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Abstract—To unveil the hidden value in the datasets of user
equipments (UEs) while preserving user privacy, federated learning
(FL) is emerging as a promising technique to train a machine
learning model using the datasets of UEs locally without uploading
the datasets to a central location. Customers require to train ma-
chine learning models based on different datasets of UEs, through
issuing FL requests that are implemented by FL services in a mobile
edge computing (MEC) network. A key challenge of enabling FL
in MEC networks is how to minimize the energy consumption
of implementing FL requests while guaranteeing the accuracy
of machine learning models, given that the availabilities of UEs
usually are uncertain. In this paper, we investigate the problem of
energy minimization for FL in an MEC network with uncertain
availabilities of UEs. We first consider the energy minimization
problem for a single FL request in an MEC network. We then
propose a novel optimization framework for the problem with a
single FL request, which consists of (1) an online learning algorithm
with a bounded regret for the UE selection, by considering various
contexts (side information) that influence energy consumption; and
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(2) an approximation algorithm with an approximation ratio for
the aggregator placement for a single FL request. We third deal
with the problem with multiple FL requests, for which we devise
an online learning algorithm with a bounded regret. We finally
evaluate the performance of the proposed algorithms by extensive
experiments. Experimental results show that the proposed algo-
rithms outperform their counterparts by reducing at least 13% of
the total energy consumption while achieving the same accuracy.

Index Terms—Energy minimization, federated learning,
machine learning based algorithms, mobile edge computing, UE
selection and aggregator placement.

I. INTRODUCTION

F EDERATED learning (FL) enables users to collaboratively
learn a machine learning model, by performing local train-

ing in user equipments (UEs) and aggregating the local models
to a central site to obtain a global model in a mobile edge
computing (MEC) network. The process of conventional FL
consists of multiple rounds of learning, and within each round,
multiple chosen UEs perform their local model training and
the trained local models are then aggregated by a parameter
server for the next round of training. This procedure continues
until an accurate global model is obtained. Each FL process
aims to obtain a machine learning model. In reality, different
users may require to learn different machine learning models.
As such, in this paper we consider that users issue FL requests to
train different datasets of UEs; while the service provider of the
MEC network implements the FL requests via FL services. For
example, users can issue different FL requests to train machine
learning models for disease classification of different diseases
in healthcare [7].

To perform high-quality implementation of FL requests, the
service provider deploys FL services within the proximity of
UEs, to implement FL requests with low latency and accurate
global models. However, since UEs may have their own func-
tionalities, they perform opportunistic local training for FL. That
is, they may prefer to contribute local training when they are idle
without any significant resource-consuming activities [50], [54].
For instance, intelligent vehicles have their own intensive com-
puting tasks, such as object detection/tracking and traffic sign
detection/classification [66], which make them only available
for local training when they are in charging or parked. As such,
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a UE may not be able to perform a sufficient number of local
training epochs, thereby reducing the accuracy of the obtained
model. Without sufficient number of UEs participating in FL, the
local models will be trained based on insufficient data, which can
reduce the accuracy of the global machine learning model. Thus,
the availability of UEs is fundamentally important to ensure the
accuracy of the model.

A. Motivations and Challenges

It is observed that the availability of UEs usually is uncertain,
which typically depends on various factors, including the energy
level, data quality, and available computation capacities on UEs.
In particular, the energy level of a UE has a direct impact on
the availability of the UE. Specifically, since UEs have limited
battery lives, they usually perform opportunistic local training
for a FL. This means that a UE may not be able to perform a
sufficient number of local training epochs, thereby reducing the
accuracy of the obtained model. It thus is critical to minimize the
energy consumption of UEs to ensure more UEs to participate
in FL, so that highly-accurate global models can be obtained
in the end. In addition, the workload of each UE also plays
a vital role too. For instance, if a UE is already busy with
computation-intensive tasks such as gaming and AR rendering,
it may not be available to train its local data. Besides, the
computing resource constraints on base stations or cloudlets in
an MEC network may also influence the availability of UEs.
For instance, if a UE is registered to a congested base station,
the uploading delay of its trained local model may be high,
which makes the UE be reluctant to participate in FL. Therefore,
a fundamental problem for a service provider of the MEC
network is to minimize the energy consumption of FL requests
by considering the uncertain availability of UEs, such that the
accuracy of each FL request is guaranteed while meeting the
resource constraints on base stations and cloudlets in the MEC
network.

Minimizing the energy consumption of FL poses several
challenges. First, besides the energy levels of each UE, its avail-
ability of participating in FL can be determined by various side
information (defined as context), such as its workload, available
amount of computing resource, and the quality of its data. The
complex interplays of these contexts make the availability of
UEs uncertain. For example, even if a UE chooses to participate
in a FL according to its current energy level, its local training
may not perform sufficient training epochs due to its insufficient
available computing resource. As a result, local training models
with low accuracy will degrade the accuracy of the global model.
To guarantee the accuracy of the global model while minimizing
the consumed energy, how to harness the complex interplay
among contexts of UEs via selecting UEs with accurate local
models? Second, given the distributive and dynamic nature of
UEs, it is vital to ensure that accurate local models be aggregated
timely in each training round of a FL, considering that each train-
ing round has a fixed time length. Otherwise, if the aggregators
are far from UEs, the local model may not be transmitted to
the aggregators due to high transmission latency and the limited
time of each round of training. This consequently leads to a low

accurate global model. Further, UEs are distributed at different
locations of the MEC network, different local models of UEs
have different levels of accuracy. We can distribute a number
of aggregators to base stations close to the UEs with highly
accurate local models. This however can quickly deplete the
computing resource of base stations, as base stations are attached
with light-weight computing units, such as FPGAs and neural
network accelerators [27]. Consequently, the communication
efficiency can be degraded if base stations are too congested
to provide efficient aggregations. Thus jointly selecting a set
of UEs and placing a proper number of aggregators to a set
of strategic locations is critical to aggregate high-quality local
models timely. To tackle the afore-mentioned challenges, we
enable FL in an MEC network from the perspective of context-
aware UE selection and efficient aggregator placement, such
that the energy consumption is minimized without degrading
the accuracy of FL.

B. Novelty and Contributions

To the best of our knowledge, we are the first to minimize
the energy minimization for FL in an MEC network while
guaranteeing the accuracy of the global model with uncertain
UE availability, by building the accuracy of models that consider
not only just energy levels of UEs but also various other context
information. Most existing studies either focused on the energy
consumption of UEs [52], [60], [63] or assumed that UEs are
always available to participate in FL [40], [42], [54]. There are
rarely studies of FL that aim to strive for the finest trade-off
between accuracy and energy levels of UEs. The basic ideas for
the mentioned problems are as follows. For a single FL request,
we propose novel online learning methods via leveraging context
correlations through adopting the contextual multi-armed bandit
technique. In other words, each context group consists of the
contexts with similar losses, which represents similar influences
on the energy consumption of UEs. As a result, each context
group has a representative context. The expert of each context
group follows the recommendation of the representative group.
On the other hand, for multiple FL requests, we leverage the
dynamics of contexts and propose a method to adjust the loss
ranges of each context group.

The main contributions of this paper are summarized as
follows.
� We formulate the problem of energy minimization for FL in

an MEC network with uncertain UE availability, by finding
a trade-off between the energy consumption and accuracy
of the global model.

� We propose a performance-guaranteed optimization
framework for the defined problem with a single FL re-
quest, which consists of an algorithm based on bandits with
correlated contexts for UE selections and an approxima-
tion algorithm with an approximation ratio for aggregator
placement of FL in base stations or cloudlets.

� We devise an online learning algorithm with a bounded
regret for the problem with multiple FL requests, by adopt-
ing an adaptive grouping method to dynamically learn the
correlation among contexts.
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� We evaluate the performance of the proposed algorithms
for FL based on real datasets. Experimental results demon-
strate that the performance of the proposed algorithms
outperform their counterparts by reducing energy con-
sumption at least13%while achieving the similar accuracy.

The rest of the paper is arranged as follows. Section II sum-
marizes the related studies on the topic. Section III introduces
models and defines optimization problems. The proposed opti-
mization framework for the problem with a single FL request is
described in Section IV. Section V devises an online learning
algorithm for the problem with multiple FL requests. Section VI
provides some experimental results on the performance of the
proposed algorithms. The paper is concluded in Section VII.

II. RELATED WORK

Recently, FL has gained increasing interest and atten-
tions [10], [40], [41], [53]. Most existing studies focused on
distributed learning architectures to promote the accuracy of
FL while speeding up the FL convergence [10], [41], [53]. For
example, several FL frameworks including FedAvg [40] and
FedOpt [26] and the hierarchy framework [5] were introduced
as key AI techniques in the edge [10], [40], [41], [53].

There are studies on enabling FL in wireless or MEC net-
works. Most of them focused on minimizing the computing
cost [33], [40], delay [59], or optimizing parameter updating.
For example, Yang et al. [59] aimed to minimize the delay of FL
in wireless networks. Qian et al. [42] studied the privacy-aware
service placement for FL in MEC networks to meet user privacy
requirements. Zhan et al. [62] designed the incentive mechanism
to motivate UEs for participating in FL via an optimal pricing
strategy. Wang et al. [54] analyzed the convergence bound of
the distributed gradient descent for FL to minimize the global
loss. McMahan et al. [40] conducted empirical studies for FL
by considering different model architectures and datasets, to
minimize the communication cost. Xu et al. [58] studied the
problem of aggregator placement and UE assignment for hi-
erarchical FL in MEC networks, by proposing approximation
and heuristic algorithms. He et al. [15] jointly considered the
privacy-preserving and low-cost requirements of FL in an MEC
network, by proposing new efficient scheme and algorithms with
the objective of reducing model training time while meeting
the privacy requirement of users. Wang et al. [55] focused on
the decentralized federated learning, by adopting peer-to-peer
communication without maintaining a global model. They pro-
posed an efficient algorithm to accelerate DFL by integrating
optimization of topology construction and model compression.
Houda et al. [16] proposed a cooperative framework to secure
IoT applications by jointly leveraging the techniques of FL and
game theory. Song et al. [51] focused on the user-level privacy
issue and presented an attack framework based on attacks from
malicious servers. Sun et al. [47] proposed a contract-based
incentive mechanism to customize the payment for each par-
ticipating worker considering personalized privacy preference.
Chen et al. [8] investigated the problem of improving the perfor-
mance of FL in wireless networks by considering user selection
and wireless resource allocations. Most of these studies did not

consider the energy consumptions of both UEs and cloudlets.
Conventional studies on energy consumptions usually focus on
Internet-of-Things (IoT) networks with IoT devices performing
sensing or data collection tasks, most of them do not consider
FL requests [3], [34], [35]. Direct adopting such methods for the
problems in this paper cannot efficiently implement FL requests.

Although works in [36], [52], [60] studied the energy mini-
mization of FL, they did not consider the problem of UE selec-
tion and aggregator placement in an MEC, they only investigated
the energy consumption of UEs. For instance, Yang et al. [60]
aimed to minimize the learning and communication energy
consumptions of UEs while meeting the latency requirement
of a FL request. They however focused on solely the energy
consumption of UEs, and ignored the energy consumption due
to the model aggregation. Tran et al. [52] considered the sim-
ilar optimization objective of minimizing energy consumption,
where all UEs unconditionally transmit their learning results
to base stations, through determining the optimal CPU-cycle
frequency that can be adopted by local training in each UE.
Li et al. [36] designed a flexible communication compression
scheme to minimize the energy consumption of all UEs. Zhan
et al. [63] improved the energy efficiency of FL by balancing
CPU-cycle frequency of UEs. A closely related study with
ours is conducted by Kim et al. [19], they tackled the energy
efficiency of FL from the perspective of dataset and computation
management by striving for a trade-off of the learning efficiency
and the overall energy consumption of UEs. Although their study
investigated the relation of accuracy and energy consumption,
the user selection and aggregator placement are not the major
concerns in their study. The dependency of energy levels on
various contexts did not explore either. Huang [17] investigated
the uncertainty of training and reporting phases of FL in MEC
networks, by proposing a proactive context-aware FL with state
prediction and decision-making based on multi-armed bandits.
However, they did not consider the aggregator placement in their
paper.

III. PRELIMINARY

In this section, we first describe the system model, notions
and notations. We then formulate the problem precisely.

A. System Model

We consider an MEC network G = (BS ∪ CL,E) with a set
BS of base stations and a set CL of cloudlets, as shown in
Fig. 1. Let bsi ∈ BS be a base station, which provides wireless
connections for a set of UEs within its transmission range. Each
base station bsi can execute AI applications in its attached neural
network accelerators, such as Intel Neural Stick 2 [30]. Denote
by clj ∈ CL a cloudlet, which is located in the backhaul of the
MEC network consisting of edge servers with CPU and GPU re-
sources. Due to the size and space limitation of base stations and
cloudlets, both computing and bandwidth resources in them are
capacitated. Let C(bsi) and C(clj) be the computing resource
capacities of base station bsi and cloudlet clj , respectively. Also,
B(bsi) and B(clj) represent the bandwidth resource capacities
of bsi and clj , respectively. The base stations and cloudlets are

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on February 08,2024 at 06:56:06 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: ENERGY OR ACCURACY? NEAR-OPTIMAL USER SELECTION AND AGGREGATOR PLACEMENT 2473

Fig. 1. An example of FL in an MEC network.

interconnected by links/paths inE. Each UE generates a dataset
and trains a learning model on its dataset locally, instead of
transmitting its dataset to a central site for training. Let dsk be
the dataset of UE uek. An example of FL in the MEC network
is shown in Fig. 1.

B. FL Requests, Local Training, and Aggregation Framework

Users of the MEC network issue multiple FL requests to
train the datasets that are distributed in UEs. Note that each
FL request aims to obtain a single accurate machine learning
model; therefore, we assume that they are independent and not
correlated. The implementation of a FL request is referred to as
a FL process, which consists of multiple rounds of local training
and aggregation, until the global model converges to a certain
accuracy.

Each UE performs a number of epochs of local training in each
round of FL to obtain a local model. We adopt a L-Lipschitz
continuous and γ-strongly convex loss function for the local
training of each FL process [59], [60]. In particular, letA be the
accuracy gap between the accuracy of the current epoch with
the targeted accuracy. A can be obtained if at least a number

λ =

⌈
2

(2− Lψ)ψγ log2(1/A)

⌉
(1)

of epochs is performed at a UE, where ψ is the learning rate
and ψ < 2/L [60]. Note that the number of epochs is a lower
bound, which represents the minimum number of epochs needed
to obtain the target accuracy A. We use it to approximate the
number of epochs each UE needs to perform local training at
each round. Besides, due to the heterogeneity of computation
capabilities and workloads, the amount of time needed for
each UE performing an epoch varies and dynamically changes.
Specifically, given that each round of local training usually has
a fixed length of time, each round of FL consists of a local
training epoch, local model updating and aggregation. After
local training, the trained local model has to be uploaded to
its aggregator for aggregation before the round expires [5], [37],
[65]. In particular, when the length of a round is very small or the
local training takes too much time, the trained local models have
to be uploaded in real time. Considering that the availability of
a UE is not known in advance, whether it can update its trained
local model in each round of FL on time is uncertain as well.

The trained local models in UEs are required to be aggregated
to obtain a global model for each FL request. Following the
study in [5], we consider a hierarchy aggregation framework of
FL [38], which consists of a set of aggregators and a FL service,
as shown in Fig. 1. In each round, a number of UEs perform local
training, and each aggregator is responsible to collect the local
models from a number of UEs. Let Am,o be the oth aggregator
of request rm. The aggregated models of all aggregators are sent
to FL service Sm for final aggregation. In the next round, the
FL service broadcasts the current global model to all UEs for
further training. Let Sm be the FL service, and denote by rm a
FL request that requires Sm.

Due to resource capacity constraints on the MEC network,
we consider that the aggregators of each FL request rm can be
distributed at different locations of the network, such as base
stations or cloudlets. By distributing multiple aggregators into
locations within the proximity of UEs, the local models can be
aggregated in their close locations, thereby avoiding sending
them around.

C. Energy Consumption

The service provider of the MEC network wants to minimize
its cost of provisioning FL services while encouraging more
UEs participating in FL processes. To this end, the energy
consumption of UEs, cloudlets and base stations needs to be
minimized, which are defined in the following.

Each UE consumes its energy to perform local training and
transmit its trained local model to an aggregator in each round of
each FL process. On one hand, in each round of implementing a
FL request, UEuek needs to perform a necessary number of local
training epochs to obtain a local model with required accuracy,
computing energy thus is consumed in it. However, each UE uek
may need different lengths of time to perform an epoch of local
training for different FL requests. Denote by tm,k the time that
uek used to train its dataset dsk for an epoch of local training
for FL request rm. Notice that tm,k is uncertain as it depends on
varying factors, including the local training minibatch size and
the energy status of the uek. Let P comp

k be the processing power
of UE uek. The energy consumption of local training in uek for
each round of implementing FL request rm is

elocalm,k = xm,k · tm,k · P comp
k · λ, (2)

where λ is the necessary number of epochs to obtain a local
model with an targeted accuracy (as shown in (1)), and xm,k

is an indicator decision variable that shows whether UE uek
participates the implementation of FL request rm. On the other
hand, each UE uek needs to update its trained local model to
an aggregator for aggregation and receives the updated global
model from FL service Sm, which consumes transmission en-
ergy. Let euptk,i be the energy consumption of UEuek for updating
its local modelwm via bsi. Denote bywm the local model trained
in a UE for FL request rm. We then have

euptk,i = ym,i,k (2 · |wm|/Rk,i)P
comm
k , (3)

where ym,i,k is an indicator variable shows whether the trained
model of uek of request rm is uploaded via base station bsi,
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P comm
k is the data transmission power of theuek that participates

in rk and Rk,i is the achieved data rate of the wireless channel
between uek and bsi, which can be calculated by Shannon
formula [29].

The energy consumptions of base stations and cloudlets of the
MEC network are mainly due to model aggregations for different
FL requests [39]. Let location Locq be a potential location for
placing an aggregator, which can be either a base station or a
cloudlet.

Following existing studies [22], [28], the energy consumption
of a neural network processing unit is proportional to the rate of
aggregation, which is also proportional to the amount of data to
be aggregated and the resource allocated to process a unit amount
of data [28], [61]. Let κq be the amount of computing resource
assigned to aggregate a unit amount of data in locationLocq . The
latency δm,o,q of executing aggregation task in location Locq is

δm,o,q = zm,o,q (|UEm,o| · |wm|)βq · κq, (4)

where UEm,o is the set of UEs that are assigned to aggregator
Am,o of FL request rm and have trained parameters to update,
βq is a constant identifying how long the aggregator at location
Locq takes to aggregate a unit amount of data, and zm,o,q is a
binary indicator variables shows whether there is an aggregator
of FL request rm in location Locq . Let eagtm,o,q be the energy
consumed due to executing the aggregation task of request rm in
Locq , consisting of the energy consumption of its neural network
processing unit, idle power, and leakage power. That is,

eagtm,o,q = zm,o,q · δm,o,q·(
ξj · |Am,o|
δm,o,q

Pmax
q + P idle

q + P leak
q

)
, (5)

where ξj is used to calculate the access rate of neural network
processing units of cloudlet clj as shown in [22], Pmax

q is the
maximum power of all processing units of location Locq , P idle

q

is the idle power, P leak
q is the leakage power of the GPU units

at location Locq , and |Am,o| is the number of instructions of the
aggregation task of request rm in Locq .

D. Resource Consumption of Implementing FL Requests

Implementing FL requests in MEC networks consumes both
computing and bandwidth resources. Since each service Sm is
already running in the system, we assume that its resource has
been preserved. Instead, we focus on the resource consumptions
of aggregators distributed in the MEC network.

The computing resource consumed due to the aggregation
of trained local models by UEs in UEm,o that are assigned to
aggregatorAm,o is proportional to the amount of data that needs
to be aggregated [12], [60], i.e.,

CRm,o,q = zm,o,q · κq · |UEm,o| · |wm|. (6)

Given the computing capacity Cq on each location Locq and
a set R of FL requests, we then have∑

rm∈R
CRm,o,q ≤ Cq. (7)

for each Locq ∈ CL ∪ BS.

Bandwidth resource is consumed in order to transfer the local
models of UEs and aggregated models to service Sm. Let ωq be
the amount of bandwidth resource used to transfer a unit amount
of data. The bandwidth resource needed to transfer |wm| amount
of trained model of each FL request rm thus is ωq · |wm|. The
bandwidth requirement can be modeled as∑

rm∈R
BRm,o,q ≤ Bq, (8)

where BRm,o,q = zm,o,q · ωq · |UEm,o| · |wm| and Bq is the
bandwidth resource capacity of location Locq .

E. Problem Formulation

Given an MEC network G = (BS ∪ CL,E), we consider ef-
ficient and highly-accurate FL in the network, by implementing
a set R of FL requests in FL services provisioned by a service
provider. Each request rm ∈ R requires to train a global model
with a guaranteed accuracy. We formulate the following two
optimization problems.

Problem 1. Assuming that the UE availability is uncertain,
the energy minimization problem for a single FL request in an
MEC network is to jointly select a number of UEs and find an
appropriate number of locations for aggregators in each round
of the FL process for the FL request, such that the total energy
consumption of base stations, cloudlets and UEs is minimized,
subject to their resource capacities and the accuracy requirement
of the FL request.

The energy minimization problem for a single FL request
problem can be formerly formulated as follows.

P1 : min
(
elocalm,k + euptk,i + eagtm,o,q

)
, (9)

subject to the resource constraints (7) and (8) on each location
Locq ∈ BS ∪ CL, and the following constraints,

CRm,o,q ≤ Cq, ∀Locq (10)

BRm,o,q ≤ Bq, ∀Locq (11)∑
bsi∈BS

ym,i,k = 1, ∀uek (12)

xm,k, ym,i,k, zm,o,q ∈ {0, 1}, (13)

where constraints (10) and (11) ensure that the computing and
bandwidth capacities on each location Locq must be met. Con-
straint (12) indicates that the uploading of each local model can
only be forwarded via a single base station. Constraints (13)
guarantee that the indicator variables should be either ones or
zeros.

Problem 2. In reality, FL requests arrive into the system
dynamically, and the admissions of requests may impact the
availability of UEs. Assuming that all requests in R can be
implemented by the MEC network, the energy minimization
problem for multiple FL requests in an MEC network G is to
dynamically implement each FL request in R, jointly select a
number of UEs and find an appropriate number of locations
for aggregators in each round of the FL process for each FL
request, such that the total energy consumption of base stations,
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TABLE I
SYMBOLS

cloudlets and UEs is minimized, subject to resource capacities in
the MEC network and the accuracy requirement of each admitted
FL request.

In other words, the energy minimization problem for multiple
FL requests can be formulated as follows.

P2 : min
∑

rm∈R

(
elocalm,k + euptk,i + eagtm,o,q

)
, (14)

subject to the resource constraints (7) and (8) on each location
Locq ∈ BS ∪ CL, and the following constraints,∑

bsi∈BS
ym,i,k = 1, ∀uek (15)

xm,k, ym,i,k, zm,o,q ∈ {0, 1}. (16)

The differences of Problem 1 and Problem 2 are given in
the following. In Problem 1, we deal with a single FL request
by selecting UEs and placing aggregators for the FL request.
Difference UEs may have different availabilities in each round
of the FL request, the selecting of appropriate numbers of UEs
is thus important to ensure that the FL learn an accurate model.
Therefore, the problem aims to capture the impact of various

factors on the availabilities of UEs, such that UEs with high
quality local model are selected for the FL request. However,
there may be multiple FL requests arriving into the system, and
the admission of currently-arrived requests influence the imple-
mentation of future FL requests, as the resource availabilities
in base stations and cloudlets change dynamically. Problem 2
thus is to investigate the impacts of request admissions on the
performance of FL training in an MEC network with limited
resource availability.

For clarity, the symbols used in this paper are summarized in
Table I.

IV. A PERFORMANCE-GUARANTEED OPTIMIZATION

FRAMEWORK BASED ON CONTEXTUAL BANDITS FOR A SINGLE

FL REQUEST

In this section, we propose an efficient optimization frame-
work with performance guarantees for the energy minimization
problem for a single FL in an MEC network, with the aim
of minimizing the energy consumption while meeting resource
capacity constraints of the MEC network.
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A. Motivation and Basic Idea

To guarantee the accuracy of the learnt global model of a FL
request rm, the key is to select UEs that can train their local mod-
els for a sufficient number of local training epochs. However,
the UE availabilities depend on various contexts of the MEC
network, including the energy level of each UE, data quality, the
available computation capacity of each UE, the achieved data
rate of the wireless channel between the UE and its base station,
etc. In particular, the energy status of UE uek significantly
impacts on time tm,k of each epoch of local training. A UE with
low energy levels may need more local training epochs that are
greater than the length of a FL round, to train a model with the
required accuracy. In addition, the data quality of each UE will
affect the convergence time of the FL because the higher the data
quality (e.g., iid), the faster convergence of the FL model [18].
Therefore, these contexts should be jointly considered in the UE
selection for implementing a FL request.

We also observe that the contexts of different UEs are highly
correlated. For instance, the low energy level of a UE usually
leads to a reluctant participation of FL processes or slow pace
of training. Also, low quality data will increase the energy
consumption of local training. Such correlated contexts jointly
affect the accuracy of each FL as they eventually have impact
on the time of each epoch of each UE. In extreme cases, a UE
may not be able to upload its local model for aggregation in each
round due to that it takes a long time of local training epochs. We
thus propose an online learning algorithm via contextual bandits,
by exploring the correlations among the contexts to predict time
tm,k of each local training epoch for FL request rm in UE uek.
The novelty of algorithm OL_MAB is to leverage the correlations
among contexts by forming context groups according to the loss
ranges, unlike conventional context-aware MAB method.

B. An Online Learning Algorithm for the UE Selection Based
on Bandits With Correlated Contexts

We now devise an online learning algorithm for correlated
contexts, by considering each UE uek as an arm. There is a loss
value of playing each arm (selecting a UE), which is defined as
the energy consumption of UE uek, cloudlets and base stations,
due to admitting UE uek for local training. Denote by lk,t the
loss of an arm (a.k.a, a UE) if the arm is played in round t of
algorithm OL_MAB. Without loss of generality, we assume that
the loss lk,t of each UE is normalized in the range of [0, 1].

The key of the proposed online learning algorithm is to
jointly learn the correlations among contexts and the UE choices
(arms). We adopt a multi-level non-stochastic online learning
method without stochastic distributions on the contexts and
UEs. Specifically, we assume that different contexts with similar
influences on the UE choices are grouped into a context group.
The reason is that there may be a group of factors having similar
influences on the availability of UEs. For instance, the energy
levels of UEs may depend on the workload of UEs [2], [25],
[49]. Namely, when the workload of a UE is high and executing
computing-intensive tasks, it may deplete its energy quickly,
thereby decreasing its probability of participating a FL pro-
cess [5], [48]. There is an expert in each context group to select

the most influencing context, referred to as a representative
context, and recommends UEs according to the representative
context, as shown in Fig. 2.

The online learning algorithm is described as follows.
Context Groups. Given a collection Θ of contexts {Sθ : 1 ≤

θ ≤ |Θ|}, each context θ has a different value in different rounds,
and thus recommends different UEs for each FL request. Specif-
ically, in each round t of implementing a FL request, let Pθ

t be
the probabilities of selecting UEs according to the θth context,
i.e., Pθ

t = {pθ1,t, . . . , pθk,t, . . . pθ|UE|,t} with 1 ≤ k ≤ |UE|.
Correlated contexts may have similar probabilities of recom-

mending UEs. We then divide the contexts into different context
groups. The expert of each group gw chooses a representative
context and recommends UEs according to the probability of
its representative context. Intuitively, the context with the min-
imum loss is preferred. However, selecting the context with
the minimum loss may miss opportunities of exploration in an
exploitation-and-exploration procedure. Also, the minimum loss
of the current round may not lead to a minimum loss in future. We
thus consider that each expert of group gw dynamically learns the
probability of the chosen representative context. Each context in
the beginning has the a uniform probability to be chosen. Let pwθ,t
be the probability that expert of group gw selects the θth context
in round tof the algorithm, andPw

t = {pwθ,t |1 ≤ θ ≤ |gw|}with
|gw| denoting the number of contexts in group gw. Each expert
dynamically adjusts its own probabilities of selecting contexts
to minimize its loss. Specifically, in each round, the expert of gw
updates its probability according to the losses of contexts in the
group. The rationale behind is to adopt an exponential weighting
method [11], [43]. LetLcum

w,θ,t be the accumulative loss of context
θ of group gw in round t, pwθ,t then is updated by

pwθ,t =
exp

(
−ηtLcum

w,θ,t

)
∑

1≤k≤|gw | exp
(
−ηtLcum

w,k,t

) .
where ηt the learning rate of the algorithm in round t.

UE Selection. Once the expert selected a representative con-
text θ, it will recommend UEs according to the probabilities of
context θ, i.e., the probabilities of Pθ

t of θ. Let Θg be the set of
representative contexts of all context groups. The probability of
selecting UE uek is the average of the corresponding probability
of all representative contexts in Θg , i.e.,

pk,t = Ek∼Pθ
t
pθk,t, ∀θ ∈ Θg. (17)

Then, each UE uek is randomly selected with probability pk,t.
Loss and Probability Updating Policies. Let Lw,θ,t and Lw,t

be the losses of the θth context and expert of group gw in round
t, respectively.

The loss of a context is the sum of the losses of the selected
UEs, if it is selected as a representative context. Note that the
unselected contexts and UEs do not contribute its loss at the
current round t of a FL process. Let UEt be the set of selected
UEs in round t, the estimated loss of an arm (UE) according to
context θ is

l̃k,t =
(
lk,t/

(
pk,t · Eθ∼Pw

t
pwθ,t
))

11k∈UEt
, (18)
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Fig. 2. An illustration of the steps of the proposed online learning algorithm for the UE selection based on bandits with correlated contexts.

where 11k∈UEt
= 1 if k ∈ UEt. The rationale behind is to con-

struct an unbiased forecaster that estimates the loss of selecting
an arm. Such an unbiased forecaster needs to jointly consider
the expected probability of selecting a context and choose an
arm according to the representative context. Once the UEs are
selected according to context θ, we update the probabilities of
selecting UEs of context θ by

pθk,t+1 =
exp

(
−ηt l̃cumk,t

)
∑

1≤k′≤|UE| exp
(
−ηt l̃cumk′,t

) , (19)

where l̃cumk,t is the estimated cumulative loss of uek in round t.
The loss of an expert depends on which context in the group

is selected as the representative context. Since each context
belongs to a single context group and only a single context is
selected as a representative context of each group, the estimated
loss of an expert is

L̃w,t =
(
Lw,θ,t/p

w
θ,t

)
11Θw,t=θ, (20)

where condition Θw,t = θ indicates that context θ is selected as
the representative context of group gw and Lw,θ,t denotes the
actual loss of context θ of group gw in round t. We update the
probabilities of selecting representative contexts. Let L̃cum

w,θ,t be
the estimated cumulative loss of context θ in group gw in round
t, we then have

pwθ,t+1 =
exp

(
−ηtL̃cum

w,θ,t

)
∑

1≤θ′≤|gw | exp
(
−ηtL̃cum

w,θ′,t

) . (21)

The reason why we adopt these updating policies is that if the
current loss of a UE is high, the probability of selecting the UE
should be reduced. On the other hand, a UE with less loss may
intend to have less loss in future, too.

Steps of the Algorithm. Given the contexts, context groups,
and loss updating strategy, the problem is reduced to an exponen-
tial weighting algorithm with experts shown in [4], referred to as
Algorithm Exp4. The basic steps of Algorithm Exp4 consists

Algorithm 1: OL_MAB.
Input: An MEC network G, a set of UEs, a FL request rm,

and a finite time horizon T .
Output: The selected UEs for FL request rm.

1: Let (ηt)1≤t≤T be a nonincreasing sequence of real
numbers;

2: Initially, each UE is selected with a uniform
distribution, i.e., pθk,0 for all UEs and contexts;

3: Similarly, each context is selected by an expert with
the same probability pwθ,0;

4: for t← 1, . . . , T do
5: Each expert selects a representative context in its

group gw with probability pwθ,t;
6: Each UE uek (a.k.a. an arm) is selected with

probability pk,t, where pk,t = Ek′∼Pθ
t
pθk′,t;

7: Compute the estimated loss for each UE by (18);
8: Compute the estimated loss for each expert by (20);
9: Update the probability of selecting an UE of each

context θ by (19);
10: Update the probability of selecting a context in

group gw by (21);
11: end for

of (1) collecting the probabilities of all representative contexts;
(2) calculating the expected probability of selecting each UE,
according to the collected probability sets of all experts; (3)
selecting UEs according to the expected probabilities in step
(2); and (4) updating the losses of both the selected UEs,
representative contexts and experts. The detailed algorithm is
given in Algorithm 1, referred to as Algorithm OL_MAB.

C. An Approximation Algorithm With Selected UEs

So far, we have shown how to select UEs for a FL process in an
MEC network. We now place the proper number of aggregators
to collect trained local models from UEs and send them to the
FL service for the final aggregation.
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Fig. 3. An example of the auxiliary graph G′ = (V ′, E′).

It must be mentioned that each base station or cloudlet
has capacitated resource for local model aggregations. Given
the available computing C(Locq, t) and bandwidth resources
B(Locq, t) in each round t, we divide each location Locq into a
number of ‘resource splits’ with each resource split having the
computing and bandwidth resources to process a single local
model wm. Specifically, each location Locq has

RSq =

⌊
min

{
C(Locq, t)

|wm|maxq κq
,
B(Locq, t)

|wm|maxq ωq

}⌋
(22)

numbers of resource splits. Let sz,q be the zth resource split of
location Locq. Each resource split is required to has sufficient
amount of resource to aggregate a single local model. It then
is crucial to determine the amount of resource in each resource
split to be allocated to aggregate a single local model. Recall that
the total size of local models of the UEs that are assigned to an
aggregator for aggregation determines its resource demands. We
thus use a virtual aggregator to represent action of aggregating
a local model, and the resource demand of a virtual aggregator
is calculated by

|wm| ·max
q
κq (23)

of computing resource and the amount

|wm| ·max
q
ωq (24)

of bandwidth resource. The rationale behind is that the trained
model of each UE can be assigned to a location with enough
computing resource for its aggregation.

GivenRSq resource splits of each location Locq and the con-
cept of virtual aggregators, we reduce the problem of aggregator
placements to an unsplittable minimum-cost multicommodity
flow problem in an auxiliary graph G′ = (V ′, E ′), illustrated in
Fig. 3. The rationale behind the construction of the auxiliary
graph is to jointly determine the assignments of UEs to base
stations and place aggregators to locations in BS ∪ CL without
violating the resource capacities of locations. To this end, we
first construct a layered auxiliary graph and distribute such
decision makings to different layers of the graph. In particular,
the auxiliary graph G′ has 4 layers:
� Layer 1 contains a virtual sink that represents the location

of service Sm FL request rm, denoted by vt.

Algorithm 2: Placement.
Input: An MEC network G, a set UEt of selected UEs for

model updating of a FL request rm, and finite time
horizon T .

Output: A number of aggregators and their locations for rm.
1: for t← 1, . . . , T do
2: Construct an auxiliary graph G′ as shown in Fig. 3;
3: Find a unsplittable minimum-cost multicommodity

flow f in the constructed auxiliary graph, with each
commodity having source uek, sink vt, and demand
1;

4: for each UE uek do
5: Find its path (uek, bsi,p, so,q) ∈ f ;
6: Assign uek to base station bsi;
7: Send the trained model of uek to Locq for

aggregation;
8: For the trained model wm that is sent to base

station bsi, assign amounts |wm| ·minq κq and
|wm| ·minq ωq of computing and bandwidth
resources;

9: end for
10: end for

� Layer 2 is composed of resource splits of locations inBS ∪
CL.

� Layer 3 is considered as the access layer with base stations
in BS that relay their received local models for aggregation.
In particular, we create a number of virtual base stations
for each base station bsi. Each virtual base station provides
wireless access for a single UE within the transmission
range of bsi. Let bsi,p be the pth virtual base station of bsi
with 1 ≤ p ≤ RSq.

� Layer 4 has the selected UEs.
We add edges into G′ by interconnecting nodes in different

layers. The virtual root is connected to every resource split of
layer 2. That is, there is an edge from virtual sink vt to the
oth resource split of each location Locq , i.e., (vt, so,q). The
weight of edge (vt, so,q) is set to the energy consumption of
Locq for processing an amount |wm| of the trained model of rm,
i.e., w(vt, so,q) = eagtm,o,q . We interconnect the resource splits in
layer 2 with the base stations in layer 3. Specifically, there is
an edge between a resource split of each Locq in layer 2 and
a virtual base station bsi,p of bsi, and its weight is set to the
energy consumption for bsi to relay the trained model of wm,
i.e., w(so,q, bsi,p) = euptk,i . Afterwards, we connect each virtual
base station in layer 3 with UEs in layer 4. The weight of each
edge is set to the energy consumption of uek for local training,
that is, w(uek, bsi,p) = elocalm,k .

We then find an unsplittable minimum-cost multicommodity
flow in G′. Specifically, there is a ‘commodity’ for each UE
with source uek, sink vt, and demand 1. Let f be the obtained
unsplittable flow. If path (uek, bsi,p, so,q) ∈ f , uek will update
its trained model via base station bsi for the aggregation in
Locq . The detailed steps are shown in Algorithm 2, referred
to as Algorithm Placement.
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D. Algorithm Analysis

In the following, we analyze the regret incurred by the on-
line learning algorithm OL_MAB. We consider an oblivious
adversary in the online learning process, where experts select
representative contexts and make recommendations, the regret
is defined as the maximum regret of all experts.

Let R(T,w) be the regret of an expert of group gw in time
horizon T , we have its expectation E(R(T,w)) by

E (R(T,w)) = E

(
T∑

t=1

Lw,Θw,t,t

)

− min
θ=1,··· ,|gw |

E

(
T∑

t=1

Lw,θ,t

)
. (25)

Given W groups, the definition of regret is

R(T ) = maxw=1,··· ,W E (R(T,w)) . (26)

Theorem 1. Let C be the set of all contexts and |C| be the
number of contexts in C. The regret of Algorithm OL_MAB is
|C|
2 Tη

2 + ln |C|
η if η1 = η2 = · · · = ηT = η. The time complex-

ity of OL_MAB is O(T (Θ + |UE|)).
Please see Appendix, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/,TMC.2023.3262829, for the detailed proof.

Theorem 2. Given the selected UEs UEt in a single time
slot t, Algorithm Placement delivers a feasible solution to the
energy minimization problem for a single FL request in an MEC
network. The approximation ratio of the obtained solution is ϑ,
and the number of admitted local models is (0.075− ε)|UE|,
whereϑ = max{maxq κq

minq κq
,
maxq κq

minq ωq
}, and 0 < ε ≤ 0.075. Its time

complexity is O(|UE| · (|BS|+ |CL|)2).
Please see Appendix, available in the online supplemental

material, for the detailed proof.

V. AN ONLINE LEARNING HEURISTIC FOR THE PROBLEM

WITH MULTIPLE FL REQUESTS

In this section we consider the energy minimization problem
for FL in an MEC network with multiple FL requests, where each
FL request requires to train a global model via a FL process.

A. Algorithm Overview

We devise an efficient algorithm to implement FL requests
in a set R. The admission of a FL request in the MEC network
influences different contexts of the network, such as resource
availabilities and energy statuses of UEs. Consequently, the con-
texts change dynamically with implementations of FL requests
one by one. As such, the selected UEs in the previous contexts
may not be optimal in the new context of the network. That
is, each context may change its recommendation probabilities
on UE selections dynamically with the implementation of FL
requests in each round t. Unfortunately, simply admitting each
request one by one by invoking algorithm OL_MAB may not be
able to accurately capture such dynamics of contexts.

Our basic idea to capture the afore-mentioned accumulative
impact of multiple FL requests on the contexts by proposing
an adaptive online learning algorithm to dynamically admit FL
requests, by allowing each context group in Algorithm OL_MAB
to be dynamically updated according to the latest context in-
formation. In particular, we observe that the dynamics of each
context group needs to maintain a certain level of stability and
embrace exploring the optimality of decisions made by experts
(analog to explore and exploit process). It must be mentioned
that OL_MAB actually learns different aspects of the implemen-
tation of FL requests. On the other hand, we here focus on the
dynamical changes of contexts, by dynamically updating the
context group after the admission of each FL request.

B. An Online Learning Algorithm

We aim to classify contexts with similar losses on energy
consumptions into a context group gw, where w is the index
of group gw with 1 ≤ w ≤W . Initially, we divide the range
of losses of contexts into W equal intervals, and the contexts
whose losses lie in an interval w are considered as the members
in context group gw. As the admission of FL requests proceeds,
the losses of contexts in each group gw may change. To maintain
a certain level of stability, we assume that the expert of group gw
monitors and controls the group dynamics of gw. In particular,
the expert of group gw oversees the losses of its contexts and
makes recommendations based on the observed losses. To this
end, it adjusts the loss range of its context group so that only the
context with losses in the range can be included in the group.

A simple method is to allow each expert to freely adjust
its range of losses, such that contexts with lower losses may
be included in its loss range. This however may lead to all
experts converging to similar ranges in which contexts have the
lowest losses. Also, this method does not favor the contexts
that may have a sudden low loss in future, thereby missing
the opportunities of minimizing the losses of experts. To avoid
such cases, we limit the adjustment steps of each expert. Let
[LBw, UBw] be the range of losses that the contexts are in gw.
Note that this range is equally divided in the very beginning, and
each expert is in charge of only one interval.

To allow a certain level of exploration, we enable each expert
to expand its range by a given increment ζ, before the admission
of each FL request. That is, in each round t, if the expert of
gw chooses to expand its range by ζ, its new range will be
[LBw − ζ, UBw + ζ]. This will include more contexts into the
context group of the expert. Thus, the expert will have more
opportunities to explore ‘better’ contexts. Specifically, in each
round t, each expert decides whether to expand its range with
probabilityσwith0 ≤ σ ≤ 1. After determining the ranges of all
experts, we obtain the context group. Note that such an expansion
strategy may lead to the overlapping of loss ranges of experts,
making a context being included into multiple context groups.
The incurred benefit is leading some valuable contexts to be
selected with higher probability by different experts.

Given the adjusted context groups decided by the experts, we
admit FL requests one by one, by invoking the proposed algo-
rithms OL_MAB and Placement. Each expert then updates
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Algorithm 3: OL_MULTI.
Input: An MEC network G, a set of UEs, a set R of FL

requests, and a finite time horizon.
Output: Implementing all requests in R.

1: Let (ηt)1≤t≤T be a non-increasing sequence of real
numbers.

2: Initially, each UE is selected with a uniform
distribution, i.e., pθk,0 for all UEs and contexts;

3: for t← 1, . . . , T do
4: for rm ∈ R do
5: Each expert decides whether to expand its loss

range by ζ with probability σ;
6: Group contexts according to the loss range of each

expert.
7: if t = 1 then
8: Each context in the group is selected by its

expert with the same probability pwθ,0;
9: end if

10: Execute steps from step 5 to step 10 in
Algorithm OL_MAB;

11: Execute steps from step 2 to step 9 in
Algorithm Placement to find a number of
aggregators and their locations for FL request rm;

12: end for
13: end for

its loss range after the admission of a FL request, as this may
impact the context significantly. The detailed steps are shown in
Algorithm 3, referred to as Algorithm OL_MULTI.

Theorem 3. The regret of the Algorithm OL_MULTI is
|C|
2 Tη

2 + ln |C|
η + |R|σχζ, where χ is a given constant with

0 < χ ≤ 1, σ is the probability that an expert expands its loss
range, and ζ is the increment that each expert uses to expand its
lose range. Its time complexity is O(|R| · T (2Θ + |UE|)).

Please see Appendix, available in the online supplemental
material, for the detailed proof.

VI. EXPERIMENTS

In this section, we first evaluated the performance of the pro-
posed algorithms for the energy minimization problem for FL in
an MEC network. We then investigated the impacts of important
parameters on the performance of different algorithms.

A. Parameter Settings

We consider an MEC network with 100 to 500 UEs, 5 to 15
base stations and cloudlets. The MEC network generated by tool
GT-ITM [14]. We consider the following settings of contexts of
UEs: the achieved data rate of the wireless channel between UEs
and base stations varies within the range of [1, 5] Mbps [45], and
the available computation capacity of all UEs is also sampling
from the same uniform distribution within [50%, 200%] [24].
The computing and bandwidth resource capacities of a location
are in the range of [1,000, 5,000] MHz and [5, 20] Mbps [42],
respectively. The data transmission power of a UE and a base sta-
tion is randomly withdrawn from [5, 33] dBm [13]. The amount

of computing resource assigned to aggregate a unit amount of
data in a location is randomly drawn from [0.1, 0.3] MHz [1]. The
maximum power of all processing units of location is randomly
withdrawn from [60, 100] Watt and the idle power is 5 Watt [21].
The minibatch size is drawn from [5, 10] [32]. The learning rate
η,L of theL-Lipschitz,ψ and γ of the γ-strong convex loss func-
tion are set to 0.5, 4, 0.1, and 2, respectively [60]. Our experiment
is based on an open source framework FedML [23]. The number
of global rounds is fixed at 150, and the number of FL requests
is fixed to 10. Unless otherwise specified, the afore-mentioned
parameters are considered as default parameters.

Models and Datasets. Each FL is performed based on datasets
MNIST [31], FedEMNIST [44], and Shakespeare [6] with three
different models: 1) Logistic regression on the MNIST dataset;
2) CNN on the FedEMNIST dataset; and 3) RNN on the
Shakespeare dataset. We adopt FedAvg [40] and FedOpt [26]
FL frameworks. By default, we use the FedAvg based on the
FedEMNIST dataset. The training model is CNN, which uses
the AlexNet architecture, and the model size |wm| is around
230M. Data samples are assigned to each UE uniformly.

Benchmarks. We compare the proposed algorithm
OL_MULTI against the following algorithms.
� The first benchmark is the POWER-OF-CHOICE algo-

rithm in [9], which speeds up the global model convergence
by selecting UEs with higher local losses in each round of
FL. For the sake of fairness, the number of UEs selected
by algorithm POWER-OF-CHOICE is consistent with the
number of UEs selected by the proposed UE selection of
this paper in each round.

� The second benchmark is algorithm RFL-HA in [56],
which divides UEs intoK clusters with each cluster having
an aggregator to aggregate its local models. Note that
RFL-HA does not consider the UE selection, and all UEs
can participate in the FL process. RFL-HA clusters UEs
according to their data sizes, and uses an aggregator to
collect the local model of UEs in each cluster. For the
sake of fairness, the number of UEs selected by algorithm
RFL-HA is consistent with the number of UEs selected by
the our algorithms in each round.

B. Results

Energy, Accuracy, and Convergence Speed. We first com-
pared the performance of algorithm OL_MULTI against that
of POWER-OF-CHOICE and RFL-HA in terms of total en-
ergy consumption and the average global accuracy of all FL
requests, by varying the number of UEs from 100 to 500.
Fig. 4 shows the results, from which we can see that algorithm
OL_MULTI has around 13% and 15.5% lower energy consump-
tion compared with those of POWER-OF-CHOICE and RFL-
HA, while delivering the highest model accuracy. This is because
OL_MULTI minimizes the energy consumptions of both UEs
and cloudlets/base stations. In addition, OL_MULTI considers
various contexts relating to energy consumption to harness the
uncertain local training time of each UE. It also selects UEs
with low energy consumption and necessary model accuracy
to participate in each round of FL. Also, Fig. 4(a) indicates
that the energy consumption of OL_MULTI increases with the
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Fig. 4. The impact of the total number of UEs on the performance of algorithms
OL_MULTI, POWER-OF-CHOICE and RFL-HA.

Fig. 5. The accuracy and loss of algorithms OL_MULTI, POWER-OF-
CHOICE and RFL-HA.

growth of the number of participating UEs. The reason is that
more UEs imply more local trainings and aggregating a higher
accurate local models, pushing up the energy consumptions of
both UEs and cloudlets/base stations in the MEC network. Also,
Fig. 4(b) shows that with the increase on the number of UEs,
the accuracy of the global model fluctuates. The reason is that
when the number of participating UEs reaches a certain number
in the FedAvg, the influence of simply increasing its number on
the global model training is trivial.

We then showed the accuracy and loss of algorithms
OL_MULTI, POWER-OF-CHOICE, and RFL-HA, while fixing
the number of UEs at 300. The results are shown in Fig. 5.
We can see that OL_MULTI converges faster and obtains a
higher accuracy than the other comparison algorithms. This
is because OL_MULTI selects UEs that perform well in local
training by algorithm OL_MAB, and finds a suitable aggregator
for each UE by algorithm Placement. In contrast, algorithm
POWER-OF-CHOICE selects UEs to participate in FL process
based on higher local losses in each round of FL without
considering the uncertain UE availability. This may lead some
unavailable UEs with low energy to be chosen, and the failing of
uploading their local models slows down the convergence and
impacts the accuracy of the FL. Besides, algorithm RFL-HA
takes the amount of data as the single metric of clustering without
considering the aggregator placements. On one hand, the amount

Fig. 6. The performance of Algorithms OL_MULTI, POWER-OF-CHOICE
and RFL-HA based on different datasets to train FL models with different
structures.

of data does not lead to high accurate models. On the other hand,
the trained local models may not be uploaded successfully if
the aggregators are placed far from UEs, which consequently
reduces the convergence speed and accuracy.

We third evaluated the energy consumption and convergence
speeds of algorithms OL_MULTI, POWER-OF-CHOICE and
RFL-HA based on different datasets to train FL models with
learning algorithm of linear regression (LR), CNN, and RNN, by
fixing the number of UEs to 300. Fig. 6(a) shows that algorithm
OL_MULTI consumes the lowest amount of energy among the
three mentioned algorithms no matter which learning algorithm
is adopted. The reason is that algorithm OL_MULTI carefully
finds a trade-off of the energy consumption and accuracy of FL,
and its benchmark algorithms do not jointly consider energy and
accuracy. Further, the gap of energy consumptions is enlarging if
more complex learning algorithms are adopted. For instance, the
gap of energy consumptions between algorithms OL_MULTI
and RFL-HA under MNIST by LR is smaller than that under
Shakespeare by RNN. The reason is that higher energy con-
sumption leads to higher performance gaps, which depends on
the complexity of performing a round of local training, and LR
is the simplest one and consumes less energy for local training
and aggregation than RNN and CNN. In addition, Fig. 6(b)
shows the convergence speeds of algorithm OL_MULTI based
on three applications scenarios with different datasets, from
which we can see that OL_MULTI converges quickly no matter
what learning algorithm is used for local training.

Performance in Real FL Frameworks. To show that algorithm
OL_MULTI can be applied to real FL frameworks, we extend
OL_MULTI to the FedOpt FL framework [26], which explores
the interplay between the UE heterogeneity and communication
efficiency [26]. Fig. 7 shows the results, from which we can
see that our algorithm OL_MULTI consumes less energy than
algorithms POWER-OF-CHOICE and RFL-HA while guaran-
teeing the accuracy of the global model. In addition, Fig. 7(a)
shows that the overall energy consumption of the algorithms
based on FedOpt is lower than FedAvg, because FedOpt im-
proves communication efficiency, resulting in a low energy
consumption due to data transmissions. Fig. 7(b) illustrates that
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Fig. 7. The performance of algorithms OL_MULTI, POWER-OF-CHOICE
and RFL-HA under FedOpt and FedAvg.

Fig. 8. The impact of the number of UEs on the performance of algorithm
OL_MULTI.

the performance of OL_MULTI based on FedOpt. We can also
see that algorithm OL_MULTI achieves higher accuracy and
faster convergence than algorithms POWER-OF-CHOICE and
RFL-HA.

Impact of Parameters. We finally investigated the impact of
the number of UEs on the performance of algorithmOL_MULTI
in terms of average global accuracy, loss, the number of selected
UEs and the average number of aggregators. Fig. 8(a) and (b)
plot the curves of accuracy and loss of CNN on the FedEMNIST
dataset, from which we observe that the average accuracy of the
global model generally increases gradually as the number of
UEs increases. The reason is that more UEs imply that more
highly available UEs can be selected to perform local training,
which consequently contribute to highly accurate local models.
The reason is that |UE| represents the number of UEs that can
be selected to participate in FL process. The larger the |UE|,

the larger the number of UEs selected by OL_MULTI, which
means training more data and aggregating more local models in
each round, leading to a higher accuracy. However, the accuracy
increase is much slower when the number of UEs varies from
300 to 400. The rationale behind is that the FedAvg is adopted.
As the number of UEs keeps increasing from 300 to 400, some
relatively low-accuracy local models may also participate in the
aggregation, thereby reducing the accuracy of the global model,
such overfitting of the global model should be avoided.

Fig. 8(c) shows the number of selected UEs participating in
FL by algorithm OL_MULTI in each round, when the number
of UEs is set to 100, 300 and 500, respectively. We can see that a
larger number of UEs are initially selected, and the number drops
with the growth of the number of rounds of FL. The rationale
behind is that algorithm OL_MULTI selects each UE with a
uniform probability, and it updates the probability of selecting
each UE progressively as the rounds of FL grow. Initially, a
higher number of UEs are selected, as OL_MULTI selects a UE
with a low probability and a higher number of UEs are needed to
guarantee the accuracy. As the FL continues in the rest of rounds,
some UEs are identified as those who could contribute to high
accurate local models with low energy consumption. Therefore,
the number of UEs drops as the FL proceeds.

Fig. 8(d) illudtrates the number of aggregators needed in the
MEC network. Itcan be seen that the number of aggregators
placed increases with the increase on the number of UEs. The
reason is that as more UEs participate in FL process, more local
models need to be aggregated, so more aggregators need to be
placed in the MEC network to collect trained local models. In
addition, when the number of UE increases from 450 to 500, the
number of aggregators increases significantly. This is because
the resources of potential locations in the MEC network are
limited, aggregators may be distributed in more locations to
meet their capacity requirements, thus significantly increasing
the number of aggregators needed.

VII. CONCLUSION

In this paper, we studied the energy minimization problem for
FL in an MEC network with uncertain UE availability. We first
proposed a novel optimization framework for the problem with a
single FL request that consists of two parts: (1) An optimization
framework is proposed, and an online learning algorithm for
the UE selection built upon the framwork then is developed,
which considers various contexts (side information) that may
have impact on energy consumptions; and (2) an approximation
algorithm with an approximation ratio for finding an appropriate
number and locations of aggregations in each FL process is
proposed. We then devised an online learning algorithm with
a bounded regret for the problem with multiple FL requests. We
finally evaluated the performance of the proposed algorithms by
extensive experiments. Experimental results demonstrate that
the performance of the propsoed algorithms outperform com-
parison benchmarks by at least 13% lower energy consumption
while achieving the similar accuracy of the global model.
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