deployment problem without neighborhoods is NP-hard [36].

The other variant of the problem under the data collection model with neighborhoods can be formulated similarly. Specifically, given an IoT network $G = (V, E; t_f : E \rightarrow \mathbb{R}^{\geq 0}, \rho : V \rightarrow \mathbb{R}^{\geq 0})$, a maximum data collection delay B, and a disk $D(v_i)$ of each device v_i which centers at the location of v_i with a radius R_0 at altitude h, the data of device v_i can be collected by a UAV when the UAV hovers at any location in $D(v_i)$.

The minimum UAV deployment problem with neighborhoods in G is to determine the minimum number K of deployed UAVs and to find the flying tours C_1, C_2, \ldots, C_K of the K UAVs to collect the data from all devices, subject to the constraint that the total time spent $w_N(C_k)$ by UAV k in its tour C_k is no greater than B for any k with $1 \leq k \leq K$.

Lemma 1: The minimum UAV deployment problem with neighborhoods is NP-hard.

Proof: The proof is given in Section 1 of the supplementary file.

IV. APPROXIMATION ALGORITHM FOR THE MINIMUM UAV DEPLOYMENT PROBLEM WITHOUT NEIGHBORHOODS

In this section, we deal with the minimum UAV deployment problem without neighborhoods, by proposing a 4-approximation algorithm for it.

A. Algorithm Framework

Given an IoT network $G = (V, E; t_f : E \rightarrow \mathbb{R}^{\geq 0}, \rho : V \rightarrow \mathbb{R}^{\geq 0})$, an auxiliary complete graph $G' = (V, E; w' : E \rightarrow \mathbb{R}^{\geq 0})$ is constructed from G, and the weight of each edge (v_i, v_j) in G' is $w'(v_i, v_j) = t_f(v_i, v_j) + \rho(v_i) + \rho(v_j)$, where $t_f(v_i, v_j)$ is the flying time between devices v_i and v_j, $\rho(v_i)$ and $\rho(v_j)$ are the durations for collecting data from v_i and v_j, respectively. Following a similar analysis in the work [43], the optimal solutions to the minimum UAV deployment problem in G and G' are equal. Notice that the original graph G is both edge-weighted and node-weighted, while graph G' is only edge-weighted.

Let $\delta_i = \frac{1}{2i}$ with $2 \leq i \leq n$, where δ_i is referred to as an edge weight threshold. The basic idea of the proposed algorithm is that, the algorithm finds a set C_i of tours that visit nodes in G' based on a given edge weight threshold δ_i, subject to the constraint that the cost of each found tour in C_i is no greater than B. The final solution C to the problem then is the set with the minimum number of tours, i.e., $|C| = \min_{2 \leq i \leq n} \{|C_i|\}$. The approximation algorithm for the minimum UAV deployment problem without neighborhoods is presented in Algorithm 1.

Algorithm 1 Algorithm for the Minimum UAV Deployment Problem Without Neighborhoods (**approAlgNoNei**)

Input: an IoT network $G = (V, E; t_f : E \rightarrow \mathbb{R}^{\geq 0}, \rho : V \rightarrow \mathbb{R}^{\geq 0})$, and a maximum data collection delay B

Output: a set C of tours to visit all devices in V, such that the total spent time of each tour in C by a UAV is no greater than B.

1. Construct a graph $G' = (V, E; w' : E \rightarrow \mathbb{R}^{\geq 0})$ from G;
2. Construct a trivial solution $C_1 = \{C_1, C_2, \ldots, C_n\}$, where each tour C_i consists of only a single node v_i in V, and $n = |V|$;
3. for $i = 2$ to n do
4. Let $\delta_i = \frac{1}{2i}$; /* set an edge weight threshold */
5. Find a set C_i of tours to visit all nodes in G' based on the edge weight threshold δ_i, subject to the cost of each tour in C_i is no greater than B, by invoking Algorithm 2;
6. if $|C_i| < |C|$ then
7. Let $C \leftarrow C_i$; /* find a better solution */
8. end if
9. end for
Fig. 2. An illustration of the execution of Algorithm 2.

B. Algorithm

We now show how to find a set C_i of tours that visit all devices in G', based on a given edge weight threshold δ_i. Recall that graph $G' = (V; E; w' : E \mapsto \mathbb{R}^+)$. The G' is constructed from G, where $w'(v_i, v_j) = t_f(v_i, v_j) + \frac{p(v_i) + p(v_j)}{2}$ for each edge (v_i, v_j) in E.

We first remove the edges with weights strictly greater than δ_i from G'. Assume that there are q connected components CC_1, CC_2, \ldots, CC_q in the resulting graph after the edge removals, where $q \geq 1$ is a positive integer.

We then find a minimum spanning tree (MST) T_j in each connected component CC_j with $1 \leq j \leq q$, see Fig. 2(a). For each tree T_j, denote by V^o_j the set of odd degree nodes in T_j. Notice that the number of nodes in V^o_j is even. Let V^o be the set of odd degree nodes in the q trees T_1, T_2, \ldots, T_q, i.e., $V^o = \bigcup_{j=1}^q V^o_j$.

We thirdly construct a complete graph $G^o = (V^o, E^o; w^o : E^o \mapsto \mathbb{R}^+)$, where there is an edge (u, v) in E^o for any two nodes u and v in V^o and the weight $w^o(u, v)$ of edge (u, v) in G^o is equal to its weight $w'(u, v)$ in G', i.e., $w^o(u, v) = w'(u, v)$. Since G^o is a complete graph and the number of nodes in G^o is even, we can find a minimum weighted perfect matching M^o in graph G^o, see Fig. 2(b).

We fourthly obtain a graph G_E by adding the edges in M^o to the q trees T_1, T_2, \ldots, T_q, i.e., $G_E = G^o \cup \bigcup_{j=1}^q T_j$, see Fig. 2(c). Assume that there are q' connected components $CC'_1, CC'_2, \ldots, CC'_{q'}$ in G_E. Notice that the two endpoints of some edge in M^o may lie in two different trees. Therefore, the number q' of connected components in G_E is no greater than q, i.e., $q' \leq q$. For each connected component CC'_j in G_E with $1 \leq j \leq q'$, it can be seen that the degree of each node in CC'_j is even. Then, there is a Eulerian circuit C'_j in CC'_j [36]. A closed tour C'_j that visits each node in connected component CC'_j only once can then be obtained, by shortcutting duplicated nodes in C'_j, see Fig. 2(d).

We finally split tour C'_j into, say n_j, subpaths $P_{j,1}, P_{j,2}, \ldots, P_{j,n_j}$, such that the cost of each subpath is no greater than $B/2$, and the number n_j of split subpaths is no more than $\left\lfloor \frac{w'(C'_j)}{B/2} \right\rfloor$, i.e., $n_j \leq \left\lfloor \frac{w'(C'_j)}{B/2} \right\rfloor$ [16]. Then, n_j subtours $C_{j,1}, C_{j,2}, \ldots, C_{j,n_j}$ can be derived from the n_j subpaths, where subtour $C_{j,l}$ is derived from subpath $P_{j,l}$ by connecting its two endpoints, where $1 \leq l \leq n_j$. It can be seen that the cost of each subtour $C_{j,l}$ is no more than twice the cost of subpath $P_{j,l}$, thus no more than B, i.e., $w'(C_{j,l}) \leq 2 \cdot w'(P_{j,l}) \leq 2 \cdot \frac{B}{2} = B$ with $1 \leq l \leq n_j$.

Fig. 2(e) shows that two subtours $C_{1,1}$ and $C_{1,2}$ are derived from the tour C'_1 in Fig. 2(d).

The detailed algorithm for finding a set C_i of tours that visit all nodes in G' based on a given edge weight δ_i is presented in Algorithm 2.

One may notice that there are some similarities between the proposed algorithm and Christofides’ algorithm for the TSP problem [6]. An alternative method for the problem of concern is to find closed tours in the q connected components CC_1, CC_2, \ldots, CC_q by directly applying Christofides’ algorithm to each of the q components, which first finds a minimum spanning tree T_j in each component CC_j, then obtains a minimum weighted perfect matching M_j of odd degree nodes in T_j, and finally obtains an Eulerian circuit by adding edges in M_j to tour T_j, where $1 \leq j \leq q$. There are two main differences between the proposed algorithm in this paper and the Christofides method. (i) The weighted sum of edges in matching M^o is no greater than the weighted sum of the edges in the q matchings M_1, M_2, \ldots, M_q, i.e., $w'(M^o) = \sum_{i=1}^q w'(M_i) \leq \sum_{i=1}^q w'(M_i) = \sum_{i=1}^q \sum_{e \in M_i} w'(e)$, since the edges in $\bigcup_{j=1}^q M_j$ also form a perfect matching of nodes in V^o while M^o is the minimum weighted one. We estimate an upper bound on $w'(M^o)$ (see Ineq. (9) in Section IV-C.2). However, the upper bound may less than, rather than larger than, $\sum_{i=1}^q w'(M_j)$. (ii) Some edge in M^o may connect two odd degree nodes that lie in different minimum spanning trees, whereas every edge in matching M_j connects odd degree nodes only in tree T_j with $1 \leq j \leq q$. We show that less numbers of closed tours are delivered by the proposed algorithm with an example in Section 2 of the supplementary file.

C. Algorithm Analysis

Lemma 2: Given a complete graph $G' = (V; E)$ and an edge weight function $w' : E \mapsto \mathbb{R}^+$, assume that the edge weights in G' satisfy the triangle inequality. For any closed tour C in G' with $w'(C) \leq B$, there are no more than i edges in C with their edge weights strictly greater than $\frac{B}{i}$, where i is a given integer with $i \geq 1$.

Proof: We show the claim by distinguishing into two cases: (1) there are no more than $i-1$ edges in C; and (2) there are no less than i edges in C. Case (1) where C contains no more than $i-1$ edges, the lemma immediately follows.
Algorithm 2 Algorithm for Finding a Set of Tours That Visit All Nodes in G' Based on a Given Edge Weight Threshold δ_i

Input: A graph $G' = (V'; E'; w': E' \mapsto \mathbb{R}^{\geq 0})$, a maximum cost B of each UAV tour, and an edge weight threshold δ_i

Output: A set C_i of tours so that the cost of each tour in C_i is no greater than B

1: Remove the edges with weights greater than δ_i from G'. Assume that there are q connected components CC_1, CC_2, \ldots, CC_q in the resulting graph after the edge removals;
2: Find an MST T_i in each connected component CC_j with $1 \leq j \leq q$;
3: Let V_i^* be the set of odd degree nodes in the q MSTs;
4: Construct a complete graph $G'' = (V'', E''; w'': E'' \mapsto \mathbb{R}^{\geq 0})$;
5: Find a minimum weighted perfect matching M'' in G'';
6: Graph G_E is constructed by adding the edges in M'' to the q trees T_1, T_2, \ldots, T_q, i.e., $G_E = M'' \cup \bigcup_{j=1}^{q} T_j$. Assume that there are $q' \leq q$ connected components $CC'_1, CC'_2, \ldots, CC'_{q'}$ in G_E;
7: Let $C_i = \emptyset$; j^* the set of obtained tours j^*
8: for $j \leftarrow 1$ to q^* do
9: Find a Eulerian circuit C_j^* in connected component CC_j' and obtain a tour C_j^* visiting nodes in CC_j' by shortcutting duplicated nodes in C_j^*;
10: Split tour C_j^* into n_j subtours $C_{j,1}, C_{j,2}, \ldots, C_{j,n_j}$ so that the cost of each subtour is no greater than B and $n_j \leq \lceil \frac{w'(C_j^*)}{B/2} \rceil$;
11: Let $C_i = C_i \cup \{C_{j,1}, C_{j,2}, \ldots, C_{j,n_j}\}$
12: end for

Consider Case (2) where C contains no less than i edges. Suppose that there are at least i edges in C with edge weights greater than $\frac{B}{i}$. Then, the weighted sum $w'(C)$ of edges in C is larger than $i \cdot \frac{B}{i} = B$, which contradicts the assumption $w'(C) \leq B$. The lemma then follows.

Following the similar argument as the one in [43], the values of the optimal solutions to the problem in G and G' are equal. We here only show that Algorithm 1 delivers a 4-approximate solution to the problem in G', which also is a 4-approximate solution to the problem in G.

Assume that an optimal solution to the problem in G' consists of K^* tours $C_1^*, C_2^*, \ldots, C_{K^*}$. We estimate an upper bound on the number $|C_i|$ of delivered tours by Algorithm 2 with an edge weight threshold $\delta_i = \frac{B}{i}$, where $2 \leq i \leq n$. Following Algorithm 2, the number $|C_i|$ of delivered tours is

$$|C_i| \leq \sum_{j=1}^{q} \left[\frac{w'(C_j^*)}{B/2} \right] + q, \quad \text{as } q' \leq q \leq q^*$$

$$= \frac{w'(G_E)}{B/2} + q, \quad \text{as } w'(C_j^*) \leq \frac{w'(G_E)}{B/2} \sum_{j=1}^{q} w'(C_j^*)$$

$$= \frac{\sum_{j=1}^{q} w'(T_j) + \frac{w'(M^*)}{B/2}}{B/2} + q, \quad \text{as } G_E = M^* \bigcup \bigcup_{j=1}^{q} T_j.$$

(3)

In the following, we estimate the upper bounds of weights $\sum_{j=1}^{q} w'(T_j)$ and $\frac{w'(M^*)}{B/2}$, respectively.

1) Estimate an Upper Bound on $\sum_{j=1}^{q} w'(T_j)$: Following Lemma 2, each of the optimal K^* tours $C_1^*, C_2^*, \ldots, C_{K^*}$, contains no more than $i - 1$ edges with weights greater than $\frac{B}{i}$. We partition the K^* tours into i groups $C_0^*, C_1^*, \ldots, C_{i-1}^*$, where a tour C_j^* is contained in a group C_j^* if C_j^* contains exactly j edges with weights greater than $\frac{B}{i}$, where $1 \leq j \leq K^*$. Let $k_j = |C_j^*|$ with $0 \leq j \leq i - 1$. Then, $\sum_{j=0}^{i-1} k_j = K^*$. For example, Fig. 3(a) shows $K^* = 3$ optimal tours C_1^*, C_2^*, C_3^*, where C_1^* contains no edges with edge weights greater than $\frac{B}{3} = \frac{B}{5}$ with $i = 5$, C_2^* contains two such edges, and C_3^* contains three such edges. In this case, $k_0 = 1$, $k_1 = 1$, $k_2 = 1$, $k_3 = 1$, $k_4 = 0$, and $\sum_{j=0}^{5} k_j = 3 = K^*$.

We now estimate the upper bound on $\sum_{j=1}^{q} w'(T_j)$, where T_j is a minimum spanning tree of component CC_j at Step 1 of Algorithm 2. Following Algorithm 2, within each tour C_j^* in a group C_j^*, there are j edges with weights greater than $\frac{B}{j}$ will be removed with $1 \leq j \leq i - 1$. Then, there are j
segments $C^*_1, C^*_{1,2}, \ldots, C^*_{i,j}$ after the removals of the j edges from C_i. We can see that the total weight of the j segments is no more than $B - j \cdot \frac{4}{q}$, i.e.,
\[
\sum_{s=1}^{j} w'(C^*_s) < B - j \cdot \frac{4}{q} B = \frac{i - j}{i} B.
\]

It also be seen that the number of segments after the removals of edges with weights greater than $\frac{4}{q}$ from the K^* optimal tours is $n_{seg} = k_0 + \sum_{j=1}^{i-1} j \cdot k_j$, where $k_j = |C^*_j|$ and each tour C^*_i in C^*_2 are removed j edges. On the other hand, the total weight of the n_{seg} segments is no more than
\[
k_0 \cdot B + \sum_{j=1}^{i-1} k_j \cdot \frac{i - j}{i} B, \text{ by Ineq. (4).}
\]

We now construct a spanning forest of the q connected components CC_1, CC_2, \ldots, CC_q at Step 1 of Algorithm 2. Since the n_{seg} segments are contained in the q connected components, we can obtain a spanning forest $F = \{T^*_1, T^*_2, \ldots, T^*_q\}$ of the q connected components, by adding $(n_{seg} - q)$ edges to the n_{seg} segments such that the weight of each added edge is no greater than $\frac{4}{q}$, Fig. 3(b) shows $q = 4$ connected components CC_1, CC_2, CC_3, CC_4 after the edge removals, and Fig. 3(c) shows that $q = 4$ spanning trees T_1, T_2, T_3, T_4 of connected components CC_1, CC_2, CC_3, CC_4 are obtained by adding $2q = n_{seg} - q = 6 - 4$ edges with edge weights no greater than $\frac{4}{q}$. Since T_j is a minimum spanning tree of connected component CC_j, we have
\[
\sum_{j=1}^{q} w'(T^*_j) = \left(\sum_{j=1}^{q} w'(T^*_j) \right) \leq w'(F) = \sum_{j=1}^{q} w'(T^*_j) \leq k_0 B + \sum_{j=1}^{i-1} k_j \cdot \frac{i - j}{i} B + (n_{seg} - q) \cdot \frac{B}{i}, \text{ by Eq. (5)}
\]
\[
= k_0 B + \sum_{j=1}^{i-1} k_j \cdot \frac{i - j}{i} B + (k_0 + \sum_{j=1}^{i-1} jk_j - q) \cdot \frac{B}{i}
\]
\[
= k_0 \cdot \frac{i + 1}{i} B + \sum_{j=1}^{i-1} k_j \cdot B - q \cdot \frac{B}{i}.
\]

\[
2) \text{Estimate an Upper Bound on } w'(M^o): \text{ We then estimate an upper bound on } w'(M^o), \text{ where } M^o \text{ is a minimum weighted perfect matching of the nodes in } V^o, \text{ and } V^o \text{ is the odd degree nodes in the } q \text{ trees } T_1, T_2, \ldots, T_q.
\]

We construct two perfect matching M_1 and M_2 in graph G^o as follows. Having the forest $F = \{T^*_1, T^*_2, \ldots, T^*_q\}$, we first duplicate the $(n_{seg} - q)$ edges with the weight of each duplicated edge no greater than $\frac{4}{q}$, see the edges in Fig. 3(d) plotted with black dotted lines. We then add back those removed edges in the optimal tours of the first $[i/2]$ groups $C^*_0, C^*_1, \ldots, C^*_{[i/2]-1}$. It can be seen that now no edges in the optimal tours of the $[i/2]$ groups are removed, see the edges in Fig. 3(d) plotted with blue dotted lines. Finally, consider an optimal tour C^*_i in a group C^*_j with $[i/2] \leq j \leq i-1$, recall that there are j segments $C^*_{i,1}, C^*_{i,2}, \ldots, C^*_{i,j}$ after the removals of edges with edge weights greater than $\frac{4}{q}$. For each segment C^*_s with $1 \leq s \leq j$, the structure of C^*_s is a path. We obtain a closed tour from path C^*_s, by connecting the two endpoints of C^*_s, see the edges in Fig. 3(d) plotted with red dotted lines. Denote by G^o the resulting graph. Assume that G^o consists of q^o connected components $CC^o_1, CC^o_2, \ldots, CC^o_{q^o}$. It can be seen that each connected component CC^o_i is a Eulerian graph, as the degree of each node in CC^o_i is even, see Fig. 3(d). Also, it can be seen that the set V^o of odd degree nodes in each tree T_j is contained in some connected component CC^o_i, and $|V^o|$ is even.

Consider a Eulerian circuit C^o_i in each connected component CC^o_i. We can obtain a closed tour C^o_i that visits only nodes in V^o by shortcutting nodes not in V^o, see Fig. 3(e). We finally derive two perfect matchings M_1 and M_2 from the q^o tours $C^o_1, C^o_2, \ldots, C^o_{q^o}$, see Fig. 3(e). Since M^o is a minimum weighted perfect matching of nodes in V^o, we have $w'(M^o) \leq w'(M_1)$ and $w'(M^o) \leq w'(M_2)$. Then,
\[
w'(M^o) \leq w'(M_1) + w'(M_2)
\]
\[
= \sum_{i=1}^{q^o} w'(C^o_i) \leq \sum_{i=1}^{q^o} w'(C^o_i)
\]
\[
= w'(G^o) = \sum_{i=1}^{q^o} w'(C^o_i).
\]

Following the construction of graph G^o, it can be seen that G^o consists of (i) the optimal tours in the first $[i/2]$ groups $C^*_0, C^*_1, \ldots, C^*_{[i/2]-1}$, as no edges are removed, where the weight of each optimal tour is no greater than B; (ii) the $(\sum_{j=1}^{[i/2]} jk_j)$ segments derived from the optimal tours in the rest groups $C^*_0, C^*_1, \ldots, C^*_{[i/2]-1}$, where the total weight of the segments is no greater than $\sum_{j=1}^{[i/2]} jk_j \cdot \frac{4}{q} B$, by Ineq. (4); (iii) the added edges between two endpoints of the $(\sum_{j=1}^{[i/2]} jk_j)$ segments, where the total weight of the added edges is no greater than the total weight of the $(\sum_{j=1}^{[i/2]} jk_j)$ segments, as edge weights in the graph satisfy the triangle inequality; and (iv) $2(n_{seg} - q)$ edges with the weight of each edge no greater than $\frac{4}{q}$. Then,
\[
w'(G^o) \leq \sum_{j=0}^{[i/2]-1} \sum_{j=1}^{i-1} k_j B + \sum_{j=[i/2]}^{i-1} jk_j \cdot \frac{4}{q} B
\]
\[
+ \sum_{j=[i/2]}^{i-1} jk_j \cdot \frac{4}{q} B + 2(k_0 + \sum_{j=1}^{[i/2]-1} jk_j - q) \cdot \frac{B}{i}
\]
\[
= k_0 \cdot \frac{i + 1}{i} B + \sum_{j=1}^{i-1} k_j B + \sum_{j=[i/2]}^{i-1} jk_j \cdot \frac{4}{q} B
\]
An upper bound of $w'(M^o)$ thus is

$$w'(M^o) \leq \frac{w'(G^e)}{2},$$

by Ineq. (7)

$$\leq \frac{i + 2}{2i} k_0 B + \sum_{j=1}^{[i/2]-1} \frac{i + 2j}{2i} k_j B + \sum_{j=[i/2]}^{i-1} k_j B - \frac{q B}{i}. \quad (9)$$

3) Approximation Ratio Analysis:

Theorem 1: Given an IoT network $G = (V, E; t_f: E \mapsto \mathbb{R}_{\geq 0}, \rho : V \mapsto \mathbb{R}_{\geq 0})$ and a maximum data collection delay B, there is a 4-approximation algorithm, Algorithm 1, for the minimum UAV deployment problem without neighborhoods, which takes time $O(n^3)$, where $n = |V|$.

Proof: By combining Inequalities (6) and (9), we have

$$\sum_{j=1}^{q} w(T_j) + w'(M^o) \leq (1.5 + 2/i) k_0 B + \sum_{j=1}^{i-1} 2k_j B - \frac{2q B}{i}. \quad (10)$$

By combining Ineq. (3) and Ineq. (10), we upper bound the number of delivered tours in C as

$$|C| \leq (3 + 4/i) k_0 + 4 \sum_{j=1}^{i-1} k_j - \frac{4q}{i} + q. \quad (11)$$

Consider the case where $i = 4$, we have $|C| \leq 4 \sum_{j=0}^{3} k_j = 4K^*$, as $K^* = \sum_{j=0}^{3} k_j$.

Recall that the number of tours in C delivered by Algorithm 1 is $|C| = \min_{2 \leq q \leq |C|} |C| \leq |C| \leq 4K^*$. This indicates that C is a 4-approximation solution.

We finally analyze the time complexity of Algorithm 1, which is dominated by invoking Algorithm 2 no more than $n - 1$ times. Note that the most time-consuming operation in Algorithm 2 is the finding of a minimum weighted perfect matching M^o in G^o, which takes time $O(n^3)$. Therefore, the time complexity of Algorithm 1 is $(n - 1) \cdot O(n^3) = O(n^4)$.

V. APPROXIMATION ALGORITHM FOR THE MINIMUM UAV DEPLOYMENT PROBLEM WITH NEIGHBORHOODS

In this section, we consider the minimum UAV deployment problem with neighborhoods, where a UAV can collect the data of each IoT device when their Euclidean distance is within a given communication range, and we propose a novel approximation algorithm for the problem.

A. Algorithm Framework

Given an IoT network $G = (V, E; t_f: E \mapsto \mathbb{R}_{\geq 0}, \rho : V \mapsto \mathbb{R}_{\geq 0})$, neighborhoods of IoT devices in V, and a maximum data collection delay B, the algorithm framework for the problem with neighborhoods is similar to the one without neighborhoods in the previous section. That is, it finds a set C_i of tours that visit devices in G based on a given edge weight threshold $\delta_j = \frac{L}{j}$, subject to the constraint that the cost of each tour in C_i is no greater than B, where $2 \leq i \leq n$. The final solution C to the problem is the set with the minimum number of tours, i.e., $|C| = \min_{2 \leq j \leq n} \{|C_j|\}$. The algorithm for the minimum UAV deployment problem with neighborhoods is presented in Algorithm 3.

Algorithm 3 Algorithm for the Minimum UAV Deployment Problem With Neighborhoods (approAlgNei)

Input: a network G, the neighborhood $D(v_i)$ of each device v_i in V, and a maximum data collection delay B

Output: a set C of tours to visit the neighborhoods of nodes in V, so that the total spent time of each tour in C is no more than B.

1. Construct a trivial solution $C = \{C_1, C_2, \ldots, C_n\}$, where each tour C_i consists of only a single node v_i in V, and $n = |V|$;
2. for $i = 2$ to n
3. Let $\delta_i = \frac{L}{i}$, set an edge weight threshold δ_i
4. Find a set C_i of tours to visit neighborhoods of nodes in G
5. if $|C_i| < |C|$ then
6. Let $C \leftarrow C_i$; find a better solution δ_i
7. end if
8. end for
9. return C.

B. Algorithm

We now show how to find a set C_i of tours visiting neighborhoods of all devices in G, which is different from the one in Section IV-B for the problem without neighborhoods, as the data of an IoT device can be collected by a UAV as long as the Euclidean distance between them is no more than their communication range.

For any two nodes v_j and v_l in V, recall that their neighborhoods are $D(v_j)$ and $D(v_l)$, respectively. Denote by $c(D_j, D_l)$ the minimum flying time between the neighborhoods $D(v_j)$ and $D(v_l)$, which is defined as follows. If the two neighborhoods $D(v_j)$ and $D(v_l)$ overlap with each other, i.e., the Euclidean distance $d(v_j, v_l)$ between nodes v_j and v_l is no greater than $2R_0$, we define $c(D_j, D_l) = 0$, where R_0 is the disk radius of each neighborhood. On the other hand, if $D(v_j)$ and $D(v_l)$ do not overlap with each other, we define $c(D_j, D_l) = \frac{d(v_j, v_l) - 2R_0}{\eta}$, where η is the flying speed of a UAV. That is,

$$c(D_j, D_l) = \begin{cases} 0, & \text{if } d(v_j, v_l) \leq 2R_0 \\ \frac{d(v_j, v_l) - 2R_0}{\eta}, & \text{if } d(v_j, v_l) > 2R_0 \end{cases} \quad (12)$$

We partition the IoT devices in V into several disjoint subsets as follows. We first construct an auxiliary graph $G' = (V, E; w': E \mapsto \mathbb{R}_{\geq 0})$ from G, where the weight $w'(v_j, v_l)$ of each edge (v_j, v_l) in E is the minimum flying time $c(D_j, D_l)$ between neighborhoods $D(v_j)$ and $D(v_l)$, i.e., $w'(v_j, v_l) = c(D_j, D_l)$. We then obtain a graph $G'' = (V', E'')$ from G', by removing the edges with weights strictly greater than the given edge weight threshold $\delta_i = \frac{B}{i}$ from G'. Assume that there are q connected components CC_1, CC_2, \ldots, CC_q in G'', where $q \geq 1$ is a positive integer. Accordingly, the set V of devices is partitioned into q disjoint subsets V_1, V_2, \ldots, V_q, where V_j is the set of nodes in connected component CC_j with $1 \leq j \leq q$. Let $V_j = \{v_1, v_2, \ldots, v_{n_j}\}$, where n_j is the number of nodes in V_j.

Having found the q disjoint subsets V_1, V_2, \ldots, V_q, we can find an approximate shortest tour C_j to visit all neighborhoods of nodes in each subset V_j, by invoking the best approximation algorithm so far for the Traveling Salesman Problem with Neighborhoods (TSPN) [10], where $1 \leq j \leq q$. Assume that $C_j = p_1 \rightarrow p_2 \rightarrow \cdots \rightarrow p_{n_j} \rightarrow p_1$, where p_i is a
hovering location in the neighborhood \(D(v_i)\) of a node \(v_i\) with \(1 \leq i \leq n_j\).

Recall that \(w_N(C_j)\) is the total time of a UAV spent in tour \(C_j\), where \(w_N(C_j) = \sum_{i=1}^{n_j} t_f(p_i, p_{i+1}) + \sum_{i=1}^{n_j} \rho(v_i)\), \(t_f(p_i, p_{i+1})\) is the flying time between \(p_i\) and \(p_{i+1}\), \(\rho(v_i)\) is the duration of data collection from device \(v_i\). Denote by \(r\) the flying time of a UAV for a distance of \(R_0\), i.e., \(r = \frac{R_0}{v}\), where \(R_0\) is the radius of each neighborhood \(D(v_i)\) and \(v\) is the UAV flying speed. Following the work in [10], we have \(w_N(C_j) \leq 6.75 \cdot w_N(C_j^*) + 20.4 \cdot r\), where \(C_j^*\) is an optimal (i.e., shortest) tour for the TSP problem.

We assign the weight \(w'(p_i, p_{i+1})\) of each edge \((p_i, p_{i+1})\) in \(C_j\) as \(w'(p_i, p_{i+1}) = t_f(p_i, p_{i+1}) + \rho(v_i)\). It can be seen that \(w'(C_j) = \sum_{j=1}^{n_j} w'(p_i, p_{i+1}) = \sum_{i=1}^{n_j} \rho(v_i) + \rho(v_{i+1}) = \sum_{j=1}^{n_j} \rho(v_i) = w(C_j)\).

We finally obtain, say \(s_j\), sub-tours \(C_{j,1}, C_{j,2}, \ldots, C_{j,s_j}\) from \(C_j\) by the tour splitting procedure in [16], such that the cost of each sub-tour \(C_{j,l}\) is no greater than \(B\), and the number \(s_j\) of sub-tours is no more than \(\left\lceil \frac{\rho(v_i)}{B} \right\rceil\), i.e., \(s_j \leq \left\lceil \frac{\rho(v_i)}{B} \right\rceil\).

The set \(C_i\) of obtained tours based on a given edge weight \(\delta_i\) then is \(C_i = \bigcup_{j=1}^{\delta_i} \bigcup_{l=1}^{s_j} C_{j,l}\). The detailed algorithm for finding a set \(C_i\) of tours that visit neighborhoods of nodes in \(G\) based on a given edge weight \(\delta_i\) is presented in Algorithm 4.

Algorithm 4 Algorithm for Finding a Set of Tours That Visit All Neighborhoods of Nodes in \(G\) Based on a Given Edge Weight Threshold \(\delta_i\)

Input: A graph \(G = (V, E; t_f : E \rightarrow \mathbb{R}^{\geq 0}, \rho : V \rightarrow \mathbb{R}^{\geq 0})\), a maximum delay \(B\), and an edge weight threshold \(\delta_i\).

Output: A set \(C_i\) of tours so that the cost of each tour in \(C_i\) is no greater than \(B\).

1. Construct an auxiliary graph \(G' = (V, E'; w' : E' \rightarrow \mathbb{R}^{\geq 0})\) from \(G\), where the weight \(w'(v, v)\) of each edge \((v, v)\) in \(E'\) is the minimum flying time \(c(D_i, D_i)\) between neighborhoods \(D(v_i)\) and \(D(v_j)\).
2. Graph \(G'' = (V, E'')\) is derived from \(G'\) by removing the edges with weights greater than \(\delta_i\) from \(G'\). Assume that there are \(q\) connected components \(CC_1, CC_2, \ldots, CC_q\) in \(G''\). Denote by \(V_j\) the set of nodes in \(CC_j\) with \(1 \leq j \leq q\).
3. Let \(C_i \leftarrow \emptyset\); # the set of obtained tours \#f
4. for \(j = 1 \rightarrow q\) do
5. Find an approximate tour \(C_j\) to visit all neighborhoods of nodes in \(V_j\) by invoking the algorithm in [10] for the TSP problem;
6. Split tour \(C_j\) into, say \(s_j\), sub-tours \(C_{j,1}, C_{j,2}, \ldots, C_{j,s_j}\) so that the cost of each sub-tour is no greater than \(B\) and \(s_j \leq \left\lceil \frac{\rho(v_i)}{B} \right\rceil\);
7. Let \(C_i \leftarrow C_i \cup \{C_{j,1}, C_{j,2}, \ldots, C_{j,s_j}\}\);
8. end for;
9. return \(C_i\).

C. Algorithm Analysis

Assume that an optimal solution to the problem in \(G'\) consists of \(K^*\) tours \(C_{j,1}, C_{j,2}, \ldots, C_{j,K^*}\). Following Lemma 2, each of the optimal \(K^*\) tours contains no more than \(i - 1\) edges with weights greater than \(\frac{B}{i}\). We partition the \(K^*\) optimal tours into \(i\) groups \(C_{i,1}^*, C_{i,2}^*, \ldots, C_{i,i-1}^*\), where a tour \(C_{i,j}^*\) is contained in a group \(C_{i,j}^*\) if \(C_{i,j}^*\) contains exactly \(j\) edges with weights greater than \(\frac{B}{i}\), where \(1 \leq l \leq K^*\). Let \(k_j = |C_{i,j}^*|\) with \(0 \leq j \leq i - 1\). Then, \(\sum_{j=0}^{i-1} k_j = K^*\).

Following Algorithm 4, there are \(q\) connected components \(CC_1, CC_2, \ldots, CC_q\) in \(G''\) after the removals of the edges with weights strictly greater than \(\delta_i\) from \(G'\). Denote by \(C_j^*\) the optimal closed tour for visiting the neighborhoods of nodes in connected component \(CC_j\) with \(1 \leq j \leq q\).

We first estimate an upper bound on the total weight \(\sum_{j=1}^{q} w_N(C_j^*)\) of the \(q\) tours \(C_1^*, C_2^*, \ldots, C_q^*\) by the following lemma.

Lemma 3: The total weight \(\sum_{j=1}^{q} w_N(C_j^*)\) of the \(q\) tours \(C_1^*, C_2^*, \ldots, C_q^*\) with a given edge weight threshold \(\delta_i = \frac{B}{i}\) is upper bounded by \(k_0 \sum_{j=1}^{i-1} k_j - 24Bk_0 + 8r(k_0 + \sum_{j=1}^{i-1} k_j - q)\), where \(k_0\) is the number of optimal tours in group \(C_j^*\) with \(0 \leq j \leq i - 1\), \(B\) is the maximum cost of each tour, \(r\) is the flying time for a distance of \(R_0\) by a UAV, and \(R_0\) is the radius of each neighborhood.

Proof: The proof body can be seen in Section 4 of the supplementary file.

We now estimate the upper bound on the number of tours delivered by Algorithm 3 as follows.

Theorem 2: Given an IoT network \(G = (V, E; t_f : E \rightarrow \mathbb{R}^{\geq 0}, \rho : V \rightarrow \mathbb{R}^{\geq 0})\), a maximum data collection delay \(B\), and the radius \(R_0\) of each neighborhood, there is an approximation algorithm, Algorithm 3, for the minimum UAV deployment problem with neighborhoods, such that the number of delivered tours is no greater than \((27 + 108\lambda) \cdot K^* - (67.2\lambda + 12.5)\), where \(K^*\) is the minimum number of tours, \(\lambda = \frac{r}{R_0}\), and \(r\) is the UAV flying time for a distance of \(R_0\), which usually is a very small constant.

Proof: The proof body can be seen in Section 5 of the supplementary file.

Remark: Notice that the value of \(\lambda\) usually is small. For example, a DJI Phantom 4 Pro UAV can fly at a speed of \(\eta = 10\) m/s [24]. Assume that the radius of each neighborhood is \(R_0 = 500\) meters [1] and the maximum data collection delay \(B\) is 30 minutes. Then, the value of \(\lambda\) is

\[
\lambda = \frac{r}{B} = \frac{\frac{R_0}{m}}{B} = \frac{50000}{30 \text{ min}} = \frac{1}{36}.
\]

In this case, the number \(|C|\) of closed tours delivered by Algorithm 3 can be upper bounded as

\[
|C| \leq (27 + 108\lambda) \cdot K^* - (67.2\lambda + 12.5) \leq 30K^* - 14.36,
\]

where \(\lambda = \frac{r}{R_0}\).

We thus have that \(|C| \leq 30K^* - 15\), as \(|C|\) is a positive integer.

VI. PERFORMANCE EVALUATION

A. Simulation Environment

We consider an IoT network area in a 5 km × 5 km × 1 km three-dimensional Euclidean space. There are from 100 to 500 IoT devices randomly deployed on the ground of a monitoring area. The amount of data \(\Delta_t\) of each IoT device \(v_i\) is randomly chosen from an interval from 5 MB to 10 MB [38]. The data transmission rate \(b\) is 1 Mb/s [26]. The flying speed \(\eta\) of each UAV is 10 m/s [24]. The maximum data collection delay \(B\) ranges from 20 minutes to one hour. On the other hand, when the data of each IoT device can be collected by a UAV with wireless transmissions, we assume that all UAVs
hover at an altitude \(h = 300\) m and the transmission range \(R\) ranges from 400 meters to 600 meters [1]. Then, the radius of each neighborhood is \(R_0 = \sqrt{R^2 - h^2}\) meters.

To evaluate the performance of the proposed algorithm \(\text{approAlgNoNei}\) for the minimum UAV deployment problem without neighborhoods, we consider four existing benchmarks. (i) Algorithm BTCAlg [15] proposed a 5-approximation algorithm for the problem. (ii) Algorithm MCCPAlg1 [37] delivered an improved \(\frac{4}{7}\)-approximate solution to the problem. (iii) Algorithm MCCPAlg2 [37] found a \(\frac{4}{7}\)-approximate solution, by better refining the algorithm MCCPAlg1. Notice that \(\frac{4}{7} < \frac{1}{2}\). (iv) Algorithm \(\text{minMaxNoNei}\) [36] finds a given number \(K\) of closed tours to visit the \(n\) nodes such that the longest length among the \(K\) found tours is minimized. We find the minimum number \(K\) of UAVs deployed by inverting algorithm \(\text{minMaxNoNei}\) multiple times through increasing the value of \(K\) from 1 to \(n\) until the longest tour length is no greater than \(B\), where \(n\) is the number of IoT devices.

On the other hand, to evaluate the performance of the proposed algorithm \(\text{approAlgNei}\) for the minimum UAV deployment problem with neighborhoods, in addition to the four algorithms BTCAlg, MCCPAlg1, MCCPAlg2, and \(\text{minMaxNoNei}\) that ignore neighborhoods, we compare with another benchmark algorithm \(\text{minMaxNei}\) [8] that takes the neighborhoods into consideration, which is to find a given number \(K\) of closed tours to visit the neighborhoods of \(n\) nodes such that the longest length among the \(K\) found tours is minimized, where at least one location in each neighborhood must be visited by a tour.

Each value in the figures is the average of the results by applying each algorithm to 100 different network topologies with the same network size.

B. Algorithm Performance for the Minimum UAV Deployment Problem Without Neighborhoods

We first evaluate the performance of different algorithms by varying the number of IoT devices \(n\) from 100 to 500, while fixing the maximum delay \(B\) at 30 minutes and the UAV flying speed \(\eta\) at 10 m/s. Fig. 4(a) shows that the number of UAVs deployed by each algorithm on average increases with the growth of the number of IoT devices \(n\), as more UAVs need to be deployed in a large network. Fig. 4(a) also demonstrates that the average number of UAVs by the proposed algorithm \(\text{approAlgNoNei}\) is around from 11% to 19% less than those by the three benchmark algorithms BTCAlg, MCCPAlg1 and MCCPAlg2. For example, the average numbers of UAVs by algorithms \(\text{approAlgNoNei}, \text{BTCAlg}, \text{MCCPAlg1}\) and \(\text{MCCPAlg2}\) are about 19.1, 24.4, 23.9, and 22.6, respectively, when there are \(n = 300\) IoT devices in the network.

We then study the performance of different algorithms by varying the maximum data collection delay \(B\) from 20 minutes to one hour, when \(n = 300\) and \(\eta = 10\) m/s. Fig. 4(b) plots the performance of algorithms \(\text{approAlgNoNei}, \text{BTCAlg}, \text{MCCPAlg1}\) and \(\text{MCCPAlg2}\), from which it can be seen that the average number of UAVs deployed by each algorithm decreases quickly with the increase of the maximum data collection delay \(B\). Fig. 4(b) also shows that the average number of UAVs by algorithm \(\text{approAlgNoNei}\) is around from 9.5% to 15.5% less than those by algorithms BTCAlg, MCCPAlg1 and MCCPAlg2.

We finally investigate the performance of the four mentioned algorithms by varying the UAV flying speed \(\eta\) from 6 m/s to 14 m/s, when \(B = 30\) minutes and \(n = 300\). Fig. 4(c) demonstrates that less number of UAVs are deployed in the solution delivered by each algorithm when each UAV flies at a higher speed. Fig. 4(c) further shows that the average number of UAVs by algorithm \(\text{approAlgNoNei}\) is about from 11% to 15.5% less than those by algorithms BTCAlg, MCCPAlg1 and MCCPAlg2.

C. Algorithm Performance for the Minimum UAV Deployment Problem With Neighborhoods

We now evaluate the performance of different algorithms for the minimum UAV deployment problem with neighborhoods. Fig. 5(a) plots the performance of different algorithms by varying the number of IoT devices \(n\) from 100 to 500, when \(B = 30\) minutes, \(R = 500\) m and \(\eta = 10\) m/s. It can be seen that the numbers of UAVs by both algorithms \(\text{approAlgNei}\) and \(\text{minMaxNei}\) are much smaller than those by the four algorithms \(\text{approAlgNoNei}, \text{BTCAlg}, \text{MCCPAlg1}\) and \(\text{MCCPAlg2}\), as the first two algorithms take the transmission range of each IoT device into consideration, i.e., a UAV can collect the data of the IoT device when their Euclidean distance is no greater than the transmission range, whereas the rest of the four algorithms do not consider the
transmission range and a UAV needs to fly to the location of the IoT device to collect its data. In addition, Fig. 5(a) shows that the average number of UAVs deployed by the proposed algorithm approAlgNei is around from 14.5% to 18% less than that by algorithm minMaxNei. For example, the average numbers of UAVs by algorithms approAlgNei and minMaxNei are around 5.5 and 6.6, respectively, when there are \(n = 100 \) IoT devices.

Fig. 5(b) demonstrates the performance of different algorithms by varying the maximum data collection delay \(B \) from 20 minutes to one hour, from which it can be seen that the average number of UAVs by each algorithm decreases quickly with the growth of \(B \). Fig. 5(b) also shows that the number of UAVs by the proposed algorithm approAlgNei is around from 9.5% to 18% less than that by algorithm minMaxNei, and at least 40% less than those by the other four algorithms approAlgNoNei, BTCAlg, MCCPAAlg1 and MCCPAAlg2.

Fig. 5(c) compares the performance of different algorithms by varying the UAV flying speed \(\eta \) from 6 m/s to 14 m/s, when \(B = 30 \) minutes, \(n = 300 \) and \(R = 500 \) meters. Fig. 5(c) shows that the average number of UAVs by algorithm approAlgNei is at least 11% less than those by the other five algorithms.

Fig. 5(d) shows the performance of different algorithms by varying the transmission range \(R \) of each IoT device from 400 m to 600 m, when \(n = 300 \), \(B = 30 \) minutes and \(\eta = 10 \) m/s. It can be seen that the numbers of UAVs by both algorithms approAlgNei and minMaxNei decreases with the growth of the transmission range \(R \), as the flying distance of each UAV is shorter with a larger transmission range \(R \) and the saved UAV flying time can be used for collecting data from more IoT devices, thereby deploying less UAVs. In contrast, Fig. 5(d) demonstrates that the numbers of UAVs by the other four algorithms approAlgNoNei, BTCAlg, MCCPAAlg1 and MCCPAAlg2 do not change with the increase on the transmission range, since the four algorithms do not consider the transmission range and each UAV flies to the location of each IoT device to collect its data. Finally, Fig. 5(d) plots that the average number of UAVs by the proposed algorithm approAlgNei is around from 6.5% to 15.5% less than that by algorithm minMaxNei.

VII. Conclusion

In this paper, we first formulated the minimum UAV deployment problem, which is to determine the minimum number \(K \) of UAVs and to find the data collection tours for the \(K \) UAVs to collect data from IoT devices in an IoT network, subject to that the total time spent by each UAV per tour is no greater than a given delay. We then proposed a 4-approximation algorithm for the problem without neighborhoods, which improves the best approximation ratio \(4\frac{1}{2} \) for the problem so far. We also devised the very first constant approximation algorithm for the problem with neighborhoods. We finally evaluated the performance of the proposed algorithms via simulation experiments, and experimental results showed that the number of deployed UAVs by the proposed algorithms are around 11% to 19% less than those by existing algorithms on average.
Tao Xiao received the B.Sc. degree in communication engineering from the Chongqing University of Posts and Telecommunications, China, in 2020. He is currently pursuing the master’s degree in electronic and information engineering with Sichuan University. His current research interest is UAV scheduling.

Junqi Zhang received the B.Sc. and M.E. degrees in computer science from Sichuan University, China, in 2018 and 2021, respectively. His research interests include UAV scheduling and wireless sensor networks.

Weifa Liang (Senior Member, IEEE) received the B.Sc. degree in computer science from Wuhan University, China, in 1984, the M.E. degree in computer science from the University of Science and Technology of China in 1989, and the Ph.D. degree in computer science from The Australian National University in 1998. He is currently a Professor with the Department of Computer Science, City University of Hong Kong. Prior to the current position, he was a Professor at The Australian National University. His research interests include design and analysis of energy efficient routing protocols for wireless ad-hoc and sensor networks, the Internet of Things, edge and cloud computing, network function virtualization and software-defined networking, design and analysis of parallel and distributed algorithms, approximation algorithms, combinatorial optimization, and graph theory. He serves as an Associate Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS.

Zichuan Xu (Member, IEEE) received the B.Sc. and M.E. degrees in computer science from the Dalian University of Technology, China, in 2008 and 2011, and the Ph.D. degree in computer science from The Australian National University in 2016. He was a Research Associate at University College London. He is currently an Associate Professor with the School of Software, Dalian University of Technology. His research interests include cloud computing, software-defined networking, wireless sensor networks, algorithmic game theory, and optimization problems.

Xiaohua Jia (Fellow, IEEE) received the B.Sc. and M.Eng. degrees from the University of Science and Technology of China in 1984 and 1987, respectively, and the D.Sc. degree in information science from The University of Tokyo in 1991. He is currently a Chair Professor with the Department of Computer Science, City University of Hong Kong. His research interests include cloud computing and distributed systems, computer networks, wireless sensor networks, and mobile wireless networks. He is the General Chair of ACM MobiHoc 2008, the TPC Co-Chair of IEEE INFOCOM 2010, the TPC Co-Chair of IEEE GLOBECOM 2010 and Ad Hoc and Sensor Networking Symposium, and the Panel Co-Chair of IEEE INFOCOM 2011. He was an Editor of IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS from 2006 to 2009. He is an Editor of World Wide Web, Wireless Networks, Journal of Combinatorial Optimization, and so on.

Xuxun Liu received the Ph.D. degree in communication and information systems from Wuhan University, Wuhan, China, in 2007. He was a Visiting Professor of electrical engineering and computer sciences at the University of California, Berkeley, USA, in 2017. He is currently an Associate Professor with the School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China. He has authored or coauthored over 40 scientific articles in international journals and conference proceedings. His current research interests include wireless sensor networks, vehicle-to-vehicle communications, mobile computing, and edge computing. He was a recipient of the National Innovation Award of Industry-University-Research Collaboration in 2017. He serves as the workshop chair, the publication chair, or a TPC member for a number of conferences. He serves as an Editorial Board Member for Wireless Networks (Springer) and an Associate Editor for IEEE ACCESS.

Sajal K. Das (Fellow, IEEE) is currently the Chair of the Computer Science Department and the Daniel St. Clair Endowed Chair at the Missouri University of Science and Technology, USA. He has directed numerous funded projects in these areas totaling over $15M and published extensively with more than 600 research articles in high quality journals and refereed conference proceedings. His current research interests include theory and practice of wireless sensor networks, big data, cyber-physical systems, smart healthcare, distributed and cloud computing, security and privacy, biological and social networks, applied graph theory, and game theory. He is a Co-Founder of the IEEE PerCom Conference, IEEE WoWMoM Conference, and ICDCN Conference. He served on numerous conference committees as the general chair, the program chair, or a program committee member. He serves as the Founding Editor-in-Chief for the Pervasive and Mobile Computing journal and an Associate Editor for IEEE TRANSACTIONS ON MOBILE COMPUTING and ACM Transactions on Sensor Networks.