An Approximation Algorithm for the h-Hop Independently Submodular Maximization Problem and Its Applications

Wenzheng Xu^{\oplus}, Member, IEEE, Hongbin Xie, Chenxi Wang, Weifa Liang ${ }^{\ominus}$, Senior Member, IEEE, Xiaohua Jia ${ }^{\oplus}$, Fellow, IEEE, Zichuan Xu^{\oplus}, Member, IEEE, Pan Zhou ${ }^{\oplus}$, Senior Member, IEEE, Weigang Wu^{\oplus}, Member, IEEE, ACM, and Xiang Chen ${ }^{\oplus}$, Member, IEEE

Abstract

This study is motivated by the maximum connected coverage problem (MCCP), which is to deploy a connected UAV network with given K UAVs in the top of a disaster area such that the number of users served by the UAVs is maximized. The deployed UAV network must be connected, since the received data by a UAV from its served users need to be sent to the Internet through relays of other UAVs. Motivated by this application, in this paper we study a more generalized problem - the h-hop independently submodular maximization problem, where the MCCP problem is one of its special cases with $h=4$. We propose a $\frac{1-1 / e}{2 h+3}$-approximation algorithm for the h-hop independently submodular maximization problem, where e is the base of the natural logarithm. Then, one direct result is a $\frac{1-1 / e}{11}$-approximate solution to the MCCP problem with $h=4$, which significantly improves its currently best $\frac{1-1 / e}{32}$ approximate solution. We finally evaluate the performance of the proposed algorithm for the MCCP problem in the application of deploying UAV networks, and experimental results show that the number of users served by deployed UAVs delivered by the

Manuscript received 9 March 2022; revised 1 August 2022; accepted 26 September 2022; approved by IEEE/ACM Transactions on Networking Editor B. Ji. The work of Wenzheng Xu was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 62272328 and in part by the Double World-Class Project for Sichuan University under Grant 0082604151352. The work of Weifa Liang was supported by the City University of Hong Kong under Project CityU 9380137/CS. The work of Zichuan Xu was supported by NSFC under Grant 62172068 and Grant 61802048. The work of Pan Zhou was supported by the NSFC under Grant 61972448. The work of Weigang Wu was supported by the Guangdong Natural Science Foundation of China under Grant 2018B030312002. (Corresponding author: Zichuan Xu.)

Wenzheng Xu , Hongbin Xie, and Chenxi Wang are with the College of Computer Science, Sichuan University, Chengdu 610065, China (e-mail: wenzheng.xu3@gmail.com; xiehongbin@stu.scu.edu.cn; wangchenxi1998@stu.scu.edu.cn).

Weifa Liang and Xiaohua Jia are with the Department of Computer Science, City University of Hong Kong, Hong Kong, China (e-mail: weifa.liang@cityu.edu.hk; csjia@cityu.edu.hk).

Zichuan Xu is with the School of Software, Dalian University of Technology, Dalian 116024, China (e-mail: z.xu@dlut.edu.cn).

Pan Zhou is with the Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong University of Science \& Technology, Wuhan 430074, China (e-mail: panzhou@hust.edu.cn).

Weigang Wu is with the School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China (e-mail: wuweig@mail.sysu.edu.cn).

Xiang Chen is with the School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China (e-mail: chenxiang@ mail.sysu.edu.cn).

This article has supplementary downloadable material available at https://doi.org/10.1109/TNET.2022.3210825, provided by the authors.

Digital Object Identifier 10.1109/TNET.2022.3210825
proposed algorithm is up to $\mathbf{1 2 . 5 \%}$ larger than those by existing algorithms.

Index Terms- UAV communication networks, maximum connected coverage problem, connected sensor coverage problem, submodular function maximization, approximation algorithms.

I. INTRODUCTION

IN THIS paper, we study an h-hop independently submodular maximization problem, which is defined later. We start by introducing two potential applications of the problem: one is to deploy a UAV communication network to serve people trapped in a disaster area, the other is to place a sensor network to monitor Points of Interest (PoIs) in an IoT network.

The first important application arises in the context of Unmanned Aerial Vehicles (UAV) networks. Wireless communication by leveraging the use of UAVs has attracted lots of attentions recently [13], [23], [43]. Unlike terrestrial communication systems, low-altitude UAV systems are more cost-effective by enabling on-demand operations, more swift and flexible for deployment and configuration [9], [14], [33], [36], [37], [41], [42]. Due to its maneuverability and flexibility, a UAV can act as an aerial base station (BS) by equipping with a lightweight base station device [8], [25]. It is expected that UAV networks consists of multiple UAVs are perfectly suitable for unexpected and temporary communication demands, such as natural disasters, traffic congestion, and concerts [3]. In addition, because of their high flying height, UAVs usually have higher Line-of-Sight (LoS) link opportunities with ground users, compared to terrestrial BSs [1]. Fig. 1 shows a UAV network in which four UAVs serve as aerial base stations to provide communication services to the trapped people in a disaster zone. With the help of the UAV network, the trapped people can send and receive critical voices, videos, and data to/from the rescue team, thereby saving their lives and reducing injuries. Our study is motivated by a fundamental Maximum Connected Coverage Problem (MCCP) [43] in a UAV network, which is to deploy K UAVs in the air to serve people in a disaster zone, such that the number of users served is maximized, subject to the constraint that the communication subnetwork induced by the K UAVs is connected. The rationale behind the connectivity constraint is that, the received data by a UAV from its served users need to be sent to a gateway UAV in the UAV network, where the

Fig. 1. A UAV network that provides communication services for ground users in a disaster area, where the network is connected to the Internet via an emergency communication vehicle.

Fig. 2. An example of the connected sensor placement problem, where $K=4$ sensors are deployed and five PoIs are monitored by the four sensors.
gateway UAV is connected to the Internet, with the help of an emergency communication vehicle or satellites, see Fig. 1.

We then focus on another application of the h-hop independently submodular maximization problem, which is to place K sensors at some strategic locations to monitor PoIs (Points of Interest) in an IoT network such that the number of PoIs monitored by the placed K sensors is maximized, subject to the constraint that the communication subnetwork induced by the K sensors is connected [15]. The rationale behind this connectivity constraint is that each sensor needs to send its sensing data to a base station directly or via the relays of other sensors. Fig. 2 shows an example of placing $K=4$ sensors to monitor PoIs.

In addition to the aforementioned two applications, there are many other potential applications of the h-hop independently submodular maximization problem, including deploying wireless power chargers in wireless sensor networks [39], [40], placing wireless routers in wireless networks [20], choosing influential connected users in social networks [2], [17], [18], [24], [30], [32], [34], and so on.

Motivated by the aforementioned many applications, in this paper, we study a more generalized problem - the h-hop independently submodular maximization problem, which is briefly defined as follows. Given an undirected, connected graph $G=(V, E)$, let $f: 2^{V} \mapsto \mathbb{Z}^{\geq 0}$ be a monotone function on the subsets of V, i.e., $f(A) \leq f(B)$ for any subsets A and B of V with $A \subseteq B$. In addition, given a positive integer $h \geq 1$, we say that f is h-hop independently submodular based on G if it meets the following two properties:
(i) Submodularity: $f(A \cup\{v\})-f(A) \geq f(B \cup\{v\})+f(B)$ for any two subsets A and B of V with $A \subseteq B$, and any
node $v \in V \backslash B$. The submodularity captures the property of diminishing returns in economics and many fields [6].
(ii) h-hop independence: $f(A)+f(B)=f(A \cup B)$ for any two non-empty subsets A and B of V with the minimum number of hops in G between any node in A and any node in B being at least h.

In this paper, we consider an h-hop independently submodular maximization problem in $G(V, E)$, which is to find a subset S of K nodes in V such that the value of $f(S)$ is maximized, subject to the constraint that the induced subgraph $G[S]$ of G by the nodes in S is connected, where K is a given positive integer with $1 \leq K \leq|V|$ and f is h-hop independently submodular. Notice that the MCCP problem for deploying a UAV network is a special case of the problem with $h=4$, which will be shown in Section V.

There are several studies on special cases of the h-hop independently submodular maximization problem. For example, Garg [12] proposed a $\frac{1}{3+\epsilon}$-approximation algorithm for the problem when $h=1$, where ϵ is a given constant with $0<\epsilon \leq 1$. Notice that the submodular function f meets the additive property when $h=1$, i.e., for any subset S of $V, f(S)=\sum_{v \in S} f(\{v\})$. Khuller et al. [18] proposed a $\frac{1-1 / e}{12}$-approximation algorithm for the problem when $h=3$, where e is the base of the natural logarithm. Yu et al. [39], [40] proposed a $\frac{1-1 / e}{8\left(\left\lceil\frac{4}{\sqrt{3}} \alpha\right\rceil+1\right)^{2}}$-approximation algorithm for the connected sensor placement problem (e.g., see Fig. 2), where $\alpha=\frac{r}{R}$ with $0<r \leq R, r$ and R are the sensing range and communication range of a sensor, respectively. It can be seen that the approximation ratio is a value between $\frac{1-1 / e}{128}$ and $\frac{1-1 / e}{32}$, as $0<\alpha \leq 1$.

Notice that we recently devised a $\frac{1-1 / e}{\sqrt{K}}$-approximation algorithm [35] for finding a set S with K nodes in a graph G such that a submodular function $f(S)$ is maximized, subject to that $G[S]$ is connected, where e is the base of the natural logarithm. This implies that the algorithm also delivers a $\frac{1-1 / e}{\sqrt{K}}$-approximate solution to the problem considered in this paper. However, the approximation ratio $\frac{1-1 / e}{\sqrt{K}}$ is small when K is large. In this paper, we consider the case that $\sqrt{K} \geq 2 h+3$, and propose an improved algorithm with an approximation ratio $\frac{1-1 / e}{2 h+3}$ for the problem, which is no less than $\frac{1-1 / e}{\sqrt{K}}$.

A. Main Contributions

The main contributions of this paper are as follows.
(i) To the best of our knowledge, we are the first to introduce the h-hop independently submodular maximization problem, which generalizes many optimization problems arisen in different domains, such as the MCCP problem of deploying a UAV network to serve as many users as possible.
(ii) We propose a novel tree decomposition technique. With the help of the proposed technique, we devise a $\frac{1-1 / e}{2 h+3}$ approximation algorithm for the problem when $h \geq 2$. Consequently, the proposed algorithm delivers $\frac{1-1 / e}{9}$ and $\frac{1-1 / e}{11}$ approximate solutions to the problem, when $h=3$ and $h=4$, respectively, while the best approximation ratios so far for
these two special cases with $h=3$ and $h=4$ are $\frac{1-1 / e}{12}$ [18] and $\frac{1-1 / e}{32}$ [39], [40], respectively.
(iii) We evaluate the performance of the proposed algorithm for the MCCP problem in the application of deploying UAV networks, and experimental results show that the number of users served by deployed UAVs in the solution delivered by the proposed algorithm is up to 12.5% larger than those by existing algorithms.

The rest of the paper is organized as follows. Section II introduces preliminaries and defines the problem. Section III proposes a $\frac{1-1 / e}{2 h+3}$-approximation algorithm for the h-hop independently submodular maximization problem, while Section IV shows the approximation ratio. Section V studies an application of the h-hop independently submodular maximization problem in UAV networks. Section VI evaluates the performance of the proposed algorithms. Section VII reviews related work, and Section VIII concludes the paper.

II. Preliminaries

A. Network Model

We consider an undirected, connected graph $G=(V, E)$, where V is the set of nodes and E is the set of edges. For any two nodes u and v in V, denote by $l(u, v)$ the minimum number of hops (i.e., edges) in G between nodes u and v. Also, for any two non-empty subsets A and B of V, denote by $l(A, B)$ the minimum number of hops between nodes in A and B, i.e., $l(A, B)=\min _{u \in A, v \in B}\{l(u, v)\}$.

We consider a nondecreasing submodular function f : $2^{V} \mapsto \mathbb{Z} \geq 0$, which meets the following three properties:
(i) $f(\emptyset)=0$;
(ii) Monotonicity: $f(A) \leq f(B)$ for any two subsets A and B of V with $A \subseteq B$; and
(iii) Submodularity: $f(A \cup\{v\})-f(A) \geq f(B \cup\{v\})+f(B)$ for any two subsets A and B of V with $A \subseteq B$, and any node $v \in V \backslash B$.

B. Problem Definition

A function $f: 2^{V} \mapsto \mathbb{Z}^{\geq 0}$ is an h-hop independently submodular function in a graph $G=(V, E)$ if and only if (i) f is nondecreasing and submodular; and (ii) for any two non-empty subsets A and B of V, if the minimum number of hops between the nodes in A and the nodes in B is no less than h (i.e., $l(A, B) \geq h$), then $f(A)+f(B)=f(A \cup B)$, where $h \geq 1$ is a given positive integer.

In this paper, we consider an h-hop independently submodular maximization problem, which is defined as follows. Given an undirected, connected graph $G=(V, E)$, an h-hop independently submodular function $f: 2^{V} \mapsto \mathbb{Z}^{\geq 0}$, and a positive integer K, the problem is to find a set S of K nodes in V such that the value of $f(S)$ is maximized, subject to the constraint that the induced subgraph $G[S]$ by the nodes in S is connected.

We assume that the values of h and K satisfy the following relationship: $2 h+3 \leq \sqrt{K}$. The rationale behind the assumption is as follows. Xu et al. [35] devised a $\frac{1-1 / e}{\sqrt{K}}$ approximation algorithm for finding a set S with K nodes in G such that a submodular function $f(S)$ is maximized,
subject to that $G[S]$ is connected, where e is the base of the natural logarithm. This implies that the algorithm also delivers a $\frac{1-1 / e}{\sqrt{K}}$ approximate solution to the problem considered in this paper. However, the approximation ratio $\frac{1-1 / e}{\sqrt{K}}$ is small when K is large. Under the assumption that $2 h+3 \leq \sqrt{K}$, we will propose an improved algorithm with an approximation ratio $\frac{1-1 / e}{2 h+3}$ for the problem in this paper, which is no less than $\frac{1-1 / e}{\sqrt{K}}$.

C. Quota Steiner Tree (QST) Problem

We define a Quota Steiner Tree (QST) problem [16]. Given an undirected graph $G=(V, E)$, a profit function $p: V \mapsto$ $\mathbb{Z} \geq 0$, a cost function $c: E \mapsto \mathbb{Z} \geq 0$, and a positive integer (quota) q, the problem is to find a subtree T in G such that the cost of the T, i.e., $\sum_{e \in E(T)} c(e)$, is minimized, subject to the constraint that the profit sum of nodes in T is no less than q, i.e., $\sum_{v \in V(T)} p(v) \geq q$. Notice that there is a 2 -approximation algorithm for the QST problem [12], [16], and the algorithm will be part of the solution to the problem in this paper.

D. Special Cases of the h-Hop Independently Submodular Maximization Problem

We here show that the problems studied in various applications [2], [12], [15], [16], [18], [20], [24], [39], [40], [43] in fact are special cases of the h-hop independently submodular maximization problem with different values of h, which are summarized in Table I and the value of $h(\alpha)$ is defined in Eq. (1).

$$
h(\alpha)= \begin{cases}2, & \text { if } 0<\alpha \leq \frac{1}{2} \tag{1}\\ 3, & \text { if } \frac{1}{2}<\alpha \leq \frac{\sqrt{2}}{2} \\ 4, & \text { if } \frac{\sqrt{2}}{2}<\alpha \leq 1\end{cases}
$$

To verify our claim, we here prove that both the budgeted prize collecting Steiner tree problem [12], [16] and the budgeted connected dominating set problem [2], [18], [24] are special cases of the h-hop independently submodular maximization problem when $h=1$ and $h=3$, respectively. The proofs of the other problems listed in Table I are similar to the one in Section V, omitted.

We first consider the budgeted prize collecting Steiner tree problem [12], [16]. Given a graph $G=(V, E)$, a node profit function $f: V \mapsto \mathbb{Z}^{\geq 0}$, and a budget K, the problem is to find a subset S of V with no more than K nodes, such that the induced subgraph $G[S]$ by S is connected and the profit sum of the nodes in S, i.e., $\sum_{v \in S} f(v)$, is maximized. For any two non-empty subsets A and B of V with the minimum number of hops in G between any node in A and any node in B being at least $h=1$, i.e., $A \cap B=\emptyset$, we have that $f(A \cup B)=\sum_{v \in A \cup B} f(v)=\sum_{v \in A} f(v)+\sum_{v \in B} f(v)=$ $f(A)+f(B)$. Therefore, the problem is a special case of the h-hop independently submodular maximization problem when $h=1$.

TABLE I
Special Cases of the h-Hop Independently Submodular Maximization Problem

Problems	value of h	Remarks
Budgeted prize collect- ing Steiner tree problem [12], [16]	1	-
Budgeted connected dominating set problem [2], [18], [24]	3	-
Maximum Connected Coverage Problem [43]	$h(\alpha)$	$\alpha=\frac{r}{R}, 0<r \leq R, r:$ commu- nication range between a user and a UAV, $R:$ communication range between two UAVs
Wireless charger net- work deployment prob- lem [39], [40]	$h(\alpha)$	$\alpha=\frac{r}{R}, 0<r \leq R, r:$ charging ranging of a wireless charger, $R:$ communication range between two chargers
Wireless router network placement problem [20]	$h(\alpha)$	$\alpha=\frac{r}{R}, 0<r \leq R, r:$ commu- nication range between a user and a router, $R:$ communication range between two routers
Connected pensor placement problem [15]	$h(\alpha)$	$\alpha=\frac{r}{R}, 0<r \leq R, r:$ sensing range of a sensor, $R:$ communi- cation range between two sen- sors

We then consider the budgeted connected dominating set problem [2], [18], [24]. Given a graph $G=(V, E)$ and a subset S of V, a node v is dominated by S if v is contained in S or is a neighbor of a node in S. Denote by $f(S)$ the number of nodes dominated by S. Given a budget K, the problem is to find a subset S of V with no more than K nodes, such that the induced subgraph $G[S]$ by S is connected, and the number $f(S)$ of nodes dominated by S is maximized. For any two non-empty subsets A and B of V with the minimum number of hops in G between any node in A and any node in B being at least $h=3$, i.e., $l(A, B) \geq 3$, it can be seen that no nodes in V are dominated by both A and B at the same time. Otherwise, suppose that there is a node v in V such that v is dominated by both A and B. Then, the minimum hop between A and v is no more than one, and the minimum hop between v and B is also no more than one, i.e., $l(A, v) \leq 1$ and $l(v, B) \leq 1$. This indicates that the minimum hop between any node in A and any node in B is $l(A, B) \leq l(A, v)+$ $l(v, B) \leq 2$, which however contradicts the assumption that $l(A, B) \geq 3$. We conclude that no nodes are dominated by both A and B simultaneously. We thus know that the number of nodes dominated by the nodes in $A \cup B$ is the sum of the numbers of nodes dominated by the nodes in A and B, respectively, i.e., $f(A \cup B)=f(A)+f(B)$. Therefore, the budgeted connected dominating set problem is a special case of the h-hop independently submodular maximization problem when $h=3$.

III. Approximation Algorithm

In this section, we propose a $\frac{1-1 / e}{2 h+3}$-approximation algorithm for the h-hop independently submodular maximization problem.

A. Basic Idea

The basic idea behind the proposed algorithm is that we assign profits to nodes in graph G in n different ways with
$n=|V|$. We find a tree T_{i} in G with no more than K nodes so that the profit sum of nodes in T_{i} is maximized in each of the n profit assignments, by invoking the 2-approximation algorithm for the QST problem, where the QST problem here is to find a tree in G such that the number of nodes in the tree is minimized, subject to the constraint that the profit sum of nodes in the tree is at least a given quota q. The solution to the problem then is the set of nodes in one of the n found trees $T_{1}, T_{2}, \ldots, T_{n}$ such that the profit sum of nodes in the tree is maximized.

B. Approximation Algorithm

Given an undirected, connected graph $G=(V, E)$, an h-hop independently submodular function $f: 2^{V} \mapsto \mathbb{Z} \geq 0$, and a positive integer K, let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $n=|V|$. We assign profits to nodes in G with n different ways.

Denote by $p_{i}(v)$ the profit assigned to node $v \in V$ in G in the i th way with $1 \leq i \leq n$. This profit assignment proceeds as follows.

We start by assigning a profit $f\left(\left\{v_{i}\right\}\right)$ to node v_{i}, i.e., $p_{i}\left(v_{i}\right)=f\left(\left\{v_{i}\right\}\right)$. We then choose a node v in $V \backslash\left\{v_{i}\right\}$ with the maximum marginal profit $f\left(\left\{v, v_{i}\right\}\right)-f\left(\left\{v_{i}\right\}\right)$ and assign node v the profit $p_{i}(v)=f\left(\left\{v, v_{i}\right\}\right)-f\left(\left\{v_{i}\right\}\right)$, where ties are broken arbitrarily. The profit assignment procedure continues until each node in G is assigned a profit. The detailed profit assignment procedure is given in Algorithm 1.

```
Algorithm 1 Profit Assignment Procedure
Require: An undirected, connected graph \(G=(V, E)\), an \(h\) -
    hop independently submodular function \(f: 2^{V} \mapsto \mathbb{Z}^{\geq 0}\),
    and a starting node \(v_{i}\)
Ensure: the assigned profit \(p_{i}(v)\) of each node \(v \in V\) in the
    \(i\) th way
    Assign profit \(f\left(\left\{v_{i}\right\}\right)\) to the starting node \(v_{i}\), i.e., \(p_{i}\left(v_{i}\right)=\)
    \(f\left(\left\{v_{i}\right\}\right)\);
    Let \(D \leftarrow\left\{v_{i}\right\} ; / *\) the set of nodes assigned profits
    already*/
    Let \(U \leftarrow V \backslash D\);
    while \(U \neq \emptyset\) do
        Choose a node \(v\) in \(U\) with the maximum marginal profit
        \(f(\{v\} \cup D)-f(D)\), i.e., \(v=\arg \max _{v_{j} \in U}\left\{f\left(\left\{v_{j}\right\} \cup D\right)-\right.\)
        \(f(D)\} ;\)
        Let \(p_{i}(v)=f(\{v\} \cup D)-f(D) ;\)
        Let \(D \leftarrow D \cup\{v\}\);
        Let \(U \leftarrow U \backslash\{v\}\);
    end while
    return the assigned profit \(p_{i}(v)\) of each node \(v\) in \(V\).
```

Having assigned a profit $p_{i}(v)$ to each node $v \in V$ in the i th way, we find a tree T_{i} with no more than K nodes such that the profit sum of the nodes in T_{i} is maximized, based on the profit assignment. This problem however is NP-hard [16]. Denote by $q_{o p t}$ the optimal profit sum.

In the following, we find a quota Q_{i} by binary search with $Q_{i} \leq q_{o p t}$, such that there are no more than K nodes in the tree delivered by the 2-approximation algorithm for the QST
problem [12], [16] with quota Q_{i}, while there are more than K nodes in the found tree with quota $Q_{i}+1$. We later show that the value of Q_{i} is no less than $\frac{1-1 / e}{2 h+3} \cdot O P T$ for some staring node v_{i} (e.g., see Eq. (2) in Section IV), where $O P T$ is the optimal solution to the h-hop independently submodular maximization problem.

It can be seen that the value of Q_{i} must be in the interval of $\left[f\left(\left\{v_{i}\right\}\right), f(V)\right]$. Specially, let $l b$ and $u b$ be the lower and upper bounds on Q_{i}, respectively. Initially, let $l b=f\left(\left\{v_{i}\right\}\right)$ and $u b=f(V)$. Let $q=\left\lfloor\frac{l b+u b}{2}\right\rfloor$. We can find a tree T_{q} in G based on the profit assignment of the i th way so that the number of nodes in T_{q} is minimized, subject to the constraint that the profit sum of nodes in T_{q} is no less than q, by invoking the 2-approximation algorithm for the QST problem. Consider the number of nodes $\left|V\left(T_{q}\right)\right|$ in tree T_{q}. If $\left|V\left(T_{q}\right)\right| \leq K$, this implies that $q\left(=\left\lfloor\frac{l b+u b}{2}\right\rfloor\right)$ is no more than the value Q_{i}. In this case, let q become the updated lower bound on Q_{i}, i.e., $l b=q$. Otherwise $\left(\left|V\left(T_{q}\right)\right|>K\right)$, this indicates that the value q is larger than Q_{i}, i.e., $q>Q_{i}$. Let q become the updated upper bound on Q_{i}, i.e., $u b=q$. The binary search will terminate when $u b=l b+1$. Finally, the tree T_{i} can be found, by invoking the 2-approximation algorithm for the QST problem with a quota of $l b(=u b-1)$.

The algorithm for the h-hop independently submodular maximization problem is presented in Algorithm 2.

IV. Analysis of the Approximation Algorithm

Denote by L_{0} the set of nodes in an optimal solution to the problem. Then, $O P T=f\left(L_{0}\right)$. Also, denote by L_{h-1} the set of nodes such that the minimum number of hops in G between any node v in L_{h-1} and any node in L_{0} is no more than $h-1$, but node v is not contained in L_{0}, i.e., $L_{h-1}=\left\{v \mid v \in V \backslash L_{0}, l\left(v, L_{0}\right) \leq h-1\right\}$, where $h \geq 1$, and $l\left(v, L_{0}\right)$ is the minimum number of hops between node v and nodes in L_{0} in G. Let $L_{h}=V \backslash\left(L_{0} \cup L_{h-1}\right)$. It can be seen that the minimum number of hops between nodes in L_{0} and nodes in L_{h} is no less than h, i.e., $l\left(L_{0}, L_{h}\right) \geq h$.

Consider a node v_{i} with the maximum profit in the optimal solution L_{0}, i.e., $v_{i}=\arg \max _{v \in L_{0}}\{f(v)\}$. Due to the submodularity of function f, we have $f\left(L_{0}\right) \leq \sum_{v \in L_{0}} f(v) \leq$ $\left|L_{0}\right| \cdot f\left(v_{i}\right)=K \cdot f\left(v_{i}\right)$, where $K=\left|L_{0}\right|$. Then,

$$
\begin{equation*}
f\left(v_{i}\right) \geq \frac{f\left(L_{0}\right)}{K}=\frac{O P T}{K} \tag{2}
\end{equation*}
$$

Recall that in the i th 'for' loop of Algorithm 2, we first assign a profit $p_{i}\left(v_{i}\right)=f\left(v_{i}\right)$ to node v_{i}, then assign profits to the other nodes in G greedily. Denote by D^{\prime} the first K nodes in set $L_{0} \cup L_{h-1}$ that have been assigned profits by the profit assignment procedure. Let $D^{\prime}=\left\{v_{i}, v_{1}, v_{2}, \ldots, v_{K-1}\right\}$ with $i \notin\{1,2, \ldots, K-1\}$. Denote by $p_{i}\left(D^{\prime}\right)$ the profit sum of nodes in D^{\prime}, i.e., $p_{i}\left(D^{\prime}\right)=\sum_{v \in D^{\prime}} p_{i}(v)$.

Proof roadmap: In the rest, we first show that the profit sum of nodes in D^{\prime} is no less than $(1-1 / e) \cdot O P T$, i.e., $p_{i}\left(D^{\prime}\right) \geq(1-1 / e) O P T$. We then prove that there is a tree T in G spanning the nodes in D^{\prime}, such that the number of nodes in T is no more than $(K-1) h+1$. The profit sum of nodes in T thus is no less than $(1-1 / e) O P T$. We also show that tree T can be decomposed into no more than $2 h+3$ subtrees such that

```
Algorithm 2 Approximation Algorithm for the \(h\)-Hop Inde-
pendently Submodular Maximization Problem
Require: An undirected, connected graph \(G=(V, E)\), an \(h\) -
    hop independently submodular function \(f: 2^{V} \mapsto \mathbb{Z}^{\geq 0}\),
    and a positive integer \(K\).
Ensure: A set \(S\) of \(K\) nodes in \(G\) such that the value of \(f(S)\)
    is maximized, subject to the constraint that the induced
    subgraph \(G[S]\) is connected.
    Let \(S \leftarrow \emptyset\);
    for \(1 \leq i \leq n\) do
        Assign profits to nodes in \(V\) starting from node \(v_{i}\) by
        invoking Algorithm 1;
        Let \(l b \leftarrow f\left(\left\{v_{i}\right\}\right)\) and \(u b \leftarrow f(V)\); \(/ * l b\) and \(u b\) are the
        lower and upper bounds on the value of \(Q_{i}\), respectively
        */
        while \(l b+1<u b\) do
        Let \(q \leftarrow\left\lfloor\frac{l b+u b}{2}\right\rfloor ; / * q\) is the quota in the QST problem
        */
            Find a tree \(T_{q}\) in \(G\) with the minimum number of nodes,
        subject to the constraint that the profit sum of nodes
        in \(T_{q}\), i.e., \(\sum_{v \in V\left(T_{q}\right)} p_{i}(v)\), is no less than quota \(q\),
        by invoking the 2-approximation algorithm for the QST
        problem;
        if the number of nodes in \(T_{q}\) is no greater than \(K\) then
            Let \(l b \leftarrow q\); /* the quota \(q\) is no more than \(Q_{i} * /\)
        else
            Let \(u b \leftarrow q\); /* the quota \(q\) is larger than \(Q_{i} * /\)
        end if
        end while
        Let \(q \leftarrow l b\), where \(l b=u b-1\);
        Find a tree \(T_{i}\) in \(G\) with the minimum number of nodes,
        subject to the constraint that the profit sum of nodes in \(T_{i}\)
        is no less than quota \(q\), by invoking the 2-approximation
        algorithm for the QST problem. Notice that the number
        of nodes in \(T_{i}\) must be no greater than \(K\).
        if \(f\left(V\left(T_{i}\right)\right)>f(S)\) then
        Let \(S \leftarrow V\left(T_{i}\right) ;\) /* find a better set of nodes */
        end if
    end for
    return set \(S\).
```

the number of nodes in each subtree is no more than $\frac{K}{2}$. Then, there must have a subtree T^{\prime} among the $2 h+3$ subtrees such that the profit sum of nodes in T^{\prime} is no less than $\frac{1}{2 h+3}$ of the profit sum of nodes in T, i.e., $\sum_{v \in T^{\prime}} p_{i}(v) \geq \frac{\sum_{v \in T} p_{i}(v)}{2 h+3} \geq$ $\frac{1-1 / e}{2 h+3} O P T$. Finally, a tree in G with no more than $2 \frac{K}{2}=K$ nodes can be found such that the profit sum of nodes in the tree is no less than $\frac{1-1 / e}{2 h+3} \cdot O P T$, by invoking the 2 -approximation algorithm for the QST problem in [12] and [16].

We start by showing that the profit sum of nodes in D^{\prime} is no less than $(1-1 / e) \cdot O P T$.

Lemma 1: Consider node v_{i} in the optimal solution L_{0} with the maximum profit and the profit assignment procedure starting with node v_{i}. Let D^{\prime} be the first K nodes in set $L_{0} \cup L_{h-1}$ with the assigned profits. Then, $p_{i}\left(D^{\prime}\right) \geq(1-1 / e) \cdot O P T$.

\bullet nodes in T^{*} ○ nodes in D^{\prime} o nodes not in T^{*} or D^{\prime} _- edges in T^{*}-----edges in the $(K-1)$ paths

Fig. 3. The constructed tree T spanning the nodes in D^{\prime}, where $K=17$ and $h=3$. Notice that node v_{i} is contained by both T^{*} and D^{\prime}.

Proof: The proof is contained in Section 1 of the supplementary file.

A. The Existence of a Tree T With $(K-1) h+1$ Nodes That Spans All Nodes in D^{\prime}

We then show that there is a tree T in G spanning the nodes in D^{\prime} such that the number of nodes in T is no more than $(K-1) h+1$, which is less than $K h$ in [18].

Lemma 2: Given node $v_{i} \in L_{0}$ with the maximum profit and the profit function $p_{i}: V \mapsto \mathbb{Z} \geq 0$, there is a tree T in G with no more than $(K-1) h+1$ nodes such that the profit sum of nodes in T, i.e., $\sum_{v \in V(T)} p_{i}(v)$, is no less than $(1-1 / e) \cdot O P T$, where e is the base of the natural logarithm.

Proof: Recall that $D^{\prime}=\left\{v_{i}, v_{1}, v_{2}, \ldots, v_{K-1}\right\}$ and $p_{i}\left(D^{\prime}\right) \geq(1-1 / e) \cdot O P T$ by Lemma 1 . We construct a tree T in G spanning all nodes in D^{\prime} such that T contains no more than $(K-1) h+1$ nodes, based on profit function $p_{i}(\cdot)$.

Since L_{0} is the optimal solution, the induced subgraph $G\left[L_{0}\right]$ by the nodes in L_{0} is connected. Denote by T^{*} a spanning tree in $G\left[L_{0}\right]$, assuming that the cost of each edge is one. Notice that v_{i} is in L_{0} and each node in D^{\prime} is contained in $L_{0} \cup L_{h-1}$, where L_{h-1} is the set of nodes such that the minimum number of hops in G between any node v in L_{h-1} and any node in L_{0} is no greater than $h-1$, but node v is not contained in L_{0}. Then, it can be seen that there is a path P_{k} in G between any node v_{k} in $D^{\prime} \backslash\left\{v_{i}\right\}$ and a node u_{k} in L_{0} such that the number of edges in P_{k} is no more than $h-1$.

A tree T can be constructed, which is the union of T^{*} and the $K-1$ found paths, i.e., $T=T^{*} \bigcup\left(\bigcup_{k=1}^{K-1} P_{k}\right)$. Fig. 3 illustrates such a tree, where $K=17, h=3, L_{0}=$ $V\left(T^{*}\right)=\left\{v_{i}, u_{1}, u_{2}, \ldots, u_{16}\right\}, D^{\prime}=\left\{v_{i}, v_{1}, v_{2}, \ldots, v_{16}\right\}$, and the number of edges in each path P_{k} is no more than $h-1=2$.

The number of edges in T is no more than $|E(T)|=$ $\left|E\left(T^{*}\right)\right|+\sum_{k=1}^{K-1}\left|E\left(P_{k}\right)\right| \leq K-1+(K-1) \cdot(h-1)=$ $(K-1) h$. The number of nodes in T thus is no greater than $(K-1) h+1$. The lemma then follows.

B. A Novel Tree Decomposition

We now show that there is a subtree T^{\prime} in G with no more than $\left\lfloor\frac{K}{2}\right\rfloor$ nodes such that the profit sum of nodes in T^{\prime} is no less than $\frac{1-1 / e}{2 h+3} \cdot O P T$. Following Lemma 2, there is a tree T in G with no more than $(K-1) h+1$ nodes such that the profit sum $\sum_{v \in V(T)} p_{i}(v)$ of the nodes in T is no less than $(1-1 / e) \cdot O P T$. We here propose a novel tree decomposition technique that decomposes T into no more than $2 h+3$ subtrees such that the number of nodes in each subtree is no greater than $\left\lfloor\frac{K}{2}\right\rfloor$, where $2 h+3<4 h$ for any integer h with $h \geq 2$. Then, there must be a subtree T^{\prime} among the $2 h+3$ subtrees such that the profit sum of nodes in T^{\prime} is no less than $\frac{1}{2 h+3}$ of the profit sum of nodes in T, i.e., $\sum_{v \in T^{\prime}} p_{i}(v) \geq \frac{\sum_{v \in T} p_{i}(v)}{2 h+3} \geq$ $\frac{1-1 / e}{2 h+3} O P T$.

1) Tree Decomposition Procedure: We show the tree decomposition procedure when K is odd. Then, $\left\lfloor\frac{K}{2}\right\rfloor=\frac{K-1}{2}$. On the other hand, $\left\lfloor\frac{K}{2}\right\rfloor=\frac{K}{2}$ when K is even. The procedure with the case that K is even is omitted, due to its similarity with the case that K is odd.

Recall that tree T is the union of a spanning tree T^{*} in $G\left[L_{0}\right]$ and $K-1$ paths $P_{1}, P_{2}, \ldots, P_{K-1}$, where the number of edges in P_{k} is no more than $h-1$ with $1 \leq k \leq K-1$, see Fig. 3. Without loss of generality, we further assume that $P_{1}, P_{2}, \ldots, P_{K-1}$ are edge-disjoint. Otherwise, the paths with edge-sharing can be converted to edge-disjoint paths, by duplicating the shared edges.

Let node $v_{i} \in L_{0}$ be the root of tree T. Denote by T_{v} the subtree of T rooted at node v for any node $v \in T$, and denote by $w\left(T_{v}\right)$ the number of edges in T_{v}. We decompose tree T by a Depth-First Search (DFS) starting from node v_{i}, until the number of edges in the residual tree is no more than $\frac{K-1}{2}-1=\frac{K-3}{2}$. The detailed tree decomposition procedure is given as follows.

Assume that v is the node being visited by the DFS. If the number of edges in tree T_{v} is no more than $\frac{K-3}{2}-1$, i.e., $w\left(T_{v}\right) \leq \frac{K-3}{2}-1$, nothing is done and the tree decomposition procedure continues; otherwise $\left(w\left(T_{v}\right) \geq \frac{K-3}{2}\right.$ as $w\left(T_{v}\right)$ is an integer), a tree will be decomposed from T as follows. We later show that node v must be contained in tree T^{*} by Lemma 3 in Section IV-B.2, where T^{*} is a spanning tree in $G\left[L_{0}\right]$ by the optimal solution L_{0}.

Assume that node T_{v} has n_{v} children $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n_{v}}^{\prime}$. Denote by tree T_{l}^{\prime} the union of edge $\left(v, v_{l}^{\prime}\right)$ and subtree $T_{v_{l}^{\prime}}$ rooted at a child v_{l}^{\prime}, i.e., $T_{l}^{\prime}=\left(v, v_{l}^{\prime}\right) \cup T_{v_{l}^{\prime}}$, where $1 \leq l \leq n_{v}$.

Following the work in [31], the n_{v} subtrees $T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{n_{v}}^{\prime}$ can be partitioned into, say $n^{\prime}(\geq 2)$, groups $g_{1}, g_{2}, \ldots, g_{n^{\prime}}$ such that the number of edges of subtrees in each group is no more than $\frac{K-3}{2}$ (i.e., $\sum_{T_{l}^{\prime} \in g_{j}} w\left(T_{l}^{\prime}\right) \leq \frac{K-3}{2}$ for each j with $1 \leq j \leq n^{\prime}$), while the number of edges in the subtrees of any two groups is larger than $\frac{K-3}{2}$ (i.e., $\sum_{T_{l}^{\prime} \in g_{j} \cup g_{j^{\prime}}} w\left(T_{l}^{\prime}\right)>\frac{K-3}{2}$ for each pair of j and j^{\prime} with $1 \leq j, j^{\prime} \leq n^{\prime}$ and $\left.j \neq j^{\prime}\right)$. For example, Fig. 4(a) shows that tree $T_{u_{3}}$ rooted at u_{3} consists of four subtrees, and these four subtrees are partitioned into $n^{\prime}=2$ groups, where $K=17$ and $\frac{K-3}{2}=7$. Also, it can be seen that the numbers of edges in the subtrees of groups g_{1} and g_{2} are 6 and 3 , respectively. Then, $w\left(g_{1}\right)=6 \leq \frac{K-3}{2}=7$
and $w\left(g_{2}\right)=3 \leq \frac{K-3}{2}=7$, while $w\left(g_{1}\right)+w\left(g_{2}\right)=6+3=$ $9>\frac{K-3}{2}=7$.

For each group g_{j} with $1 \leq j \leq n^{\prime}$, denote by n_{j}^{*} the number of edges in $g_{j} \cap T^{*}$, where T^{*} is a spanning tree in graph $G\left[L_{0}\right]$. For example, consider two groups g_{1} and g_{2} in Fig. 4(a). It can be seen that $n_{1}^{*}=3$ and $n_{2}^{*}=0$.

A tree $T_{j}^{\prime \prime}$ is decomposed from T by distinguishing into two cases. Case (i): the number of edges in the subtrees of a group g_{j} is no less than $\frac{K-3}{2}-n_{j}^{*}-(h-2)$, i.e.,

$$
\begin{equation*}
w\left(g_{j}\right)=\sum_{T_{l}^{\prime} \in g_{j}} w\left(T_{l}^{\prime}\right) \geq \frac{K-3}{2}-n_{j}^{*}-(h-2) \tag{3}
\end{equation*}
$$

A tree $T_{j}^{\prime \prime}$ in Case (i) is constructed, which is the union of the subtrees in group g_{j}, as each subtree in g_{j} contains the root v of T_{v}. Finally, the edges in $T_{j}^{\prime \prime}$ are removed from T. For example, Fig. 4(a) shows that the number of edges in the subtrees of group g_{1} is $w\left(g_{1}\right)=3+3=6>\frac{K-3}{2}-n_{1}^{*}-$ $(h-2)=\frac{17-3}{2}-3-(3-2)=3$. Tree $T_{j}^{\prime \prime}$ thus is the union of the subtrees in group g_{1}, see Fig. 4(a).

Case (ii): the number of edges in all subtrees of each group g_{j} is no more than $\frac{K-3}{2}-n_{j}^{*}-(h-2)$, i.e., $w\left(g_{j}\right)<\frac{K-3}{2}-$ $n_{j}^{*}-(h-2)$ for each j with $1 \leq j \leq n^{\prime}$. For example, consider node u_{5} in Fig. 4(b), where the number of edges in the subtrees of group g_{1} (or g_{2}) is 4 , while the value of $\frac{K-3}{2}-n_{j}^{*}-(h-2)$ is $\frac{17-3}{2}-1-(3-2)=5$. The n^{\prime} groups $g_{1}, g_{2}, \ldots, g_{n^{\prime}}$ are sorted in non-increasing order of the numbers of their edges in T^{*}. Without loss of generality, assume that $n_{1}^{*} \geq n_{2}^{*} \geq \cdots \geq n_{n^{\prime}}^{*}$, where $n_{j}^{*}=\left|E\left(g_{j} \cap T^{*}\right)\right|$ with $1 \leq j \leq n^{\prime}$. Notice that node v is contained in each subtree $g_{j} \cap T^{*}$ with $1 \leq j \leq n^{\prime}$, as v is contained in each subtree of g_{j} and v is in T^{*}.

A tree $T_{j}^{\prime \prime}$ in Case (ii) is constructed from T as follows. First, let $T_{j}^{\prime \prime}$ be the union of the subtrees in group g_{1}. Then, we duplicate the edges in $g_{2} \cap T^{*}$ and add the edges to $T_{j}^{\prime \prime}$. Notice that $T_{j}^{\prime \prime}$ is connected after adding the edges in $g_{2} \cap T^{*}$, since node v is contained in both $g_{1} \cap T^{*}$ and $g_{2} \cap T^{*}$. Finally, recall that for each node v_{k} in $D^{\prime} \backslash\left\{v_{i}\right\}$, there is a path P_{k} between v_{k} and a node u_{k} in T^{*} such that the number of edges in P_{k} is no more than $h-1$. We continue adding a path P_{k} of a node v_{k} in $\left(D^{\prime} \backslash\left\{v_{i}\right\}\right) \cap g_{2}$ to $T_{j}^{\prime \prime}$ as long as the number of edges in $T_{j}^{\prime \prime}$ is no more than $\frac{K-3}{2}$. For example, Fig. 4(b) illustrates such a tree, where the edge in $g_{2} \cap T^{*}$ is $\left(u_{5}, u_{6}\right)$, and path P_{5} consisting of only edge $\left(v_{5}, u_{6}\right)$ is added to $T_{j}^{\prime \prime}$.

Having constructed tree $T_{j}^{\prime \prime}$, the edges in $T_{j}^{\prime \prime}$ except the edges in $g_{2} \cap T^{*}$ are removed from T, see Fig. 4(c) for the residual tree of T after the tree decomposition in Case (ii).

Denote by \mathcal{T} the set of the decomposed subtrees from T by the tree decomposition procedure. For example, Fig. 4(d) shows that seven subtrees are obtained through the tree decomposition of tree T. It can be seen that the number of edges of each tree in \mathcal{T} is no more than $\frac{K-3}{2}$. Then, the number of nodes of each tree is no greater than $\frac{K-3}{2}+1=\frac{K-1}{2} \leq \frac{K}{2}$.
2) Property of a Node v With $w\left(T_{v}\right) \geq \frac{K-3}{2}$ in Tree T :

Lemma 3: Consider a node v in the tree decomposition of T. If the number of edges in the subtree T_{v} rooted at v is no less than $\frac{K-3}{2}$, i.e., $w\left(T_{v}\right) \geq \frac{K-3}{2}$, then v must be contained in tree T^{*}, where T^{*} is a spanning tree in $G\left[L_{0}\right]$.

Proof: The proof is contained in Section 2 of the supplementary file.
3) Bound the Number of Decomposed Subtrees in \mathcal{T} :

Lemma 4: Assume that $\sqrt{K} \geq 2 h+3$. Then, the tree T in G with no more than $(K-1) h+1$ nodes can be decomposed into no more than $2 h+3$ subtrees, such that the number of nodes in each subtree is no more than $\frac{K}{2}$. Then, there is a subtree T^{\prime} among the $2 h+3$ subtrees with no more than $\frac{K}{2}$ nodes such that the profit sum of nodes in T^{\prime} is no less than $\frac{1-1 / e}{2 h+3} \cdot O P T$, i.e., $\left|V\left(T^{\prime}\right)\right| \leq \frac{K}{2}$ and $\sum_{v \in T^{\prime}} p_{i}(v) \geq \frac{1-1 / e}{2 h+3} \cdot O P T$.

Proof: It can be seen that the number of nodes of each subtree in \mathcal{T} is no greater than $\frac{K}{2}$. We show that the number of subtrees in \mathcal{T} is no more than $2 h+3$. Recall that, before splitting any subtree off from tree T, T consists of a spanning tree T^{*} in $G\left[L_{0}\right]$ and $K-1$ paths $P_{1}, P_{2}, \ldots, P_{K-1}$, see Fig. 3(a). It can be seen that the numbers of edges in T^{*} and T are $K-1$ and $(K-1) h$, respectively, by Lemma 2.

Let $\mathcal{T}=\left\{T_{1}^{\prime \prime}, T_{2}^{\prime \prime}, \ldots, T_{x}^{\prime \prime}, T_{x+1}^{\prime \prime}\right\}$ be the set of decomposed subtrees of T by the tree decomposition procedure, where the number of subtrees in \mathcal{T} is $x+1$ and x is a nonnegative integer.

Following the tree composition procedure, some edges of T^{*} will be removed when decomposing each subtree $T_{j}^{\prime \prime}$ from T, where $1 \leq j \leq x+1$. The set of the removed edges can be represented as $\left(E\left(T_{j}^{\prime \prime}\right) \cap E\left(T^{*}\right)\right) \backslash E\left(T^{*}\right)$. Let $n_{j}^{*}=\mid\left(\left(E\left(T_{j}^{\prime \prime}\right) \cap E\left(T^{*}\right)\right) \backslash E\left(T^{*}\right) \mid\right.$. It can be seen that $\sum_{j=1}^{x+1} n_{j}^{*} \leq K-1$, as any edge in T^{*} will not be contained in other subtrees once it has been removed from T. Especially, we have

$$
\begin{equation*}
\sum_{j=1}^{x} n_{j}^{*} \leq \sum_{j=1}^{x+1} n_{j}^{*} \leq K-1 \tag{4}
\end{equation*}
$$

where $T_{x+1}^{\prime \prime}$ is the last decomposed subtree.
We show that the number of removed edges from T after decomposing each subtree $T_{j}^{\prime \prime}$ is no less than $\frac{K-3}{2}-n_{j}^{*}-(h-2)$, i.e.,

$$
\begin{equation*}
w\left(T_{j}^{\prime \prime} \backslash T\right) \geq \frac{K-3}{2}-n_{j}^{*}-(h-2) \tag{5}
\end{equation*}
$$

Assume that a node v in T is being visited by the DFS in the tree decomposition procedure when $T_{j}^{\prime \prime}$ is decomposed. Then, $T_{j}^{\prime \prime}$ is a subtree of T_{v}. Subtree $T_{j}^{\prime \prime}$ may be obtained in either Case (i) or Case (ii) of the tree decomposition procedure, see Fig. 4. For Case (i) (see Fig. 4(a)), we have
$w\left(T_{j}^{\prime \prime} \backslash T\right)=w\left(T_{j}^{\prime \prime}\right) \geq \frac{K-3}{2}-n_{j}^{*}-(h-2)$, by Ineq. (3).

On the other hand, assume that $T_{j}^{\prime \prime}$ is obtained by Case (ii) in the tree decomposition procedure. It can be seen that the number of edges in $T_{j}^{\prime \prime}$ is at least $\frac{K-3}{2}-(h-2)$, i.e.,

$$
\begin{equation*}
w\left(T_{j}^{\prime \prime}\right) \geq \frac{K-3}{2}-(h-2) \tag{7}
\end{equation*}
$$

Otherwise $\left(w\left(T_{j}^{\prime \prime}\right)<\frac{K-3}{2}-(h-2)\right.$), we have $w\left(T_{j}^{\prime \prime}\right) \leq$ $\frac{K-3}{2}-(h-2)-1=\frac{K-3}{2}-(h-1)$. We then can add another path $P_{k^{\prime}}$ of a node $v_{k^{\prime}}$ in $\left(D^{\prime} \backslash\left\{v_{i}\right\}\right) \cap g_{2}$, such that the number of edges in $T_{j}^{\prime \prime}$ is at most $\frac{K-3}{2}-(h-1)+\left|E\left(P_{k^{\prime}}\right)\right| \leq \frac{K-3}{2}$,

- nodes in T^{*} ○ nodes in D^{\prime} ○ nodes not in T^{*} or D^{\prime}
- edges in T^{*}
----- edges in the (K-1) paths
(a) Case (i): the number of edges in the subtrees of group g_{1} i.e., 6 , is no less than $\frac{K-3}{2}-n_{1}^{*}-(h-2)=3$, where $K=17, n_{1}^{*}=\left|E\left(g_{1} \cap T^{*}\right)\right|=3$, and $h=3$

- nodes in T^{*} ○ nodes in $D^{\prime} \circ$ nodes not in T^{*} or D^{\prime}
-_edges in $T^{*} \quad----$ edges in the $(K-1)$ paths
(c) The residual tree of T after the tree decomposition in Case (ii), and the edge (u_{5}, u_{6}) in $g_{2} \cap T^{*}$ is not removed

Fig. 4. The execution illustrations of the tree decomposition procedure.
as the number of edges in $P_{k^{\prime}}$ is no more than $h-1$. This however contradicts the construction of tree $T_{j}^{\prime \prime}$.

It can be seen that the set of edges removed from T after decomposing subtree $T_{j}^{\prime \prime}$ by Case (ii) is $E\left(T_{j}^{\prime \prime}\right) \backslash E\left(g_{2} \cap T^{*}\right)$, since the edges in $E\left(g_{2} \cap T^{*}\right)$ are not removed from T in the tree decomposition, see Fig. 4(b) and Fig. 4(c). We then have

$$
\begin{align*}
w\left(T_{j}^{\prime \prime} \backslash T\right) & =w\left(T_{j}^{\prime \prime}\right)-\left|E\left(g_{2} \cap T^{*}\right)\right| \\
& \geq \frac{K-3}{2}-(h-2)-\left|E\left(g_{2} \cap T^{*}\right)\right| \text {, by Ineq. (7) } \\
& =\frac{K-3}{2}-n_{2}^{*}-(h-2), \text { as } n_{2}^{*}=\left|E\left(g_{2} \cap T^{*}\right)\right| \\
& \geq \frac{K-3}{2}-n_{1}^{*}-(h-2), \text { as } n_{1}^{*} \geq n_{2}^{*} \tag{8}
\end{align*}
$$

Combining Ineq. (6) and Ineq. (8), Ineq. (5) holds.
Since there are $(K-1) h$ edges in tree T initially, the number of edges removed from T after decomposing the first x subtrees is no greater than $(K-1) h$. We thus have
$(K-1) h \geq \sum_{j=1}^{x} w\left(T_{j}^{\prime \prime} \backslash T\right)$

\bullet nodes in T^{*} o nodes in D^{\prime} o nodes not in T^{*} or D^{\prime}

- edges in T^{*}

$$
\text { edges in the }(K-1) \text { paths }
$$

(b) Case (ii): the number of edges in the subtrees of any group g_{j}, i.e., 4 , is no more than $\frac{K-3}{2}-n_{j}^{*}-(h-2)=5$, where $K=17, n_{j}^{*}=\left|E\left(g_{j} \cap T^{*}\right)\right|=1$ with $1 \leq j \leq 2$, and $h=3$

\bullet nodes in $T^{*} \quad$ onodes in D^{\prime}

- nodes not in T^{*} or D^{\prime}
_- edges in $T^{*} \quad----$ edges in the $(K-1)$ paths
(d) The obtained 7 subtrees after the tree decomposition, where $7 \leq 2 h+3=9$, and the number of edges in each subtree is no greater than $\frac{K-3}{2}=7$

$$
\begin{align*}
& =\sum_{j=1}^{x}\left(\frac{K-3}{2}-n_{j}^{*}-(h-2)\right), \text { by Ineq. } \\
& =\left(\frac{K-1}{2}-(h-1)\right) \cdot x-\sum_{j=1}^{x} n_{j}^{*} \\
& \geq\left(\frac{K-1}{2}-(h-1)\right) \cdot x-(K-1), \text { by Ineq. } \tag{4}
\end{align*}
$$

Then,

$$
\begin{aligned}
2(h+1) & \geq\left(1-\frac{2(h-1)}{K-1}\right) \cdot x \\
& \geq\left(1-\frac{2(h-1)}{(2 h+3)^{2}-1}\right) \cdot x
\end{aligned}
$$

$$
\begin{equation*}
\text { by the assumption that } \sqrt{K} \geq 2 h+3 \tag{10}
\end{equation*}
$$

By re-arranging Ineq. (10), we have

$$
\begin{equation*}
x \leq 2 h+3-\frac{5 h+7}{2 h^{2}+5 h+5} . \tag{11}
\end{equation*}
$$

Since x is an integer, we have

$$
\begin{equation*}
x \leq 2 h+2 \tag{12}
\end{equation*}
$$

Then, the number of subtrees in \mathcal{T} is $x+1 \leq 2 h+3$. For example, Fig. 4(d) shows that seven subtrees are obtained after the tree decomposition of tree $T,|\mathcal{T}|=7 \leq 2 h+3=9$, and the number of edges of each subtree is no more than $\frac{K-3}{2}=7$. The lemma then follows.

C. Analysis of the Approximation Ratio

Lemma 5: Given node $v_{i} \in L_{0}$ with the maximum profit, assign profits to nodes in G with profit function $p_{i}: V \mapsto \mathbb{Z} \geq 0$. Then, the 2-approximation algorithm for the QST problem in [12] and [16] can find a tree in G with no more than K nodes such that the profit sum of nodes in the tree is no less than a quota q if $q \leq\left\lceil\frac{1-1 / e}{2 h+3} \cdot O P T\right\rceil$. Equivalently, if the algorithm in [12] and [16] delivers a tree with more than K nodes, then the quota q is larger than $\left\lceil\frac{1-1 / e}{2 h+3} \cdot O P T\right\rceil$.

Proof: Following Lemma 4, there is a tree T^{\prime} in G with no more than $\frac{K}{2}$ nodes such that the profit sum of nodes in T^{\prime} is no less than $\left\lceil\frac{1-1 / e}{2 h+3} \cdot O P T\right\rceil$, as the profit sum is an integer. Therefore, tree T^{\prime} is a feasible solution to the QST problem when the quota $q \leq\left\lceil\frac{1-1 / e}{2 h+3} \cdot O P T\right\rceil$. Then, the optimal solution to the QST problem with a quota q contains no more than $\frac{K}{2}$ nodes. We thus conclude that the tree delivered by the 2-approximation algorithm for the QST problem [12], [16] contains no more than $2 \cdot \frac{K}{2}=K$ nodes. The lemma then follows.

We finally analyze the approximation ratio of the proposed approximation algorithm by the following theorem.

Theorem 1: Given an undirected, connected graph $G=$ (V, E), an h-hop independently submodular function f : $2^{V} \mapsto \mathbb{Z}^{\geq 0}$, and a positive integer K with $K \leq|V|$, Then, there is an approximation algorithm, Algorithm 2, for the h-hop independently submodular maximization problem, which delivers a $\frac{1-1 / e}{2 h+3}$-approximate solution, where h is a given positive integer with $h \geq 2$, and e is the base of the natural logarithm. In addition, the time complexity of the algorithm is $O\left(n^{3} T_{c}(f(V))+n^{4} \log n \log f(V)\right)$, where $n=|V|, T_{c}(f(V))$ is the time for computing the value of $f(V)$.

Proof: Consider node $v_{i} \in L_{0}$ in the optimal solution with the maximum profit, and a profit function $p_{i}: V \mapsto \mathbb{Z} \geq 0$. It can be seen that $u b=l b+1$ when Algorithm 2 terminates, where $u b$ and $l b$ are the upper and lower bounds on the value of $\left\lceil\frac{1-1 / e}{2 h+3} \cdot O P T\right\rceil$. Also, the algorithm in [12] and [16]for the QST problem delivers a tree with no more than K nodes when the quota $q=l b$, while it delivers a tree more than K nodes when the quota $q=u b$. Then, $u b>\left\lceil\frac{1-1 / e}{2 h+3} \cdot O P T\right\rceil$ by Lemma 5. We thus have $u b \geq\left\lceil\frac{1-1 / e}{2 h+3} \cdot O P T\right\rceil+1$, due to that the value of $u b$ is an integer. Therefore, $l b \geq\left\lceil\frac{1-1 / e}{2 h+3} \cdot O P T\right\rceil \geq$ $\frac{1-1 / e}{2 h+3} \cdot O P T$. That is, the tree delivered by the algorithm for the QST problem with quota $q=l b\left(\geq \frac{1-1 / e}{2 h+3} \cdot O P T\right)$ in [12] and [16] contains no more than K nodes. Therefore, the approximation ratio of Algorithm 2 is $\frac{1-1 / e}{2 h+3}$.

The time complexity analysis of Algorithm 2 is contained in Section 3 of the supplementary file.

V. Application of the h-Hop Independently Submodular Maximization Problem IN UAV NETworks

In this section, we show that the proposed algorithm for the h-hop independently submodular maximization problem is applicable to solve optimization problems by providing improved solutions to these problems. Particularly, we study its application for the MCCP problem, and show that the proposed algorithm delivers an improved $\frac{1-1 / e}{11}$-approximate solution to the problem.

We first briefly describe the application scenario of the MCCP problem [43]. Assume that there are m ground users to be served in a disaster area. Denote by L and W the length and width of the area, respectively. We need to deploy a given number of K UAVs to serve the m users.

Assume that the K UAVs hover at the same altitude $H_{\text {uav }}$, which is the optimal altitude for the maximum coverage from the sky [1], [43], e.g., $H_{u a v}=300 \mathrm{~m}$. Denote by R the communication range between any two UAVs at altitude $H_{\text {uav }}$. Also, denote by r^{\prime} the communication range between a ground user and a UAV at altitude $H_{\text {uav }}$. Notice that r^{\prime} is no greater than R [15]. Let $r=\sqrt{r^{\prime 2}-H_{u a v}^{2}}$. Assume that a UAV hovers at a location with its coordinate $\left(x_{i}, y_{i}, H_{\text {uav }}\right)$. Then, it can be seen that the coverage of the UAV is a disk that centers at location $\left(x_{i}, y_{i}, 0\right)$ with radius r, i.e., the set of points with coordinates $(x, y, 0)$ such that $\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2} \leq r^{2}$. Thus, the users in the disk can communicate with the UAV directly. Let $\alpha=\frac{r}{R}$. Then, $0<\alpha \leq 1$, as $r \leq r^{\prime} \leq R$.

The set V of potential UAV hovering locations are constructed as follows. The plane at altitude $H_{u a v}$ is divided into equal size squares with a given side length δ, where $0<\delta \leq R$, and R is the communication range of UAVs, assuming that R is divisible by δ, e.g., $\delta=\frac{R}{2}$. Also, assume that both the length L and width W of the disaster area are divisible by δ. Thus, the plane is divided into $n=\frac{L}{\delta} \times \frac{W}{\delta}$ grids. Denote by $v_{1}, v_{2}, \ldots, v_{n}$ the center locations of the n grids. The set of the potential UAV placement locations is $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Denote by $d\left(v_{i}, v_{j}\right)$ the Euclidean distance between two locations v_{i} and v_{j} in V. A graph $G=(V, E)$ then is constructed, where there is an edge $\left(v_{i}, v_{j}\right)$ in E between two locations v_{i} and v_{j} in V if their Euclidean distance $d\left(v_{i}, v_{j}\right)$ is no greater than the communication range R, i.e., $E=\left\{\left(v_{i}, v_{j}\right) \mid v_{i}, v_{j} \in V, i \neq j, d\left(v_{i}, v_{j}\right) \leq R\right\}$. Given K UAVs, recall that the maximum connected coverage problem in G is to find a set S of K hovering locations in G for placing the K UAVs such that the number of ground users served by the K placed UAVs is maximized, subject to the constraint that the induced subgraph $G[S]$ by the nodes in S is connected.

Yu et al. [39], [40] recently proposed a $\frac{1-1 / e}{8\left(\left\lceil\frac{4}{\sqrt{3}} \alpha\right\rceil+1\right)^{2}}$ approximation algorithm for the problem, where $\alpha=\frac{r}{R}$. It can be seen that the approximation ratio is between $\frac{1-1 / e}{128}$ and $\frac{1-1 / e}{32}$, as $0<\alpha \leq 1$.

We show that the proposed algorithm in Section III for the h-hop independently submodular maximization problem can deliver a $\frac{1-1 / e}{2 h(\alpha)+3}$-approximate solution to the maximum connected coverage problem, where the value $h(\alpha)$ is determined by the value of α and $\alpha=\frac{r}{R}$, see Eq. (1) in Section II-D.

For a subset S of V, denote by $f(S)$ the number of users served by the UAVs placed at locations in S. We show that function $f(S)$ is $h(\alpha)$-hop independently submodular by the following lemma.

Lemma 6: Function f is $h(\alpha)$-hop independently submodular, where the value of $h(\alpha)$ is defined in Eq. (1), and α is a given constant with $0<\alpha \leq 1$.

Proof: The proof is contained in Section 4 of the supplementary file.

VI. Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm through experimental simulations. We also study the impact of important parameters on the algorithm performance, including the number m of to-be-served users, the number K of UAVs, the communication range R between two UAVs, and the communication range r of a ground user.

A. Experimental Environment Settings

We consider an application of the problem for deploying a connected UAV network to serve ground users in a disaster area. Consider a disaster area of $3 \times 3 \mathrm{~km}^{2}$ square [43], in which 500 to 3,000 users are located, where the human density follows the fat-tailed distribution, i.e., many people are located at a small portion of places while a few people are located at other places [28]. The number of deployed UAVs K varies from 10 to 50 . Then, the approximation ratio of the proposed algorithm is $\frac{1-1 / e}{11}$, where e is the base of the natural logarithm. We assume that each UAV hovers at altitude $H_{\text {uav }}=300 \mathrm{~m}$ [1]. The communication range R between any two UAVs is 600 m , while the communication range r^{\prime} between a user and a UAV is $500 m$ [43]. Then, $r=$ $\sqrt{{r^{\prime}}^{2}-H_{u a v}^{2}}=400 m, \alpha=\frac{r}{R}=\frac{400}{600}=\frac{2}{3}<\frac{\sqrt{2}}{2}$. Following Eq. (1) in Section II-D, $h(\alpha)=3$. Therefore, the maximum connected coverage problem for deploying a UAV network is an $h(\alpha)$-hop independently submodular maximization problem by Lemma 6 in Section V, and the proposed algorithm now delivers a $\frac{1-1 / e}{2 h(\alpha)+3}\left(=\frac{1-1 / e}{9}\right)$ approximate solution.

To evaluate the performance of the proposed algorithm ApproAlg for the maximum connected coverage problem, we adopt the following three benchmarks. (i) Algorithm MotionCtrl [43] finds a distributed motion control solution for deploying K UAVs to cover as many as users while maintaining the connectivity of the UAVs. (ii) Algorithm MCS [35] delivers a $\frac{1-1 / e}{\sqrt{K}}$-approximate solution to the problem of deploying K UAVs in a disaster area, such that a submodular function of the deployed UAVs is maximized, subject to the connectivity constraint that the subnetwork induced by the K UAVs is connected. (iii) Algorithm GreedyLabel [18] first assigns profits for deploying a UAV at different hovering locations in a greedy way, followed by identifying a connected

Fig. 5. The performance of different algorithms by varying the number m of to-be-served users from 500 to 3,000 , when there are $K=30$ UAVs.
subgraph with no more than K nodes such that the profit sum of nodes in the subgraph is maximized. All experiments were performed on a server with an $\operatorname{Intel}(\mathrm{R})$ Core(TM) i9-9900K CPU (3.6 GHz) and 32 GB RAM.

B. Algorithm Performance

We first study the algorithm performance by varying the number m of users from 500 to 3,000 , when there are $K(=30)$ UAVs. Fig. 5(a) shows that the number of users served by algorithm ApproAlg is about from 8.5% to 12.5% higher than those by algorithms MotionCtrl, MCS, and GreedyLabel. For example, the numbers of users served by the four algorithms ApproAlg, MotionCtrl, MCS, and GreedyLabel are $2,600,1,670,2,395$, and 1,800 , respectively when there are 3,000 users in the disaster area. Fig. 5 demonstrates that more users are served by each of the four algorithms, with the increase on the number m of users. On the other hand, Fig. 5(b) plots the running times of the mentioned four algorithms, from which it can be seen that the running time of algorithm ApproAlg is about five seconds, much longer than those of other three algorithms. It must be mentioned such a short delay about a few seconds by algorithm ApproAlg is acceptable in a real UAV network, as up to

Fig. 6. The performance of different algorithms by increasing the number K of UAVs from 10 to 50 , when there are $m=3,000$ to-be-served users.
12.5% more users are served in the solution delivered by the algorithm. In the following, we do not compare the running times of the four mentioned algorithms, since their algorithm performance curves are similar to the one in Fig. 5(b) and the running time of algorithm ApproAlg is no greater than 15 seconds in the following groups of experiments.

We conduct an extra group of ablation experiment. Notice that there are two major differences between the proposed algorithm ApproAlg and algorithm GreedyLabel in [18]. The first one is that, unlike the algorithm in [18] that assigns profits to nodes in one way only, we assign profits to nodes in multiple ways. We use GreedyLabel+multiAssign to represent the algorithm that combines the algorithm in [18] and the multiple ways of node profit assignments in this paper. The second difference is that we propose a new tree decomposition technique. We use GreedyLabel+newTreeDecomp to represent the algorithm that combines the algorithm in [18] and the new tree decomposition technique in this paper. Fig. 5(a) shows that the number of users served by algorithm GreedyLabel+newTreeDecomp is much larger than that by algorithm GreedyLabel+multiAssign, which indicates that the performance improvement of the proposed algorithm ApproAlg is mainly contributed by the proposed new tree decomposition technique. On the other hand, the running time of the proposed algorithm ApproAlg is mainly prolonged by the multiple ways of node profit assignments, see Fig. 5(b).

We then investigate the performance of different algorithms by increasing the number K of UAVs from 10 to 50 , when there are $m=3,000$ users. Fig. 6 plots that the number of users served by each algorithm increases with more UAVs. In addition, the deployed UAVs by algorithm ApproAlg serve $97 \%\left(\approx \frac{2,915}{3,000}\right)$ of users when there are $K=40 \mathrm{UAV}$, while the deployed UAVs by the other three algorithms serve no more than $88 \%\left(\approx \frac{2,633}{3,000}\right)$ of users.

We also study the performance of different algorithms by varying the communication range R between two UAVs from 500 m to $1,000 \mathrm{~m}$ while fixing the communication range r^{\prime} of a user at 500 m , when $m=3,000, K=30$. Recall that $r=\sqrt{r^{\prime 2}-H_{u a v}^{2}}$ and $\alpha=\frac{r}{R}$, where $H_{u a v}=$ 300 m . It can be seen that the value of α decreases from

Fig. 7. The performance of different algorithms by varying the communication range R between two UAVs from 500 m to $1,000 \mathrm{~m}$ while fixing $r^{\prime}=500 \mathrm{~m}$, when $m=3,000$ users and $K=30$ UAVs.
0.8 to 0.4 when R grows from 500 m to $1,000 \mathrm{~m}$. Then, following Eq. (1), the value of $h(\alpha)$ decreases from 4 to 2 . Fig. 7 illustrates that the number of users served by each of the four algorithms ApproAlg, MotionCtrl, MCS, and GreedyLabel increases with the growth of the communication range R between two UAVs. The rationale behind the phenomenon is that less numbers of relaying UAVs are needed when the communication range R is larger, and more UAVs thus can be used to serve the users. Fig. 7 also plots the difference between the numbers of users served by algorithms ApproAlg, MotionCtrl, MCS, and GreedyLabel. For example, the number of users served by algorithm ApproAlg is about 20% larger than the one by algorithm MCS when the communication range R between two UAVs is 500 m , while the number by algorithm ApproAlg is only about 2.2% larger than the one by algorithm MCS when $R=1,000 \mathrm{~m}$.

We finally evaluate the performance of different algorithms by varying the communication range r^{\prime} between a user and a UAV from 400 m to 600 m while fixing the communication range R between two UAVs at 600 m , when $m=3,000$ users and $K=30$ UAVs. Recall that $r=\sqrt{r^{\prime 2}-H_{u a v}^{2}}$ and $\alpha=\frac{r}{R}$, where $H_{u a v}=300 \mathrm{~m}$. It can be seen that the value of α increases from 0.44 to 0.87 when r^{\prime} grows from 400 m to 600 m . Then, following Eq. (1) in Section II-D, the value of $h(\alpha)$ increases from 2 to 4 . Fig. 8 shows that the number of users served by each of the four algorithms ApproAlg, MotionCtrl, MCS, and GreedyLabel increases with the growth of the communication range r^{\prime} between a UAV and a user, since more users will be served by deployed UAVs. In addition, Fig. 8 indicates that the number of users served by algorithm ApproAlg is about 8% larger than those by the other three algorithms.

VII. Related Work

The use of UAVs as aerial base stations (BS) recently has gained lots of attentions in public communications. For example, Zhao et al. [43] presented a motion control algorithm for deploying a given number K of UAVs to cover as many

Fig. 8. The performance of different algorithms by varying the communication range r^{\prime} of a user from 400 m to 600 m while fixing $R=600 \mathrm{~m}$, when $m=3,000$ users and $K=30$ UAVs.
as users while maintaining the connectivity among UAVs. Liu et al. [23] considered the similar problem and proposed a deep reinforcement learning (DRL) based algorithm. Yang et al. [38] investigated the problem of scheduling the movement of multiple UAVs to fairly provide communication services to mobile ground users for a given period, by using the DRL method, too. Shi et al. [27] studied the problem of planning the flying trajectories of multiple UAVs for a period such that the average UAV-to-user pathloss in the network is minimized, assuming that a user can be served by only a single UAV during the period. They decoupled the problem into multiple subproblems, and solved the subproblems separately.

There are several studies on the special cases of the h-hop independently submodular maximization problem, subject to the connectivity constraint that the induced subgraph of G by a subset of nodes in V is connected. For example, Khuller et al. [17], [18] devised a $\frac{1-1 / e}{12}$-approximation algorithm for the budgeted connected dominating set (BCDS) problem, which is to find a set S of K nodes in a graph G such that the number of nodes dominated by the nodes in S is maximized, subject to the constraint that the induced subgraph $G[S]$ is connected. Notice that the objective function of the BCDS problem is 3-hop independently submodular with $h=3$. Lamprou et al. [21] recently proposed an improved algorithm. They adopted the similar profit assignment procedure and tree decomposition technique as those in [17] and [18], and obtained an improved solution by decomposing a tree with a different size. They improved the approximation ratio from $\frac{1-1 / e}{12}(\approx 0.05267)$ to $\frac{1-e^{-\frac{7}{8}}}{11}(\approx 0.05301)$, which is still much smaller than the approximation ratio $\frac{1-1 / e}{2 h+3}$ ($=\frac{1-1 / e}{9} \approx 0.0702$) of the proposed algorithm in this paper when $h=3$. Huang et al. [15] proposed a $\frac{1-1 / e}{8(\lceil 2 \sqrt{2} \alpha\rceil+1)^{2}}$ approximation algorithm for the maximum connected coverage problem with $h=4$. where $\alpha=\frac{r}{R}, r$ and R are the sensing range and communication range of a sensor respectively, and $0<r \leq R$. It can be seen that $\frac{1-1 / e}{128} \leq \frac{1-1 / e}{8([2 \sqrt{2} \alpha]+1)^{2}} \leq$ $\frac{1-1 / e}{32}$, as $0<\alpha \leq 1$. Yu et al. [39], [40] recently improved
the approximation ratio to $\frac{1-1 / e}{8\left(\left\lceil\frac{4}{\sqrt{3}} \alpha\right\rceil+1\right)^{2}}$, where $\frac{1-1 / e}{128} \leq$ $\frac{1-1 / e}{8\left(\left\lceil\frac{4}{\sqrt{3}} \alpha\right\rceil+1\right)^{2}} \leq \frac{1-1 / e}{32}$. It can be seen that both approximation ratios in [15], [39], and [40] are no greater than $\frac{1-1 / e}{32}$.

There are other investigations on maximizing the values of other submodular functions, not h-hop independently submodular functions, subject to connectivity constraints. For example, Kuo et al. [20] considered the problem of deploying K wireless routers in a wireless network such that a submodular function of the deployed K routers is maximized, subject to the constraint that the subnetwork induced by the K routers is connected, for which they proposed a $\frac{1-1 / e}{5(\sqrt{K}+1)}$-approximation algorithm, where e is the base of the natural logarithm.

There are flourishing studies on maximizing the value of a submodular function without connectivity constraints. For monotone submodular functions, Nemhauser et al. [26] considered a problem of choosing K elements from a set such that a submodular function of the chosen K elements is maximized. They devised a ($1-1 / e$)-approximation algorithm for the problem and showed that the result is tight. They also extended their result to the submodular function maximization problem under the constraint of the intersection of M matroids, and proposed a $\frac{1}{M+1}$-approximation algorithm [11], and this approximation ratio later is further improved to $\frac{1}{M+\epsilon}$ by Lee et al. [22] when $M \geq 2$, where ϵ is a given constant with $0<\epsilon \leq 1$. Calinescu et al. [7] and Filmus et al. [10] proposed a randomized $(1-1 / e)$-approximation algorithm for maximizing a submodular problem under a matroid constraint, respectively, while Buchbinder devised a deterministic (1/2+ $)$-approximation algorithm [4], [5]. Sviridenko [29] proposed a ($1-1 / e$)-approximation algorithm for maximizing a submodular function subject to a linear constraint, while Kulik et al. [19] extended to the solution to multiple linear constraints by giving a $(1-1 / e-\epsilon)$-approximation algorithm.

A. Technical Novelties

We are motivated by the study in [18]. There are two essentially technical differences between our work and the work in [18]. The first one is that, unlike the algorithm in [18] that assigns profits to nodes in one way only, we assign profits to nodes in multiple ways. We show that there is a tree T in G with the profit sum of nodes in T being no less than $(1-1 / e) O P T$ among one of the multiple profit assignments, and the number of edges in T is no greater than $(K-1) h$, which is less than the number $(K h-1)$ in [18] when $h \geq 2$.

The second one is that the traditional tree decomposition technique adopted in [18] decomposes a tree T with $(K-1) h$ edges into $4 h$ subtrees so that the number of nodes in each subtree is no more than $\frac{K}{2}$. We here propose a novel tree decomposition technique that decomposes a tree T with ($K-$ 1) h edges into $2 h+3$ subtrees, such that the number of nodes in each subtree is no more than $\frac{K}{2}$, by exploring important structure properties of the tree T. Note that $2 h+3<4 h$ for any integer h if $h \geq 2$. By utilizing the proposed tree decomposition technique, we devise a novel approximation algorithm for the h-hop independently submodular maximization problem, and its approximation ratio is $\frac{1-1 / e}{2 h+3}$ when $h \geq 2$.

VIII. Conclusion

In this paper, we studied the novel h-hop independently submodular maximization problem, which generalizes many optimization problems arisen in different domains, such as the MCCP problem of deploying a connected UAV network to serve as many users as possible. We then devised a $\frac{1-1 / e}{2 h+3}$. approximation algorithm for the problem, where e is the base of the natural logarithm. The proposed algorithm has many potential applications, and one direct corollary from this result is a $\frac{1-1 / e}{11}$-approximate solution to the MCCP problem when $h=4$, which significantly improves its currently best $\frac{1-1 / e}{32}$. approximate solution [40].

REFERENCES

[1] A. Al-Hourani, S. Kandeepan, and S. Lardner, "Optimal LAP altitude for maximum coverage," IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 569-572, Dec. 2014.
[2] K. Avrachenkov, P. Basu, G. Neglia, B. Ribeiro, and D. Towsley, "Online myopic network covering," 2012, arXiv:1212.5035.
[3] I. Bor-Yaliniz and H. Yanikomeroglu, "The new frontier in RAN heterogeneity: Multi-tier drone-cells," IEEE Commun. Mag., vol. 54, no. 11, pp. 48-55, Nov. 2016.
[4] N. Buchbinder and M. Feldman, "Deterministic algorithms for submodular maximization problems," ACM Trans. Algorithms, vol. 14, no. 3, p. 32, 2018.
[5] N. Buchbinder, M. Feldman, and M. Garg, "Deterministic $(1 / 2+\epsilon)$ approximation for submodular maximization over a matroid," in Proc. 30th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), 2019, pp. 241-254.
[6] N. Buchbinder, M. Feldman, J. Seffi, and R. Schwartz, "A tight linear time (1/2)-approximation for unconstrained submodular maximization," SIAM J. Comput., vol. 44, no. 5, pp. 1384-1402, Jan. 2015.
[7] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, "Maximizing a submodular set function subject to a matroid constraint (extended abstract)," in Proc. Int. Conf. Integer Program. Combinat. Optim. (IPCO), 2007, pp. 182-196.
[8] S. Chandrasekharan et al., "Designing and implementing future aerial communication networks," IEEE Commun. Mag., vol. 54, no. 5, pp. 26-34, May 2016.
[9] L. Deng et al., "Approximation algorithms for min-max cycle cover problems with neighborhoods," IEEE/ACM Trans. Netw., vol. 28, no. 4, pp. 1845-1858, Aug. 2020.
[10] Y. Filmus and J. Ward, "A tight combinatorial algorithm for submodular maximization subject to a matroid constraint," in Proc. IEEE 53rd Annu. Symp. Found. Comput. Sci., Oct. 2012, pp. 659-668.
[11] M. L. Fisher, G. L. Nemhausert, and L. A. Wolsey, "An analysis of the approximations for maximizing submodular set functions-II," Math. Program. Study, vol. 8, pp. 73-87, Jan. 1978.
[12] N. Garg, "Saving an epsilon: A 2-approximation for the k-MST problem in graphs," in Proc. 37th Anuu. ACM Symp. Theory Comput. (STOC), 2005, pp. 396-402.
[13] J. Gong, T.-H. Chang, C. Shen, and X. Chen, "Flight time minimization of UAV for data collection over wireless sensor networks," IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1942-1954, Sep. 2018.
[14] Q. Guo et al., "Minimizing the longest tour time among a fleet of UAVs for disaster area surveillance," IEEE Trans. Mobile Comput., vol. 21, no. 7, pp. 2451-2465, Jul. 2022.
[15] L. Huang, J. Li, and Q. Shi, "Approximation algorithms for the connected sensor cover problem," in Proc. 21st Int. Conf. Comput. Combinatorics (COCOON), 2015, pp. 183-196.
[16] D. S. Johnson, M. Minkoff, and S. Phillips, "The prize collecting Steiner tree problem: Theory and practice," in Proc. 11th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), 2000, pp. 760-769.
[17] S. Khuller, M. Purohit, and K. K. Sarpatwar, "Analyzing the optimal neighborhood: Algorithms for budgeted and partial connected dominating set problems," in Proc. 25th Annu. ACM-SIAM Symp. Discrete Algorithms, Jan. 2014, pp. 1702-1713.
[18] S. Khuller, M. Purohit, and K. K. Sarpatwar, "Analyzing the optimal neighborhood: Algorithms for partial and budgeted connected dominating set problems," SIAM J. Discrete Math., vol. 34, no. 1, pp. 251-270, Jan. 2020.
[19] A. Kulik, H. Shachnai, and T. Tamir, "Maximizing submodular set functions subject to multiple linear constraints," in Proc. 20th Annu. ACM-SIAM Symp. Discrete Algorithms, Jan. 2009, pp. 545-554.
[20] T.-W. Kuo, K. C.-J. Lin, and M.-J. Tsai, "Maximizing submodular set function with connectivity constraint: Theory and application to networks," IEEE/ACM Trans. Netw., vol. 23, no. 2, pp. 533-546, Apr. 2015.
[21] I. Lamprou, I. Sigalas, and V. Zissimopoulos, "Improved budgeted connected domination and budgeted edge-vertex domination," Theor. Comput. Sci., vol. 858, pp. 1-12, Feb. 2021.
[22] J. Lee, M. Sviridenko, and J. Vondrák, "Submodular maximization over multiple matroids via generalized exchange properties," in Proc. 12th Int. Workshop Approximation Algorithms Combinat. Optim., 13th Int. Workshop Randomization Approximation Tech. Comput. Sci. (APPROXRANDOM), 2009, pp. 244-257.
[23] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, "Energy-efficient UAV control for effective and fair communication coverage: A deep reinforcement learning approach," IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 2059-2070, Sep. 2018.
[24] Y. Liu and W. Liang, "Approximate coverage in wireless sensor networks," in Proc. 30th Annu. IEEE Conf. Local Comput. Netw. (LCN), Nov. 2005, pp. 68-75.
[25] M. Moradi, K. Sundaresan, E. Chai, S. Rangarajan, and Z. M. Mao, "SkyCore: Moving core to the edge for untethered and reliable UAVbased LTE networks," in Proc. 24th Annu. Int. Conf. Mobile Comput. Netw., Oct. 2018, pp. 35-49.
[26] G. Nemhauser and L. A. Wolsey, "An analysis of the approximations for maximizing submodular set functions-I," Math. Program., vol. 14, no. 1, pp. 265-294, 1978.
[27] W. Shi et al., "Multi-drone 3-D trajectory planning and scheduling in drone-assisted radio access networks," IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 8145-8158, Aug. 2019.
[28] C. Song, T. Koren, P. Wang, and A.-L. Barabási, "Modelling the scaling properties of human mobility," Nature Phys., vol. 6, no. 10, pp. 818-823, Sep. 2010.
[29] M. Sviridenko, "A note on maximizing a submodular set function subject to a knapsack constraint," Oper. Res. Lett., vol. 32, no. 1, pp. 41-43, 2004.
[30] W. Xu, T. Li, W. Liang, J. X. Yu, N. Yang, and S. Gao, "Identifying structural hole spanners to maximally block information propagation," Inf. Sci., vol. 505, pp. 100-126, Dec. 2019.
[31] W. Xu, W. Liang, and X. Lin, "Approximation algorithms for minmax cycle cover problems," IEEE Trans. Comput., vol. 64, no. 3, pp. 600-613, Mar. 2015.
[32] W. Xu, W. Liang, X. Lin, and J. X. Yu, "Finding top- k influential users in social networks under the structural diversity model," Inf. Sci., vols. 355-356, pp. 110-126, Aug. 2016.
[33] W. Xu et al., "Approximation algorithms for the generalized team orienteering problem and its applications," IEEE/ACM Trans. Netw., vol. 29, no. 1, pp. 176-189, Feb. 2021.
[34] W. Xu, M. Rezvani, W. Liang, J. X. Yu, and C. Liu, "Efficient algorithms for the identification of top- k structural hole spanners in large social networks," IEEE Trans. Knowl. Data Eng., vol. 29, no. 5, pp. 1017-1030, May 2017.
[35] W. Xu et al., "Throughput maximization of UAV networks," IEEE/ACM Trans. Netw., vol. 30, no. 2, pp. 881-895, Apr. 2022.
[36] W. Xu et al., "Minimizing the deployment cost of UAVs for delaysensitive data collection in IoT networks," IEEE/ACM Trans. Netw., vol. 30, no. 2, pp. 812-825, Apr. 2022.
[37] W. Xu et al., "Approximation algorithms for the team orienteering problem," in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), Jul. 2020, pp. 1389-1398.
[38] P. Yang, X. Cao, X. Xi, W. Du, Z. Xiao, and D. Wu, "Threedimensional continuous movement control of drone cells for energyefficient communication coverage," IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6535-6546, Jul. 2019.
[39] N. Yu, H. Dai, A. X. Liu, and B. Tian, "Placement of connected wireless chargers," in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), Apr. 2018, pp. 387-395.
[40] N. Yu, H. Dai, G. Chen, A. X. Liu, B. Tian, and T. He, "Connectivityconstrained placement of wireless chargers," IEEE Trans. Mobile Comput., vol. 20, no. 3, pp. 909-927, Mar. 2021.
[41] Y. Zeng and R. Zhang, "Energy-efficient UAV communication with trajectory optimization," IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3747-3760, Jun. 2017.
[42] J. Zhang et al., "Minimizing the number of deployed UAVs for delaybounded data collection of IoT devices," in Proc. 40th IEEE Int. Conf. Comput. Commun. (INFOCOM), May 2021, pp. 1-10.
[43] H. Zhao, H. Wang, W. Wu, and J. Wei, "Deployment algorithms for UAV airborne networks toward on-demand coverage," IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 2015-2031, Sep. 2018.

Wenzheng Xu (Member, IEEE) received the B.Sc., M.E., and Ph.D. degrees in computer science from Sun Yat-sen University, Guangzhou, China, in 2008, 2010, and 2015, respectively. He is currently an Associate Professor at Sichuan University. Also, he was a Visitor at The Australian National University and The Chinese University of Hong Kong. His research interests include wireless ad-hoc and sensor networks, UAV networks, mobile computing, approximation algorithms, combinatorial optimization, online social networks, and graph theory.

Hongbin Xie received the B.Sc. degree in computational finance from Sichuan University, China, in 2020, where she is currently pursuing the master's degree with the College of Computer Science. Her current research interests include UAV scheduling and networking.

Chenxi Wang received the B.E. degree in the Internet of Things from Sichuan Agricultural University, China, in 2021,where he is currently pursuing the master's degree with the College of Computer Science. His current research interests include UAV scheduling and networking.

Weifa Liang (Senior Member, IEEE) received the B.Sc. degree in computer science from Wuhan University, China, in 1984, the M.E. degree in computer science from the University of Science and Technology of China in 1989, and the Ph.D. degree in computer science from the Australian National University in 1998. He is currently a Professor with the Department of Computer Science, City University of Hong Kong. Prior to the current position, he was a Professor at The Australian National University. His research interests include design and analysis of energy efficient routing protocols for wireless $a d-h o c$ and sensor networks, the Internet of Things, edge and cloud computing, network function virtualization, and software-defined networking, design and analysis of parallel and distributed algorithms, approximation algorithms, combinatorial optimization, and graph theory. He serves as an Associate Editor for the IEEE Transactions on Communications.

Xiaohua Jia (Fellow, IEEE) received the B.Sc. and M.Eng. degrees from the University of Science and Technology of China in 1984 and 1987, respectively, and the D.Sc. degree in information science from The University of Tokyo in 1991. He is currently a Chair Professor with the Department of Computer Science, City University of Hong Kong. His research interests include cloud computing and distributed systems, computer networks, wireless sensor networks, and mobile wireless networks. He is an Editor of IEEE Transactions on Parallel and Distributed Systems (2006-2009), Journal of World Wide Web, Wireless Networks, and Journal of Combinatorial Optimization. He is the General Chair of ACM MobiHoc 2008, the TPC Co-Chair of IEEE MASS 2009, the Area-Chair of IEEE INFOCOM 2010, the TPC Co-Chair of IEEE GlobeCom 2010, and the Panel Co-Chair of IEEE INFOCOM 2011.

Zichuan Xu (Member, IEEE) received the B.Sc. and M.E. degrees in computer science from the Dalian University of Technology, China, in 2008 and 2011, respectively, and the Ph.D. degree in computer science from The Australian National University in 2016. From 2016 to 2017, he was a Research Associate at the Department of Electronic and Electrical Engineering, University College London, U.K. He is currently a Full Professor and a Ph.D. Advisor with the School of Software, Dalian University of Technology. He is also a 'Xinghai Scholar' with the Dalian University of Technology. His research interests include mobile edge computing, serverless computing, network function virtualization, softwaredefined networking, algorithmic game theory, and optimization problems.

Pan Zhou (Senior Member, IEEE) received the B.S. degree in the advanced class from the Huazhong University of Science and Technology (HUST), Wuhan, China, in 2006, and the Ph.D. degree from the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, in 2011. He is currently an Associate Professor with the School of Electronic Information and Communications, HUST. From 2011 to 2013, he was a Senior Technical Member with Oracle America Inc., Boston, MA, USA. His current research interests include security and privacy, machine learning and big data analytics, and information networks.

Weigang Wu (Member, IEEE) received the B.Sc. and M.Sc. degrees from Xi'an Jiaotong University, China, in 1998 and 2003, respectively, and the Ph. D. degree in computer science from Hong Kong Polytechnic University in 2007. He is currently a Full Professor at the School of Data and Computer Science, Sun Yat-sen University, China. His research interests include distributed systems and wireless networks, especially cloud computing platforms, and ad-hoc networks. He has published more than 60 papers in major conferences and journals. He has served as a member of Editorial Board of two international journals, Frontiers of Computer Science and Ad Hoc \& Sensor Wireless Networks. He is also an organizing committee member/a program committee member for many international conferences. He is a member of the ACM.

Xiang Chen (Member, IEEE) received the B.E. and Ph.D. degrees from the Department of Electronic Engineering, Tsinghua University, Beijing, China, in 2002 and 2008, respectively. From July 2008 to July 2012, he was with the Wireless and Mobile Communication Technology Research and Development Center, Research Institute of Information Technology, Tsinghua University. From August 2012 to December 2014, he was with the Tsinghua Space Center, School of Aerospace, Tsinghua University. Since January 2015, he has been serving as an Associate Professor with the School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China. He is also with the Research Institute, Tsinghua University, Shenzhen, as a Chief Researcher (part-time). His research interests mainly focus on 5 G wireless communications, wireless big data, the Internet of Things, and software radio.

