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Abstract— More and more 5G and AI applications demand
flexible and low-cost processing of their traffic through diverse
virtualized network functions (VNFs) to meet their security and
privacy requirements. As such, the Network Function Virtualiza-
tion (NFV) market has been emerged as a major service market
that allows network service providers to trade their network
services among customers. Since each service market usually
involves complex interplays among players with different roles,
efficient mechanisms that guarantee stable and efficient opera-
tions of the NFV market are urgently needed. One fundamental
problem in the NFV market is how to maximize the social welfare
of all players so that all players have incentives to participate in
the activities of the market. In this paper, we first formulate a
novel social welfare maximization problem in an NFV market of
a multi-tier edge cloud network, with the aim to maximize the
total revenue collected from all players, and we implement VNF
services on Virtual Machines (VMs) leased by service providers
to fulfill customers with service requests, where the edge cloud
network consists of both cloudlets in edge networks and remote
data centers in the core network. We then design an efficient
incentive-compatible mechanism for the problem, and analyze
the existence of a Nash equilibrium of the mechanism. Also,
we consider an online social welfare maximization problem with
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uncertain values of customers and without the knowledge of
future request arrivals, for which we devise an online learning
algorithm by adopting the Multi-Armed Bandits (MAB) method
with a bounded regret. We finally evaluate the performance of the
proposed mechanisms through simulations and a testbed. Results
show that the proposed mechanisms deliver up to 27% higher
social welfare than those of existing studies.

Index Terms— Multi-tier cloud networks, network function
virtualization, near optimal incentive-compatible mechanisms,
price of anarchy, online learning.

I. INTRODUCTION

RECENTLY, a market that regulates the production and
consumption of 5G applications is emerging. Reports

show that the global 5G market is expected to grow from
USD 53.93 billion in 2020 to USD 123.27 billion by 2025,
at a Compound Annual Growth Rate (CAGR) of 18.0%
during the forecast period [1]. This brings ever-growing 5G
applications, and most of such applications require processing
their data traffic by virtualized network functions (VNFs), such
as firewalls and intrusion detection systems, to guarantee the
data security and privacy of the traffic. As such, the ETSI
Industry Specification Group on Network Function Virtualiza-
tion (NFV) has developed a set of specifications and reports
to enable an open NFV market [41].

In an NFV market, network service providers provide net-
work services that consist of a set of VNFs to customers
on demand [10], [59]. Customers can utilize the provided
service services to implement their 5G applications at any time
through stochastic arriving requests. The key of guaranteeing
the success of the NFV market is to ensure that the optimal
social welfare is achievable and the market will converge to a
predictable stable status in the end. Thus, both network service
providers and their customers have incentives to participate in
the NFV market to earn revenues. Otherwise, selfish players
may seek other markets for higher revenues and are reluctant
to participate in the market due to unpredictable performance.
In this paper, we investigate the problem of maximizing the
total social welfare of selfish players in an NFV market. To this
end, given that each player is selfish, network service providers
need to carefully determine their service placement locations
and prices of VNF service instances to maximize their revenue.

Designing efficient mechanisms for near-optimal stable
operations of an NFV market is challenging. First, there
are multiple network service providers and customers. The
matching between network service providers and customers
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is fundamentally important to guarantee the stability of the
NFV market. An ill matching may simply lead to players
quitting from the market. In particular, it is critical to design
an incentive-compatible and stable mechanism with a Nash
equilibrium so that all players have incentives to participate
in the NFV market. Furthermore, it is expected that the social
welfare achieved through the Nash equilibrium should not be
far from the optimal one. Second, the interactions of players
in an NFV market are complex. Centralized coordination
between customers and network service providers may be
impossible. Instead, a distributed mechanism that allows each
player to make decisions based on its own observations is
needed. Third, much information about the NFV market is
uncertain. For example, customers usually have preferences
on different services. Such service preferences are referred to
as values of customers. Such values of customers determine
the revenues of network service providers. However, given
that customers are selfish, they will not expose their values
to the market. Thus, the values of customers are uncertain.
Dynamically and adaptively learning the values of customers
is vital to maximize the revenues of network service providers,
thereby maximizing the final social welfare of the NFV
market. Unfortunately, the values of customers are determined
by different types of correlated contexts including obtained
revenues of players, network delays, etc. It thus is challenging
to design an online learning mechanism to accurately predict
the values of customers.

Although there are extensive studies on NFV in software
defined networks, mobile edge networks, and conventional
cloud networks [32], [44], [45], [52], there are only a
handful of studies on mechanism design for NFV markets
in mobile edge computing (MEC) [10], [59], including a
double-auction approach [10] and an online stochastic buy-sell
mechanism [59]. These proposals basically require a central
or multiple collaborating brokers to implement the aforemen-
tioned mechanisms. Brokers know the values of customers in
each round of bidding, and even the value of each customer
may be known by the others. However, customers rarely
disclose the details of their values to others in real-world
NFV markets. In addition, auction mechanisms require a
lot of direct communications between brokers and players,
and their performance is poor when the values of customers
are uncertain. Therefore, the auction mechanism may not be
an ideal model for the online social welfare maximization
problem in a real NFV-market. Therefore, an online algorithm
based on the contextual Multi-Armed Bandit (MAB) method
is designed in this paper, which learns the uncertain value of
customers under various correlated contexts.

To the best of our knowledge, we are the first to investigate
the online social welfare maximization problem with uncertain
values of customers in an NFV market under a multi-tier
cloud network. The main contributions of this paper are as
follows.

• We formulate the social welfare maximization problem in
an NFV market with multiple network service providers
leasing virtual machine (VM) resources to implement
VNF services, as well as customers with NFV-enabled

requests. We also formulate the online social welfare
maximization problem with stochastic arriving requests.

• We develop an effective mechanism for the social welfare
maximization problem, and show that the mechanism is
incentive-compatible and exists at least one Nash equilib-
rium. We analyze the quality of the Nash equilibrium by
showing its Price of Anarchy (PoA), which quantifies the
worst case gap between the social welfare of the Nash
equilibrium and the optimal solution with non-selfish
players.

• We design a distributed mechanism based on the con-
textual MAB method for the online social welfare maxi-
mization problem with uncertain values of customers and
stochastic arriving requests, which allows network service
providers to determine the optimal locations of VNFs
with a bounded regret.

• We evaluate the performance of the proposed mechanisms
by both extensive experimental simulations and imple-
mentations in a flexible, scalable and real testbed. The
results show that the proposed online algorithm obtains
up to 27% higher social welfare than those of existing
studies.

The remainder of the paper is arranged as follows. Section II
summarizes the state-of-the-art of related studies. Section III
introduces the system model and defines the problems.
Section IV provides an incentive-compatible facility location
game for the social welfare maximization problem. Section V
devises an online learning algorithm for the online social wel-
fare maximization problem with uncertain value of customers.
Section VI and Section VII provide experimental results, and
Section VIII concludes the paper.

II. RELATED WORK

Network function virtualization has attracted much attention
in the past few years [8], [12], [22], [25]–[27], [30], [32],
[34], [37], [38], [44], [47]–[50], [54], [56], [60], [62], [63].
Most of them did not consider the VNF provisioning under
an NFV market. For example, Huang et al. [26] proposed
an optimization framework based on online federated learn-
ing and deep reinforcement learning (DRL) for extensible
deployment of service chains in a network. Feng et al. [17]
studied the NFV service distribution problem, by effectively
consolidating flows into a finite number of active resources.
He et al. [25] proposed a DRL framework with an attention
mechanism to implement the placement and routing of VNFs
in a network. Luo and Wu [35] proposed an online algorithm
by adjusting the deployment of VNF instances to achieve
efficient scaling. Jin et al. [27] considered the latency-aware
service chaining problem in edge networks, by formulating a
mixed integer linear programming with the aim to minimize
the total resource consumption.

Although the game theory has been applied to allocation
and pricing of VM resources in cloud networks with multi-
ple service providers [18], [23], [24], [51], [57], there is a
fundamental difference from the VNF service provisioning
in an NFV market. The proposed methods thus cannot be
directly applied to the VNF placement of the NFV market.
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That is, serving service chain requests in an NFV market
require not only the placement of VNFs (run in VMs) but
also traffic routing of customer requests from their sources to
their destinations.

There are several studies on mechanism design for NFV
markets [10], [14], [21], [59], which are closely related to
the study of this paper. For example, Borjigin et al. [10]
devised a double-auction approach for resource allocation
in an NFV market, to maximize the revenue of an NFV
broker, customers and resource suppliers. Gu et al. [21]
proposed an auction-based mechanism for VNF chaining
and achieves near-optimal social welfare in the NFV mar-
ket. Zhang et al. [59] devised an online stochastic by-sell
mechanism for network function chaining in an NFV mar-
ket. Dieye et al. [14] studied the problem of multi-domain
resource allocation for service chains to maximize the revenue
of infrastructure and service providers through a DRL based
auction. However, these studies only considered the interac-
tions among infrastructure providers, they did not considered
the interactions among network service providers who do not
own the resources. In addition, most of these studies assumed
that the customers values are given or can be obtained.
On the contrary, we are the first to investigate the social
welfare maximization problem in an NFV market with multi-
ple customers and multiple network service providers without
owning any resources. Note that this paper is an extension
of our conference paper in [53], and new contributions of
this paper include new algorithms for service chaining with
delay requirements and an online learning algorithm for the
social welfare maximization problem with uncertain values of
customers.

Tackling the social welfare maximization problem is to
allow multiple network service providers in an MEC network
jointly place the VNFs of their services to edge locations
economically and fairly. From the view of a single network
service provider, the problem is analog to the facility location
problem with an objective of maximizing the revenue collected
by placing VNFs in the edge network. If each network service
provider is treated as a player, a game with different types of
players that tries to place a set of facilities to the network is
referred to as the facility location game.

Although there are studies on mechanism design for facility
location games [9], [11], [19], [20], [40] and the technique
of multi-armed bandits [2], [4], [6], [15], [31], they may
not be able to applied to the social welfare maximization
problem. First, most mechanisms for facility location game
assumed that each player has a facility to open [19], [20]. For
example, Fong et al. [19] proposed the fractional preference
model of facility location game, so that each customer has its
own preference for each opening facility. Goemans et al. [20]
provided a mechanism for connecting open facilities with
cooperative customers to minimize the total cost. However,
each network service provider in this paper may lease VMs
at different locations. Second, the contextual MAB technique
usually does not consider the availability of contexts to experts.
For example, Dimakopoulou et al. [15] developed an inte-
grated balancing contextual bandit algorithm to reduce the
estimation biases. Instead, the experts in our consideration

are independent third-parties. Each expert may not learn the
statuses of all contexts in the network, due to performance
and reachability constraints. That is, we need to customize the
contextual MAB technique to allow each expert to learn from a
subset of contexts. As such, the optimization techniques used
in this paper can also provide reference for the application
of facility location game and contextual MAB for similar
optimization problems.

III. PRELIMINARIES

In this section, we first formulate the system model and
define notations. We then introduce the game-theoretic model.
Finally, we define the problem precisely.

A. System Model

We consider a multi-tier cloud network G = (L, E)
consisting of a set L of locations in cloudlets and remote
data centers, and a set E of links (or VPN paths) that
interconnect locations. The computing resource in locations
(i.e., cloudlets and data centers) is virtualized as containers or
VMs. We consider a scenario where network service providers
do not own their infrastructures but can lease VMs from an
infrastructure provider to implement their VNFs. We further
consider an NFV market that consists of a number of network
service providers offering network services, and each service
consists of VNFs in the resource pools of service providers
located in different cloudlets and data centers. We assume
that location Lj ∈ L can only accommodate a finite number
Kj VMs to implement VNFs [52]. Let Vj be the set of
available VMs in location Lj and let vj,m a VM in Vj , where
1 ≤ m ≤ Kj . Each VM vj,m has an uploading bandwidth
capacity Buj,m and a download bandwidth capacity Bdj,m [7].
Note that each VM vj,m ∈ Vj may or may not be instantiated,
considering that the infrastructure provider has its own VM
management policy.

There are Q network service providers in the system, and
let qi denote the ith network service provider with 1 ≤ i ≤ Q.
The services provided by these network service providers are
demanded by N customers. Let uk be the kth customer with
1 ≤ k ≤ N . Each customer uk is selfish and chooses an
instance of its network service from any network service
provider. Without loss of generality, we consider that the
network service required by each customer composes a set of
VNFs organized as a VNF service graph [3], [17], [61]. Fig. 1
illustrates a multi-tier cloud network with multiple network
service providers and customers.

B. NFV Markets and Network Services

In an NFV market, customers purchase network services to
process and transfer their traffic. To this end, each customer
issues a request that demands a set of VNFs as specified in a
VNF service graph, such that the performance and security of
its traffic transfer is guaranteed. Denote by rk an NFV-enabled
request of customer uk. It specifies a source node sk and a
destination node tk, and needs to transfer the amount of its
traffic ρk from the source to the destination. In addition, the
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Fig. 1. A multi-tier cloud network with network service providers offering
network services to customers through issuing NFV-enabled requests.

traffic of request rk needs to be processed by a set of VNFs
organized as a VNF service graph, before reaching destination
tk. Let Hk be the VNF service graph of request rk . Let fl be a
VNF in Hk. The data traffic of each request will be processed
by the VNFs in service graph Hk in the specified order in
Hk. Let F be the set of network functions provided by all
network service providers for all requests in a multi-tier cloud
network.

C. Cost and Social Welfare Model

Network service providers sell network services in terms of
VNF service graphs to customers for implementing requests
of customers. The cost of implementing a request consists of
the usage costs of both computing and bandwidth resources in
a cloud network. Assume that the cost of processing the traffic
of request rk in a VNF at location Lj ∈ L is proportional to
the amount of the traffic to be processed. Let cpk,j be the cost
of processing a unit traffic of rk in Lj . The cost ck,j of placing
the VNFs of service graph Hk of rk in location Lj thus is

ck,j = cpk,j · ρk, (1)

if VNF service graph Hk is placed to an existing VM
instance in Lj ; otherwise, when the Hk is assigned to a newly
instantiated VM, we have

ck,j = cpk,j · ρk + ξj , (2)

where ξj the start-up cost of instantiating a new VM in
location Lj . Note that the start-up cost is usually given and
does not change as time goes [16].

Following the settings of most infrastructure providers [36],
[46], network service providers lease a certain amount of
bandwidth resource to transfer traffic in/out of a location
Lj ∈ L. The bandwidth cost of request rk is proportional to
the amount of traffic it needs to transfer. Let cbk,j be the cost of
transmitting a unit of traffic from sk of request rk to location
Lj , which can be derived by finding a shortest path from sk
to Lj . Then, the bandwidth consumption cost for request rk
on the shortest path is cbk,j · ρk.

Network service provider qi sells its network services to
customers. Let γi,k be the price that network service provider
qi asks for an instance of service graph Hk. A customer uk

has to pay the asked price by qi for using the service graph.
The revenue δi received by qi thus is

δi = γi,k − ρk(c
p
k,j + cbk,j). (3)

Each customer uk has a value for a service instance of
service graph Hk provided by network service provider qi,
which is denoted by πi,k. Note that such a value of each cus-
tomer is the primary criteria that indicates whether it prefers a
network service provider. A higher value for a network service
provider usually means that its provided network service has
a higher quality. Unfortunately, such values of each customer
are private and not known by others If the customer pays a
price γi,k to use service graph Hk, it collects a revenue of

Δk = πi,k − γi,k. (4)

A customer only buys an instance of its service graph from
network service provider qi if πi,k ≥ γi,k, and pays γi,k.
Although network service provider qi does not know the exact
value of πi,k , it can only observe whether the customer buys
the implementation.

Since there are multiple players (network service providers
and customers) in the NFV market, we aim to maximize the
social welfare, i.e., the total revenue received by all players
participating in the NFV market. Let ΦQ,N be the social
welfare in an NFV market with Q network service providers
and N customers. ΦQ,N can be calculated by

ΦQ,N =
∑Q

i=1
δi +

∑N

k=1
Δk. (5)

D. Delay Model

Processing and transmitting the data traffic of request rk
incurs both processing and transmission latencies [5], [55],
[61]. Each request usually has a delay requirement to make
sure its traffic being transmitted to its destination node tk while
meeting its specified Quality of Service (QoS) requirement.
The processing delay of rk is due to the processing of its traffic
by its service graph Hk. The transmission delay of request rk
is due to the transmission of its traffic from source node sk to
the destination node in Hk, which is the delay of the longest
transmission path in the network from sk to tk in Hk.

E. Game Theory and Nash Equilibrium

We consider a game that consists of Q network service
providers and N customers as players. Each network service
provider qi ∈ Q provides its network services to customers
by instantiating service graphs in leased VMs. Each customer
uk ∈ N selects an instance of its service graphHk from one of
the Q network service providers. Therefore, the strategy space
of each customer uk is the set of network service providers,
and each candidate network service provider has a number of
service instances of Hk of uk, i.e., {q1, q2, · · · , qQ}. On the
other hand, network service provider qi makes its decision of
where to implement request rk . It also decides the price for
the implemented request so that its revenue can be maximized.
Let L�

i be the candidate locations for qi. For each service
graph Hk, the strategy space of network service provider qi
includes all locations in L�

i. Notice that each location Lj is a
candidate location of service provider qi if qi can instantiate
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(or has) VMs in Lj . Consequently, different service providers
may have common locations to implement their service graphs.
However, a network service provider may not instantiate any
VM in a candidate location. It instead strategically places
instances of service graphs to one of the locations such that
its revenue is maximized.

The aforementioned game can be considered as a facility
location game. It must be mentioned that the facility location
game is essentially different from the facility location prob-
lem [20], the latter deals with placing facilities in a network
so that each facility can serve a certain number of clients.
In contrast, the facility location game puts much emphasis
on different parties to place their facilities in the network.
A special case of the facility location game can be reduced
to the facility location problem, when all network service
providers are not selfish, the VNFs of each service graph can
be consolidated in a single location, and there are no delay
requirements and capacity constraints. The facility location
game problem is reduced to the facility location problem by
taking each request as a client and any edge location with a
placed facility has enough VMs for its assigned requests.

F. Problem Definitions

Given an NFV market under a multi-tier edge cloud network
G = (L, E) with Q network service providers offering
network services to customers, and a set R of NFV-enabled
requests, the following two optimization problems in G will
be considered.

Problem 1: The social welfare maximization problem with
given leased resources: In an NFV market of a multi-tier
edge cloud network G, the problem is to maximize the social
welfare of the market, subject to that the number of available
VMs can be leased in each location Lj ∈ L, the upload and
download bandwidth allocated to each VM vj,m in location
Lj ∈ L, and the delay requirement of each request.

Problem 2: In most practical scenarios, NFV-enabled
requests arrive into G one by one without the knowledge of
future arrivals, and customers may deviate from their best
strategies that usually are not revealed to other customers
and network service providers. The online social welfare
maximization problem with uncertain values of customers in
G is to admit or reject each incoming NFV-enabled service
request immediately, with the aim to maximize the social
welfare of the market, subject to the number of available VMs
that can be leased in each location Lj ∈ L, the upload and
download bandwidth allocated to each vj,m of the VMs in
location Lj ∈ L, and the delay requirement of each request.

For clarity, the symbols used in this paper are summarized
in Table I.

IV. A FACILITY LOCATION GAME FOR THE SOCIAL

WELFARE MAXIMIZATION PROBLEM WITH GIVEN

LEASED RESOURCES

We now devise an efficient mechanism for the social welfare
maximization problem with given leased resources. We also
analyze the quality of the mechanism by showing the PoA.

A. Overview

The essence of the proposed mechanism is a multi-stage
facility location game with both network service providers and
customers as strategic agents. Specifically, the game consists
of three stages. In the first stage, network service providers
decide which cloudlets or data centers to implement NFV-
enabled requests. In the second stage, service providers set the
prices for customers. In the last stage, each customer selects a
network service provider and pays the specified price. The rest
is to specify how prices are set and how requests are assigned
to their candidate locations by each network service provider.

The basic idea of our mechanism is to adopt a pricing mech-
anism that allows each player in the game to make its decision
based on its true values for the service graphs offered by
network service providers. The problem of assigning requests
to VMs of each network service provider then is reduced
to a minimum weight perfect matching problem [29] in an
auxiliary bipartite graph.

We consider two types of customers: (1) the customers
always select the network service provider that could achieve
their own maximum profits, and they are referred to as
best response customers; and (2) the customers strategically
decide their selections by observing and interacting with other
customers.

B. Mechanism With Best Response Customers

We now design a mechanism for the problem with best
response customers, which consists of three stages: Stage 1,
location selection by each network service provider qi;
Stage 2, pricing by each network service provider qi for each
customer; and Stage 3, network service provider selection by
each customer.

Stage 1. Given a set L�
i of candidate locations, each network

service provider qi first decides which locations for NFV-
enabled requests. From the network service provider’s point
of view, it aims to maximize its own revenue. To this end,
it needs to strategically admit a subset of requests that could
lead to the maximum revenue, given the limited number of
available VMs in the multi-tier cloud network. To enable low-
cost admissions of requests, we reduce the problem of location
choices by each network service provider qi to the problem
of finding a minimum weight perfect matching in a bipartite
graph G� = (V �, E�) as follows.

The node set V �
i of G�

i is divided into two disjoint sub-
sets, i.e., V �

a and V �
b . Each node in set V �

a corresponds an
NFV-enabled request rk ∈ R, and each node in set V �

b denotes
an available VM in ∪Lj∈LVj of network service provider qi.
We add an edge between each node in V �

a and each node in
V �
b , to represent an assignment of an NFV-enabled request rk

to a VM owned by network service provider qi, if the VM has
sufficient upload and download bandwidths for the request. Let
(rk, vj,m) be an edge in G�

i.
Recall that the revenue received by qi due to serving request

rk is γi,k − ρk(c
p
k,j + cbk,j) if its assigned VM is already

instantiated; otherwise, the revenue is γi,k−ρk(cpk,j+cbk,j)−ξj
as the start-up cost has to be incorporated when instantiating
a VM. Since γi,k is not determined by the network service
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TABLE I

SYMBOLS

provider qi, maximizing its revenue is equivalent to minimiz-
ing the cost of implementing request rk, i.e., ρk(c

p
k,j + cbk,j)

or ρk(c
p
k,j + cbk,j)+ ξj . We thus consider the cost of assigning

rk to vj,m in location Lj as the weight of edge (rk, vj,m) by

w(rk, vj,m) = ρk(c
p
k,j + cbk,j), (6)

if vj,m is already instantiated; otherwise,

w(rk , vj,m) = ρk(c
p
k,j + cbk,j) + ξj . (7)

The delay of the edge (rk, vj,m) is set to the corresponding
delay of implementing request rk in vj,m. It must be men-
tioned that |V �

a | may not be equal to |V �
b |. If |V �

a| ≥ |V �
b |,

we add |V �
a| − |V �

b | dummy VM nodes to V �
b . Each request

node in V �
a connects to each dummy VM node, and the weight

of the edge is set to infinity. Otherwise, we add |V �
b | − |V �

a|
dummy request nodes to V �

a. Fig. (2) shows an example of the
proposed bipartite graph G�

i.

Fig. 2. An example of the constructed bipartite graph G�
i.

Having graph G�
i, we then find a minimum weighted perfect

matching Mi in G�
i that minimizes the cost of network service

provider qi [29].
Given a perfect matching Mi in G�

i for network service
provider qi, each edge in Mi denotes a preference of qi of
admitting the request. Let Ri be the set of requests assigned to
the VMs of network service provider qi. Initially, Ri includes
the requests that are included in matching Mi. Specifically,
if all requests in Ri select qi, each implementation cost
corresponds to the weight of the edge in matching M �

i .
However, not all VMs can meet the delay requirements of

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on December 17,2022 at 08:01:41 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: NEAR OPTIMAL LEARNING-DRIVEN MECHANISMS FOR STABLE NFV MARKETS IN MULTITIER CLOUD NETWORKS 2607

their requests. We thus remove such requests from Ri for
consideration. Further, not all requests in Ri will select qi as
they may have other choices with lower implementation costs.
Specifically, for each request rk ∈ Ri, we exclude it from Ri

if there exists another network service provider qi′ with i� �= i
that results in a lower implementation cost. Let Rexd

i be the set
of excluded requests and Vexdi the corresponding set of VMs
to which those requests in Rexd

i are assigned in matching Mi.
Given requests in ∪Qi=1Rexd

i that are excluded from the
initial matching of network service providers, this procedure
continues until there is no excluded requests. So far, each
request in Ri achieves its minimum implementation cost.

Stage 2. Each network service provider qi decides the price
of the instances of its service graphs. Intuitively, to make each
request rk in Ri select qi, the price it sets for the request
should not be higher than that of the network service provider
achieving the second lowest implementation cost for it. This is
the highest price that qi could expect to get away with charging
request rk; charging any more would give some network
service provider qi′ an incentive to undercut qi. Note that all
network service providers can obtain the implementation costs
of requests in different locations, because the computing and
bandwidth resource consumptions in edge clouds are usually
public information.

Stage 3. Following best-response strategies, each customer
selects a network service provider with the lowest price to
implement its request rk if πi,k ≥ γi,k.

Algorithm 1 details the proposed mechanism for the
social welfare maximization problem, which is referred to as
FLG_SWM.

C. Mechanism With Strategic Customers

The rest is to design a mechanism for the game with
strategic customers that observe decisions of each other. In
Stage 3 of the proposed mechanism FLG_SWM, we assumed
that customers adopt the best response strategy by selecting
a network service provider with the lowest price. As such,
many customers may select the same network service provider
of a location Lj if the location has the cheapest price, this
leads to a higher delay and cost due to the congestion at the
location. In reality, customers may observe the preferences of
other customers, and decide whether to deviate from its best
response (a.k.a. selecting the network service provider with
the lowest price). Specifically, if customer uk observes that
there are already many customers selecting its best-response
network service provider qi, it may deviate from qi to avoid
congestion and a long delay. To this end, customer uk choose
the least congested network service provider among the ones
offering prices less than its value. The major difference of this
mechanism from FLG_SWM is Stage 3, which is referred to
as Algorithm FLG_LC.

D. Extensions for Service Graphs

So far we assumed that the VNFs of the service graph Hk

of each request rk are consolidated into a single VM of a
location for processing. We now extend the proposed algorithm

Algorithm 1 A Facility Location Game for the Social Welfare
Maximization Problem (FLG_SWM)
Input: A multi-tier cloud network G = (L, E) and a set of NFV-enabled

requests R.
Output: The assignment of each request in R to a network service provider.
1: /*Stage (1): Location selection by each network service provider*/
2: Vi ← ∪Lj∈LVj,i; /*the set of available VMs of each network service

provider qi*/
3: Radt ←R; /*the set of to-be-admitted requests*/
4: while Vi �= ∅ or Radt �= ∅ do
5: for each network service provider qi do
6: if Vi �= ∅ then
7: Vexd

i ← ∅; /*The set of VMs that are excluded from the initial
minimum weight matching in a bipartite graph G�

i*/
8: Construct the bipartite graph G�

i = (V �
i , E�

i) as illustrated in Fig. 2;
9: Find a minimum weight perfect matching Mi in G�

i;
10: Exclude a matched pair of VM and request rk in Mi, if the VM

cannot meet the delay requirement of their requests or the VM is not
the first choice of rk (i.e., there is another VM of another network
service provider qi′ that can achieve a lower implementation cost
for rk);

11: Add the excluded VM into Vexd, and the request into Rexd
i ;

12: Vi ← Vexd;
13: If there exists a request in ∪Q

i=1Rexd
i that considers a VM in Vi as

its best choice (the VM that can achieve the minimum implementation
cost), Radt ← ∪Q

i=1Rexd
i ;

14: Otherwise, Radt ← ∅;
15: /*Stage (2): Pricing by each network service provider*/
16: For each network service provider qi, set its price for request rk as the

cost of implementing rk in a VM by another network service provider
that has the second lowest implementation cost;

17: /*Stage (3): Service provider selection by each customer*/
18: Each customer selects its best response strategy, by choosing the network

service provider with the lowest price to implement its NFV-enabled
request rk;

Algorithm 2 A Facility Location Game for the Social Welfare
Maximization Problem With Strategic Customers (FLG_LC)
Input: A multi-tier cloud network G = (L, E) and a set of NFV-enabled

requests R.
Output: The assignment of each request in R to a network service provider.
1: Invoke Stage (1) and Stage (2) of Algorithm FLG_SWM;
2: for each customer uk do
3: if it’s best-response network service provider qi has been selected by

many customers then
4: Customer uk chooses the least congested network service provider

among the ones that offer prices that are smaller than its value;
5: else
6: Customer uk chooses the network service provider with the lowest

price;

to consider the chaining of VNFs of each request rk in its
specified order.

A simple extension is to consider each pair of VNF fl in
Hk and its request rk as a virtual request, and then use the
proposed algorithm FLG_SWM to assign the virtual requests to
the VM. Although this extension is simple, it basically assigns
each fl in Hk independently without considering the order of
VNFs in each service graph. As such, the VNFs of a service
graph Hk may be assigned to VMs in different cloudlets,
leading to prohibitively-high costs and delays.

To enable algorithm FLG_SWM to incorporate the depen-
dency of functions in service graph Hk, we propose an effi-
cient heuristic algorithm for the problem. That is, we replace
the minimum weighted matching in Stage 1 of algorithm
FLG_SWM with an iterative matching that progressively
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assigns the VNFs to VMs. To this end, we first find a topo-
logical sort of the functions in service graph Hk to determine
a linear order of the functions, such that each directed edge
�fl−1, fl� function fl−1 appears before fl in the order. Given
the linear order of functions in Hk, we then place the functions
iteratively. Each iteration deals with a VNF in linear order
of Hk and all requests that require Hk. For example, in the
current iteration l, the lth function fl in each service graph is
considered.

Each fl and each of its requests are considered as a virtual
request. To assign each virtual request, a similar bipartite graph
is built as algorithm FLG_SWM. The only difference is that the
cost of edge from the virtual request to the VM is set to a
weighted sum of the cost and delay of implementing the VNF
fl. The location of the VM matching with the virtual request
is the chosen location of the VNF fl in Hk. Note that the
transmission cost of fl is set to zero, if it is co-located to the
location with fl−1 of rk. The reason is that the transmission
cost is no longer to be included as functions fl−1 and fl when
they are placed to the same VM. Note that if the delay of
implementing request rk is violated after considering its last
VNF, all previously admitted VNFs of rk in its service graph
will be removed, and the request will be rejected. All the rest
steps and stages are the same as FLG_SWM. For simplicity,
this algorithm is referred to as FLG_SC.

Algorithm 3 A Facility Location Game Algorithm for the
Social Welfare Maximization With Service Graphs (FLG_SC)
Input: A multi-tier cloud network G = (L, E) and a set of NFV-enabled

requests R.
Output: The assignment of each request in R to a network service provider.
1: Invoke Step 1 to Step 7 of Algorithm FLG_SWM;
2: Topological sort: find a topological sort of the functions in service graph

Hk to determine a linear order of the functions fl;
3: Iterative matching: each iteration deals with a VNF in the linear order of

service graph, construct the bipartite graph G�
i = (V �

i , E�
i) as illustrated

in Fig. 2 by treating each fl and its request as a virtual request, and find
a minimum weight perfect matching Mi in G�

i;
4: Excluding the matchings that violate delay requirements: exclude all

previously admitted VNFs of rk in its services graph, if the delay of
implementing request rk is violated or VMs are not the best choice of rk
(i.e., there is another network service provider qi′ that can achieve a lower
implementation cost for rk);

5: Invoke Step 11 to Step 18 of Algorithm FLG_SWM;

E. Algorithm Analysis

In the following we analyze the economic properties and
performance of the proposed mechanisms.

Lemma 1: The proposed mechanism FLG_SWM for the
social welfare maximization problem in an NFV market under
a multi-tier cloud network G is incentive compatible.
See the proof of Lemma 1 in the supplementary file.

Lemma 2: The proposed mechanism FLG_SWM for the
social welfare maximization problem is a potential game with
potential function ΦQ,N .
See the proof of Lemma 2 in the supplementary file.

Lemma 3: The proposed facility game has the following
three properties:

• Property (1): ΦQ,N(S) is submodular: for any strategy
set S ⊂ S� ⊂ A and any element s ∈ A − S�, we have
ΦQ,N (S∪{s})−ΦQ,N(S) ≥ ΦQ,N (S�∪{s})−ΦQ,N(S�)

• Property (2): Let αi(S) be the added welfare of each
player i to the social welfare. For all the Q network
service providers, we have

∑Q
i αi(S) ≤ ΦQ,N (S)

• Property (3): The value for one player is at least its
added welfare for the society: αi(S) ≥ ΦQ,N (S) −
ΦQ,N (S\{Si}).

See the proof of Lemma 3 in the supplementary file.
Theorem 1: The best response dynamics of the proposed

mechanism FLG_SWM converges to a pure strategy equilib-
rium, and the PoA of the proposed mechanism is 2.
See the proof of Theorem 1 in the supplementary file.

Theorem 2: The proposed mechanism FLG_LC converges
to a �-equilibrium, and its PoA is 2, where � = ψmax−ψmin

(ψmin−1)
with ψmax denoting the maximum ratio of customer’s value
and the cost and ψmin being the minimum one.

See the proof of Theorem 2 in the supplementary file.

V. ONLINE LEARNING ALGORITHM FOR THE ONLINE

SOCIAL WELFARE MAXIMIZATION PROBLEM

In this section, we consider the online social welfare max-
imization problem with uncertain values of customers.

A. Overview

In reality, the values of customers play a vital role in
maximizing the social welfare of an NFV market. Since
customers are selfish, they will not reveal their values. Network
service providers need to make pricing decisions based on the
uncertain values of customers. To this end, network service
providers can learn the values of customers, according to the
behaviors of customers in terms of service selections. Because
it is challenging to predict the values of customers, network
service providers may not do that by themselves, instead they
resort to the third parties serving as ‘experts’ for the values of
customers. Specifically, assume that there are multiple experts
in the NFV market. They serve as trustworthy third parties to
collect and learn customer distributions of service selections.
Each of the experts recommends a set of customers to the net-
work service providers. Each network service provider how-
ever may not fully trust experts, by dynamically evaluating the
experts. Furthermore, to be trustworthy, each expert needs to
make precise predictions, which is challenging, too, due to the
value of each customer may dynamically change with its con-
text changes. For example, a customer may lower its value on
a service if the service is no longer meeting its delay require-
ment. Also, it may increase its value on a service if a higher
revenue can be returned or a network service provider has a
better reputation. To enable decision makings under such cor-
related contexts, we propose an online learning algorithm for
the online welfare maximization problem with uncertain values
of customers, via leveraging the technique of contextual MAB.

B. Algorithm

In the proposed online learning algorithm, each expert
observes the contexts that influence the values of customers,
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Fig. 3. The basic idea of the proposed online learning algorithm for the
online social welfare maximization problem.

and learns the correlations among each context and the value of
each customer. The expert then selects customers participating
in the game by the learnt correlations, as illustrated by Fig. 3.

To this end, we assume that under each context, there is a set
of certain probabilities of recommending the customers. Such
probabilities are learnt iteratively through multiple rounds,
because the values of customers on services in each context
are not known. Specifically, let θ be a context available in
the system. Let pθ,k be the recommendation probability of
customer uk for each context. As the context changes, the
probability is adaptively adjusted. Each context θ has a weight
on customer uk at each round r, denoted by wr,θ(uk). The
probability pθ,k is calculated by

pθ,k = wr,θ(uk)/(
∑N

k′=1
wr,θ(uk′)). (8)

Let expn be an expert with 1 ≤ n ≤ Y . Each expert
then observes different contexts related to its customers and
decides to make decisions according to its observed contexts.
Specifically, let Θ(expn) be the contexts observed by expert
expn. The expert expn selects customer uk with probability
of

pn,k = (
∑

θ∈Θ(expn)
pθ,k)/|Θ(expn)|, (9)

where |Θ(expn)| is the number of contexts available to expert
expn.

The algorithm then allows each expert expn to choose
customer uk with probability pn,k. After all experts have
chosen their customers, Algorithm FLG_SWM is invoked to
assign the requests of the chosen customers to network service
providers.

However, with the progress of customer selection and
request assignment in different rounds, different customers
may cause different rewards. Thus, the weight wr,θ(uk) of
each customer uk under context θ participating in the game is
updated in the end of each round, when the real revenues of
each network service provider and each customer are revealed.
In other words, penalties are assigned to the contexts with
lower rewards.

It must be mentioned that, instead of predicting the values
of customers directly, customers are chosen with a certain
probability. Recall that our objective is to maximize the total
social welfare of all players. We thus use the inverse of
obtained revenue of each customer and its assigned network
service provider as its penalty on its weight. That is, the

penalty of context θ is the inverse of the revenue if customer
uk is selected by context θ and it uses the network provider
qi, i.e.,

cr,θ,k = δmax − δi + Δmax − Δk, (10)

where δmax and Δmax are the maximum revenues that can be
obtained by a network service provider and a customer, which
are given as a priori.

For each context, the weight on customer uk is updated by

wr+1,θ(uk) = wr,θ(uk) · (1 − ι)cr,θ,k . (11)

where ι is a penalty factor in the range of (0, 1/2). The
above-mentioned procedure continues iteratively. The detailed
steps of the proposed algorithm is shown in Algorithm 4,
referred to as OL_MT.

We extend algorithm OL_MT to a generic case of the VNF
chain of each request rk in its specified order, the only
difference from algorithm OL_MT is at step 9 by invoking
algorithm FLG_SC. The rest are identical to algorithm OL_MT.
For simplicity, we refer to this modified algorithm as algorithm
OL_SC.

Algorithm 4 An Online Learning Algorithm for the Online
Social Welfare Maximization Problem (OL_MT)
Input: G = (L, E), a set of NFV-enabled requests.
Output: An assignment of each request to either a cloudlet or datacenter for

processing.
1: Initialize the weight each customer under each context θ as w1,θ(uk) =

1 for the expert expn in time slot 1;
2: for each round r ← 1 . . . T do
3: U ← ∅; // the set of selected customers
4: for each expert expn do
5: Each context update its probability of selecting a customer by Eq. (8);
6: Collecting the probabilities under all contexts in Θ(expn), and

calculate the average probability of selecting a customer pn,k;
7: For each customer uk of expert expn, select it with probability pn,k;
8: U ← U ∪ {uk}, if uk is selected;
9: Invoke Algorithm FLG_SWM;
10: In the end of round r, observe the costs of customers, and update its

weight by Eq. (11);

C. Algorithm Analysis

In the following we analyze the accumulative regret of the
proposed algorithm OL_MT.

Theorem 3: The regret by algorithm OL_MT is upper
bounded by lnT

σ + 2ιUd, assuming that there is a bound on
the gap between the minimum and maximum values of each
customer. Let Ud be the bound, i.e., Ud = πmax−πmin, where
πmax = maxi,k{πi,k}, πmin = mini,k{πi,k}, and ι is a given
constant in the range of (0, 1/2).

See the proof of Theorem 3 in the supplementary file.

VI. SIMULATIONS

In this section, we evaluate the performance of the proposed
algorithms via extensive simulations and experiments on a
testbed.
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A. Parameter Settings

We consider multi-tier cloud networks by varying their sizes
from 50 to 250 nodes with 5 data centers, where each network
topology is generated using GT-ITM [58]. The number of
cloudlets in each network is set at 10% of the network size.
The cloudlets are randomly distributed in the core edge net-
work. We also use a real network topology AS1755 from [28].
The numbers of VMs provided by each cloudlet and data
center are randomly generated from [10, 15] and [15, 50],
respectively. The bandwidth capacity of each VM is drawn
from the range of [10 Mpbs, 100 Mbps]. Each NFV-enabled
request demands a service graph containing at most 5 VNFs,
picked from a set of functions: Firewall, Proxy, NAT, IDS, and
Load Balancing (LB). The costs of transmitting and processing
of 1 GB traffic are set within [$0.05, $0.12] and [$0.15, $0.22].
The start-up cost of a VM is set within $0.005, following
typical charges in Amazon EC2 with small variations. The
pre-defined threshold of revenue decreases ϑ is set 20%.
The traffic volume of each request is randomly drawn from
[10, 200] Megabytes. The transmission delay of a network link
varies between 0.1ms and 1ms [28]. The processing delay of a
unit of traffic for each VNF is randomly drawn from 0.045ms
to 0.3ms, and the processing delay of a service graph is the
total processing delay of its VNFs. Each request has a delay
requirement ranging from 10ms to 100ms. The running time
of each algorithm is obtained based on a machine with an
Intel Xeon Gold 5118 dual CPUs and 256GB RAM. Unless
otherwise specified, these parameters will be adopted in the
default setting.

We evaluated the performance of the proposed algorithms
against the following benchmarks. We first considered the dou-
ble auction mechanism in [10], in which potential customers
submit their bids while potential network service providers
submit their ask prices to an auctioneer simultaneously. The
auctioneer then chooses some price that clears the market:
all the sellers who asked less than the chosen price sell and
all buyers who bid more than the chosen price buy at the
chosen price. The offline and online versions of this double
auction mechanism are referred to as DA and Online_DA,
respectively. We then considered an online auction mechanism
in [33], in which potential customers calculate their revenues
of potential service providers based on their true values, and
choose a service provider with the highest revenue, and we
refer to this benchmark as Online_A.

B. Performance of Algorithms FLG_SWM and FLG_SC

We evaluated the performance of algorithms FLG_SWM,
FLG_LC, and FLG_SC against that of algorithm DA, in terms
of the social welfare, revenues of customers and network ser-
vice providers, average delay, and the running time, in GT-ITM
generated networks with network sizes varying from 50 to 250.

From Fig. 4 (a), we can see that the social welfares achieved
by algorithms FLG_SWM, FLG_LC, and FLG_SC are higher
than that of DA. The reason is that FLG_SWM finds an optimal
matching between buyers and sellers as shown in Fig. 2; while
in DA, the trade between a network service provider and a
customer happens as long as the bid is greater than the ask.

In addition, we can see that algorithms FLG_LC and FLG_SC
have lower social welfares than that of FLG_SWM. This is due
to the fact that in FLG_LC, customers may deviate from its
best response strategy to avoid congestion, thereby decreasing
the social welfare. Also, algorithm FLG_SC greedily finds a
location for each VNF in the service graph of a request, which
easily saturates the locations with low costs and implements
the VNFs in a service graph with higher costs. Furthermore,
we can see that the social welfare decreases with the growth
on network size, and then becomes stabilized afterwards when
the network size increases from 200. This is because a larger
network size means that each request can be implemented
in a data center or cloudlet that is far from its source and
destination with a higher probability, thereby increasing the
transmission cost of data traffic. Similar patterns of revenues
can be observed from Fig. 4 (b) and Fig. 4 (c), respectively.

We can see from Fig. 4 (d) that the average delay achieved
by FLG_LC is the lowest one among the three comparison
algorithms. The reason is that customers in FLG_LC avoids
locations with high congestion, which usually incur higher
delays. In addition, the average delay increases with the
growth of network size. This is because in larger networks
the source and destination of a request may be far away from
them in smaller networks. From Fig. 4 (e), we can see that
FLG_SWM takes less running time than those of DA, FLG_LC
and FLG_SC respectively, since DA spends more time in
messaging among different players and FLG_SC takes more
time in the topological sorting of each service graph.

We now evaluated the performance of algorithms
FLG_SWM, FLG_LC and FLG_SC by varying the number of
available VMs in each cloudlet from 5 to 20.

We can see from Fig. 5 (a) and Fig. 5 (c) that with the
increase on the number of VMs, the social welfare increases
but the revenue of service providers decreases. The reason
is that the increase in the number of available VMs for
deployment leads to the decrease in the second-lowest price
used by service providers in pricing. Fig. 5 (b) shows that the
revenues of customers by algorithms FLG_LC and FLG_SC
are lower than that of algorithms FLG_SWM and DA when there
are 5 VMs in each cloudlet. As shown in Fig. 5 (d), the average
delays incurred by algorithms FLG_LC and FLG_SC are lower
than those of algorithms FLG_SWM and DA, respectively. The
rationale behind is FLG_LC leverages a fine-grained trade-
off between the delay and the cost of implementing VNFs in
each service graph, by allowing customers to deviate from its
best response strategy and choose the least congested network
service provider.

C. Performance of Algorithms OL_MT and OL_SC

We end up by evaluating the performance of algorithms
OL_MT and OL_SC against that of algorithms Online_A
and Online_DA in terms of the social welfare, revenues of
customers and service providers, average delay, and running
times, in a network with size of 200. The social welfare
achieved by algorithms OL_MT, OL_SC, Online_A and
Online_DA are shown in Fig. 6 (a). It can be seen that
algorithms OL_MT and OL_SC achieve higher social welfares
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Fig. 4. The performance of algorithms FLG_SWM, FLG_SC and DA.

Fig. 5. The performance of algorithms FLG_SWM, FLG_SC and DA.

Fig. 6. The performance of algorithms OL_MT, Online_A and Online_DA.

because they predict the values of customers with various
side information and select customers based on the context
probability to maximize the total social welfare of all players.
In addition, algorithm OL_SC has a lower social welfare
compared with that of algorithm OL_MT. The reason behind is
that algorithm OL_SC places the VNFs of each service graph
to multiple locations of the cloud network, which increases the
cost of bandwidth resource usages. Specifically, locations for
the VNFs of a service graph in OL_SC incur cost of bandwidth
resource usages if the VNFs are placed to different locations.
However, if all VNFs are consolidated into a single location,
only that location incurs a cost of the bandwidth resource
consumption.

VII. TEST-BED IMPLEMENTATIONS

The rest is to evaluate the performance of the proposed
mechanisms in a real test-bed. Note that after a testbed is built,
it can process requests dynamically. We thus only evaluated
the proposed online games, i.e., OL_MT and OL_SC in the
testbed.

A. Testbed Design Rationale

We observed that an ideal testbed is capable to evaluate
the scalability of the proposed online mechanism in real
environments close to production systems. Specifically, since

Fig. 7. A hybrid test-bed with both physical and virtual network elements.

we consider an NFV market with multiple network service
providers that offer different types of service graphs in a
multi-tier cloud network. It is important to evaluate the per-
formance of the proposed mechanisms in large-scale, flexible
and real testbed. Although a common approach is to build a
hierarchical testbed by using an overlay virtual network and
an underlay physical network, it is hard to tell the capability
of the virtual or physical network determines the algorithm
performance. An alternative is to interconnect the virtual and
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Fig. 8. The performance of algorithms OL_MT, Online_A, and
Online_DA in the test-bed.

physical networks in a single layer such that virtual and
physical network switches are peers and perform identical
functionalities. However, it is challenging to implement a
unified management and control to manage both virtual and
physical network switches.

To enable unified control and management in a flexible,
scalable, and real testbed, we build a hybrid testbed with
both physical and virtual network switches, where virtual
network switches can be scaled dynamically into large scale
and physical ones are used to resemble properties of real
environments. Since we consider a multi-tier cloud network,
we build the testbed in different domains interconnected by
a physical core network, where each domain has a virtual
network, as shown in Fig. 7.

The physical core network composes of five H3C s5560x
physical switches as shown in Fig. 7. It adopts software-
defined networking and VxLan technologies to interconnect
the physical switches, customers, and cross-domain servers.

The virtual network in each domain extends the physical
core network by using Open vSwitch (OVS) [43] nodes as
virtual forwarding devices and deploying VNFs into Docker
instances, to guarantee the large-scale network expansion and
high-speed forwarding.

We deploy them on two servers with each having Intel Xeon
Gold 5118 dual CPUs and 256GB RAM, and 3 workstations
with each having an Intel 10700HF and 16GB RAM. Fur-
thermore, to improve the forwarding efficiency of the virtual
network, we use the Data Plane Development Kit (DPDK) [13]
to optimize the transmission performance of OVS and reduce
the unnecessary computing overhead caused by multiple inter-
nal memory copies and excessive memory paging. We deploy
the VNFs in Dockers to meet their performance and resource
isolation requirements. However, the virtual network bridge
cannot build a multi-tier cloud network, as it do not have
multi-domain support. It does not support forwarding table
operations either. We thus replace the network bridge of
Docker with an OVS node that supports forwarding table
operations.

Joint control of physical and virtual networks: To
integrate the proposed algorithms in the testbed, we manage

Fig. 9. The performance of algorithms OL_MT in simulation and the testbed.

the testbed using an Open Network Operating System
(ONOS) [42] controller. This component provides the platform
traffic routing and configuration management function. ONOS
can control either OVSes or physical switches to forward
data traffic, but it does not support the joint control of both
OVSes and physical switches. Therefore, we implement the
joint control of physical and virtual resources by running agent
services that implement the RestAPI in both physical server
and virtual container. Specifically, each agent service in either
a physical server or OVS to implement VNF placement or
routing decisions obtained by the proposed mechanism.

We use DPDK-based pktgen as a traffic generator to
generate the traffic of the requests. We also implement the
algorithms as northbound applications in ONOS. Several
experimental topologies based on AS1755 were constructed
through the experimental platform to verify the algorithm. All
other settings are the same as the simulations.

B. Evaluation Results

Fig. 8 shows the performance of algorithms OL_MT,
OL_SC, Online_A and Online_DA in terms of social
welfare and running times in the test-bed. As shown in the
figure, the experimental results in the test-bed are similar to
those in the simulation experiment, which verifies the accuracy
of the simulation results and the availability of the proposed
mechanism in the real-world NFV-Market. It can be seen that
algorithm OL_MT delivers much better social welfare than
those of algorithms Online_A and Online_DA. For exam-
ple, when there are 100 requests, OL_MT has around 27.5%,
21.6%, and 7.9% higher social welfare than that of algorithms
Online_A, Online_DA, and OL_SC. From Fig. 8 (c),
we can see that OL_SC takes more running time than those of
OL_MT, Online_A and Online_DA, since OL_SC invokes
FLG_SC and takes more time in the topological sorting on the
service graph of each request.

Fig. 9 illustrates the difference of different algorithm perfor-
mance in the test-bed and the simulation experiments. From
Fig. 9 (a), we can see that algorithm OL_MT in the testbed
has a higher delay jitter compared with that in the simulation
environment. The average delay of OL_MT in the testbed is
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higher than that in the simulation, as shown in Fig. 9 (b).
The reason is that the testbed is deployed in a real network
environment with a large amount of background traffic and
control data across the network, the data queue or buffer in
the network causes delay jitter and increases the average delay.
This also leads to more delayed violations when the algorithm
runs in testbed, which reduces the social welfare, as shown
in Fig. 9 (c). As shown in Fig. 9 (d), OL_MT takes a longer
running time in the testbed than that in simulation. This is due
to that algorithm OL_MT needs to handle more packets related
to network protocols, such as PacketIn and probe packets in
OpenFlow [39].

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we studied the (online) social welfare max-
imization problem for an NFV market in a multi-tier cloud
network. We first devised an efficient incentive-compatible
mechanism and analyzed the existence of a Nash Equilibrium
for the problem. We then designed a contextual MAB based
method for the online social welfare maximization problem
with uncertain values of customers and without the knowledge
of future request arrivals. We finally evaluated the performance
of the proposed mechanisms by simulations and test-bed
implementations. Results show that the performance of the
proposed mechanisms obtain 27% higher social welfare than
those of existing studies.

Built upon the work in this paper, we will consider a more
generic setting of the problem, where multiple infrastructure
providers provide resources for network service providers
as our future work. We will focus on the design of stable
and near-optimal algorithms for a hierarchy NFV market.
In addition, the proposed facility location game also allows
wide applications with similar optimization objectives. For
example, the facility location game can also be extended to
a general social welfare maximization problem with different
types of players, where, there may have large-scale network
service providers leading the market, and small-scale network
service providers may just follow the strategies of these large-
scale ones. Thus, a generic pricing method dealing with
different types of players can be included in the proposed
facility location game.
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