

Information Processing Letters 51 (1994) 237-243

Information Processing Letters

Realization of an arbitrary permutation on a hypercube

Xiaojun Shen *, Qing Hu, Weifa Liang

Computer Science Telecommunications Program, University of Missouri – Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, USA

Communicated by D. Gries; received 15 October 1993; revised 28 April 1994

Abstract

We present an explicit combinatorial algorithm for constructing a 2-realization for any given permutation on a circuit-switched d-dimensional hypercube (d-cube) such that the total number of directed edges used in the realization (counting every repetition) is bounded by $d2^d$, the total number of directed edges in the d-cube. As a corollary, this result implies a (2d-3) step realization on a packet-switched d-cube $(d \ge 3)$.

Key words: Circuit-switched network; Hypercube; Interconnection network; Permutation capability; Algorithms; Computer architecture

1. Introduction

The processors in a multi-processor system are connected by an interconnection network (or network for short). A static network can be represented by a directed graph G = (V, E), where $V = \{0, 1, 2, ..., n-1\}$ represents n processors and a directed edge (v, w) in E represents a communication link from v to w. G is assumed to be strongly connected, so that at least one path exists from any processor to any other processor. The communication requirement is usually represented by an n-permutation π that specifies a distinct destination vertex $\pi(v)$ for each $v \in V$. Realizing a permutation is to find n paths,

A d-dimensional hypercube (d-cube) H^d contains $n=2^d$ vertices such that there is a pair of opposite directed edges between two vertices if and only if their binary representations differ in exactly one bit position. An edge (u, v) is called an *i*th-dimensional edge if u and v differ in the *i*th bit, i.e., $u=u_du_{d-1}\dots u_i\dots u_2u_1$, and $v=u_du_{d-1}\dots u_i\dots u_2u_1$. To determine the rearrangeability of a d-cube is an interesting but difficult problem. It has been shown in [9] that any permutation on a 2-cube (or a 3-cube) is 1-realizable, with every path being the shortest. It was conjectured in [9] that any permutation is

 $^{\{}path(i, \pi(i)) | 0 \le i < n\}$, connecting each vertex i to its destination $\pi(i)$. A permutation π is called k-realizable if a realization exists such that any edge in the network is in at most k paths. A 1-realization corresponds to a set of n edge-disjoint paths. A network is called rearrangeable if all n! different permutations are 1-realizable [2,6].

^{*} Corresponding author.

1-realizable, with every path being the shortest on any d-cube. Lubiw [5] gave a counter-example to the conjecture. However, it is still unknown whether or not a d-cube is rearrangeable if the paths are not required to be the shortest. On the other hand, the 2-realizability of any permutation has been known [5]. However, the previous algorithm is not explicit.

This paper presents an explicit algorithm for constructing a 2-realization of an arbitrary permutation on a d-cube such that the total number of edges used in the realization (counting every repetition) is bounded by $d2^d$, the total number of edges in the d-cube. In other words, any edge in the d-cube is, on average, used at most once (reaching the same average number as that in the original conjecture [9]). As a corollary, our result implies that any permutation is realizable on a packed-switched d-cube [9] within 2d - 3 ($d \ge 3$) steps, a slight improvement over the previous result, 2d - 1.

It is easy to see that removing all *i*th-dimensional edges will break a *d*-cube into two (d-1)-cubes. For a given *n*-permutation π , $n=2^d$, our realization algorithm applies the following divide-and-conquer strategy: (i) break the *d*-cube into two (d-1)-cubes by removing the *d*th-dimensional edges, and compute two *m*-permutations, π_1 and π_2 from π , where $m=n/2=2^{d-1}$; (ii) 2-realize π_1 and π_2 on H_1 and H_2 recursively; (iii) use the *d*th-dimensional edges to combine the two realizations on H_1 and H_2 into a 2-realization of π on the original *d*-cube.

2. The divide stage

First, we break the *d*-cube into two (d-1)-cubes, H_1 and H_2 , by removing the *d*th-dimensional edges. Therefore, H_1 contains the vertex set $V_1 = \{0, 1, ..., m-1\}$ and H_2 contains the vertex set $V_2 = \{m, m+1, ..., 2m-1\}$, where $m = n/2 = 2^{d-1}$. It is clear that, before the partition, there was a pair of *d*th-dimensional edges between vertex i in H_1 and vertex i+m in H_2 . Let i' = i + m. Then, there was a pair of *d*th-dimensional edges between vertex i and vertex i'.

Second, we show how to compute two m-permutations from n-permutation π , which will be the m-permutations on H_1 and H_2 . Permutation π can be viewed as an ordered sequence of n numbers $\pi(0)$, $\pi(1)$,..., $\pi(n-1)$, $0 \le \pi(i) < n$, and $\pi(i) \ne \pi(j)$ if $i \ne j$. Let $M = \{0, 1, ..., m-1\}$. We construct two sequences ψ_1 and ψ_2 of m numbers as follows.

For $i \in M$, $0 \le i < m$,

$$\psi_1(i) = \begin{cases} \pi(i) & \text{if } \pi(i) < m, \\ \pi(i) - m & \text{if } \pi(i) \ge m, \end{cases}$$

and

$$\psi_2(i) = \begin{cases} \pi(i+m) & \text{if } \pi(i+m) < m, \\ \pi(i+m) - m & \text{if } \pi(i+m) \geqslant m. \end{cases}$$
(2.1)

Observation 1. ψ_1 and ψ_2 may not be permutations, since $i \neq j$ does not imply $\psi_1(i) \neq \psi_1(j)$ and $\psi_2(i) \neq \psi_2(j)$.

Observation 2. Each number in M occurs exactly twice among ψ_1 and ψ_2 .

We will transform ψ_1 and ψ_2 into two *m*-permutations by exchanging some numbers between ψ_1 and ψ_2 . Specifically, we will find a subset $I \subseteq M$ such that the two sequences π_1 and π_2 defined below are *m*-permutations.

$$\pi_{\mathsf{I}}(i) = \begin{cases} \psi_{\mathsf{I}}(i) & \text{if } i \notin I, \\ \psi_{\mathsf{I}}(i) & \text{if } i \in I, \end{cases}$$

and

$$\pi_2(i) = \begin{cases} \psi_2(i) & \text{if } i \notin I, \\ \psi_1(i) & \text{if } i \in I. \end{cases}$$
 (2.2)

Third, we show how to determine the set I. Given ψ_1 and ψ_2 defined in (2.1), we define a binary relation S: (i) $(i, i) \in S$; (ii) $(i, j) \in S$ if $\psi_1(i) = \psi_2(j)$ or $\psi_1(j) = \psi_2(i)$, $0 \le i, j < m$. The transitive closure of S induces an equivalent relation on M that partitions M into equivalent classes, denoted by $\{D_1, D_2, \ldots, D_h\}$.

Let $D = \{p_1, p_2, ..., p_k\}$ be an equivalence class such that

$$\psi_{1}(p_{2}) = \psi_{2}(p_{1}),
\psi_{1}(p_{3}) = \psi_{2}(p_{2}),
\dots
\psi_{1}(p_{k}) = \psi_{2}(p_{k-1}).$$
(I)

From the observations, we have two cases:

Case 1: $\psi_1(p_1) \neq \psi_2(p_k)$. Because equivalent classes are disjoint, $\psi_1(p_1)$ cannot be equal to any number in sequence ψ_2 . The value of $\psi_1(p_1)$ occurs twice in ψ_1 . Similarly, the value of $\psi_2(p_k)$ occurs twice in ψ_2 . $\psi_1(p_1)$ is called the head of class D, denoted by hd(D), and $\psi_2(p_k)$ is called the tail of class D, denoted by tl(D).

Case 2: $\psi_1(p_1) = \psi_2(p_k)$. In this case, sequence (I) can be extended to a cyclic sequence by adding $\psi_1(p_1) = \psi_2(p_k)$:

$$\begin{split} & \psi_1(\,p_2) = \psi_2(\,p_1)\,, \\ & \psi_1(\,p_3) = \psi_2(\,p_2)\,, \\ & \dots \\ & \psi_1(\,p_k) = \psi_2(\,p_{k-1})\,, \\ & \psi_1(\,p_1) = \psi_2(\,p_k)\,. \end{split}$$

Again, $\psi_1(p_1)$ and $\psi_2(p_k)$ are specified as the head and tail of class D, respectively. Obviously, hd(D) = tl(D) and they are not unique in this case. They depend on where this cyclic sequence is broken.

Given a class $D = \{p_1, p_2, ..., p_k\}$, we define the set Marked(D) as follows:

$$= \{ \psi_1(p_j) \mid p_j \in D \text{ and } \psi_1(p_j) = \pi(p_j) \}$$

$$\cup \{ \psi_2(p_j) \mid p_j \in D \text{ and }$$

$$\psi_2(p_j) = \pi(p_j + m) - m \}.$$

Now, we construct a vertex-weighted undirected graph $G' = (V', E', \omega)$, where $V' = \{v_1, v_2, \ldots, v_h\}$ corresponds to the set of h equivalent classes, $\{D_1, D_2, \ldots, D_h\}$; $E' = \{(v_i, v_j) | hd(D_i) = hd(D_j)$ or $tl(D_i) = tl(D_j)\}$; and ω is a weight function such that $\omega(v_i) = |Marked(D_i)|$. It is easy to see that both ψ_1 and ψ_2 are m-permutations iff $hd(D_i) = tl(D_i)$ for every class D_i , i.e., iff $E' = \emptyset$.

Lemma 2.1. Let $G' = (V', E', \omega)$ be the graph constructed as above. Then, any connected component of G' can only be an isolated vertex, a single edge, or an even cycle.

Proof. Let v_i be any vertex in a connected component C (say) and let $D_i = \{p_1, p_2, \dots, p_k\}$ be the corresponding equivalence class with $\psi_1(p_1)$ and $\psi_2(p_k)$ being $hd(D_i)$ and $tl(D_i)$, respectively. If $hd(D_i) = tl(D_i)$ then, from Observation 2, any other class cannot have the same head or tail. Thus, the corresponding v_i is an isolated vertex. If $hd(D_i) \neq tl(D_i)$, then $\psi_1(p_1)$ occurs exactly twice in sequence ψ_1 , $\psi_1(p_1) = \psi_1(x)$, where $x \notin$ D_i . Therefore, $x \in D_i$, $i \ne j$, and $\psi_1(x)$ is the head of D_i . Thus, $hd(D_i) = hd(D_i)$. Moreover, from Observation 2, no three or more classes can have the same head value; hence, D_i is unique. Similarly, there is a unique class D_k such that $tl(D_i)$ $= tl(D_k)$. Now, if $D_i = D_k$, then we conclude that C is a single edge. If $D_i \neq D_k$, then every vertex in C has degree 2, and C must be a simple cycle. We mark an edge between v_i and v_i with h if $hd(D_i) = hd(D_i)$, with t if $tl(D_i) = tl(D_i)$. Since an edge marked h cannot be adjacent to an edge marked t, this cycle must be an even cycle. \Box

Let $C = \{v_1, v_2, \dots, v_{2p-1}, v_{2p}\}$ be a cycle (or an edge if p = 1) in the weighted graph G' and $D_1, D_2, \dots, D_{2p-1}, D_{2p}$, the corresponding classes. We define

$$L(C) = \begin{cases} D_1 \cup D_3 \cup \cdots \cup D_{2p-1} \\ \text{if } \sum_{i=1}^{p} \omega(v_{2i-1}) \leqslant \sum_{i=1}^{p} \omega(v_{2i}), \\ D_2 \cup D_4 \cup \cdots \cup D_{2p} \\ \text{otherwise.} \end{cases}$$
 (2.3)

It is easy to see that, if we modify sequences ψ_1 and ψ_2 by exchanging the values of $\psi_1(x)$ and $\psi_2(x)$ for every $x \in L(C)$, we will then have the same set of equivalent classes as before except that $D_1, D_2, \dots D_{2p-1}, D_{2p}$ are combined into a single class $D = D_1 \cup D_2 \cup \dots \cup D_{2p}$, and hd(D) = tl(D). This change shrinks cycle C to a single vertex in G'. Thus, applying this operation to each cycle or single edge in graph G', we

obtain two m-permutations. This process is summarized by the following procedure.

Procedure $PARTITION(\pi)$:

- 1. generate ψ_1 and ψ_2 from the permutation π according to (2.1);
- 2. construct graph G' and identify all single edges and cycles, C_1, C_2, \ldots, C_t ;
- 3. compute $I = L(C_1) \cup L(C_2) \cup \cdots \cup L(C_t)$;
- 4. generate π_1 and π_2 from ψ_1 and ψ_2 by (2.2).

As discussed, the graph G' based on π_1 and π_2 contains no edges, so π_1 and π_2 are two m-permutations. The relationship between π and (π_1, π_2) is determined by (2.1) and (2.2).

3. The conquer stage

In the previous section, we showed how to break a d-cube into two (d-1)-cubes and partition an n-permutation π into two m-permutations, where $m=n/2=2^{d-1}$. If m>8, we continue to divide each (d-1)-cube into even smaller cubes. If $m=2^3=8$, we stop dividing because we know how to 1-realize any permutation on a 3-cube [9]. Suppose the two m-permutations on H_1 and H_2 have been recursively 2-realized. We shall show how to use the edges between H_1 and H_2 to combine these two realizations into a 2-realization of π on the original d-cube H^d . It is clear that between vertex i in H_1 and vertex j in H_2 , there is a pair of edges if and only if j=i'.

```
Procedure CONSTRUCT;
```

```
for i = 0 to m - 1 do
if i \notin I then
    Construct path (i, \pi(i)) according to the following two cases:
        Case 1: 0 \le \pi(i) < m.
            In this case, \pi(i) = \pi_1(i)
                                                                                  by (2.1).
            Set path(i, \pi(i)) := path_1(i, \pi_1(i)).
        Case 2: m \le \pi(i) < n.
            In this case, \pi(i) = \pi_1(i) + m = \pi_1(i)^{\gamma}
                                                                                  by (2.1).
            Set path(i, \pi(i)) := path_1(i, \pi_1(i)) + e(\pi_1(i), \pi_1(i)).
    Construct path(i + m, \pi(i + m)) = path(i', \pi(i')) according to the following two cases:
        Case 3: 0 \le \pi(i') < m.
            In this case, \pi(i') = \pi_2(i)
                                                                                  by (2.1).
            Set path(i', \pi(i')) := path_2(i', \pi_2(i)') + e(\pi_2(i)', \pi_2(i)).
        Case 4: m \le \pi(i') < n.
            In this case, \pi(i') = \pi_2(i) + m = \pi_2(i)'
                                                                                  by (2.1).
            Set path(i', \pi(i')) := path_2(i', \pi_2(i)').
    Construct path(i, \pi(i)) according to the following two cases:
        Case 5: 0 \le \pi(i) < m.
            In this case, \pi(i) = \pi_2(i)
                                                                                  by (2.1) and (2.2).
            Set path(i, \pi(i)) := e(i, i') + path_2(i', \pi_2(i)') + e(\pi_2(i)', \pi_2(i)).
        Case 6: m \le \pi(i) < n.
                                                                                  by (2.1) and (2.2).
            In this case, \pi(i) = \pi_2(i) + m = \pi_2(i)'
            Set path(i, \pi(i)) := e(i, i') + path_2(i', \pi_2(i)').
    Construct path(i + m, \pi(i + m)) = path(i', \pi(i')) according to the following two cases:
        Case 7: 0 \le \pi(') < m.
                                                                                  by (2.1) and (2.2).
            In this case, \pi(i') = \pi_1(i)
            Set path(i', \pi(i')) := e(i',i) + path_1(i, \pi_1(i)).
        Case 8: m \leq \pi(i') < n.
            In this case, \pi(i') = \pi_1(i) + m = \pi_1(i)'
                                                                                  by (2.1) and (2.2).
            Set path(i', \pi(i')) := e(i', i) + path_1(i, \pi_1(i)) + e(\pi_1(i), \pi_1(i)').
return {path(i, \pi(i)) | 0 \le i < n}.
```

This pair of edges is denoted by e(i, i') and e(i', i).

Let π_1 and π_2 be the two *m*-permutations produced by $PARTITION(\pi)$. The 2-realization of π_1 on H_1 is denoted by R_1 , and the 2-realization of π_2 on H_2 is denoted by R_2 . Let $R_1 = \{path_1(i, \pi_1(i)) | 0 \le i < m\}$, and $R_2 = \{path_2(i', \pi_2(i')') | 0 \le i < m\}$, where i' = i + m, and $\pi_2(i)' = \pi_2(i')$. The 2-realization of π is constructed by the procedure in Fig. 1.

We now present the main algorithm as follows:

Algorithm $REALIZE(\pi, H^d)$;

if $d \le 3$ then

use the algorithm in [9] to produce a 1-realization R

else

```
generate \pi_1 and \pi_2 by PARTITION(\pi); R_1 := REALIZE(\pi_1, H_1); R_2 := REALIZE(\pi_2, H_2); R := CONSTRUCT; output \{R\}.
```

We shall prove that the realization R constructed by $REALIZE(\pi, H^d)$ is indeed a 2-realization.

Lemma 3.1. Any path in $R_1 \cup R_2$ is used exactly once in the construction of R.

Proof. It is obvious that every path in R is obtained by extending one path in $R_1 \cup R_2$. We will prove that any path in $R_1 \cup R_2$ is used at most once by R. Without loss of generality, consider $path_1(i, \pi_1(i))$, where $0 \le i < m$. Note that only $path(i, \pi(i))$ and $path(i', \pi(i'))$ may use $path_1(i, \pi_1(i))$. We observe that $path_1(i, \pi_1(i))$ may be used by $path(i, \pi(i))$ in cases 1 or 2 or by $path(i', \pi(i'))$ in cases 7 or 8. Since cases 1, 2, 7, and 8 are mutually exclusive, it is impossible for $path_1(i, \pi_1(i))$ to be used twice by R. The same conclusion can be drawn for any $path_1(i, \pi_1(i))$, where $m \le i < n$. By symmetry, it is true for any $path_2(i', \pi_2(i'))$ also. \square

Lemma 3.2. Each dth-dimensional edge is used by at most two paths in R.

Proof. By symmetry, we need consider only an arbitrary dth-dimensional edge e(v, v'). According to Procedure CONSTRUCT, only cases 2, 5, 6, 8 may need to use e(v, v'). Obviously, cases 5 and 6 are mutually exclusive. Cases 2 and 8 are also mutually exclusive because both of them require that $\pi_1(i) = v$ for some i, but case 2 requires $i \notin I$ and case 8 requires $i \in I$. Therefore, e(v, v') is used by at most two paths in R. \square

In order to bound the total number of edges used in R, we need the following lemma.

Lemma 3.3. The total number of dth-dimensional edges used by R is bounded by n = 2m.

Proof. Let $path(j, \pi(j))$ be any path constructed by Procedure CONSTRUCT. Let us list the number of dth-dimensional edges used by $path(j, \pi(j))$ according to different cases.

Case 1 or case 4: zero. Cases 2, 3, 6, or 7: one.

Case 5 or case 8: two.

If we can prove that the number of paths in case 5 or case 8 is not larger than the number of paths in case 1 or case 4, then we are done.

Notice that $path(j, \pi(j))$ belongs to case 5 or case 8 if and only if

- (i) $j < m, j \in I$, and $\psi_1(j) = \pi(j)$, or
- (ii) $j \ge m, \ j m \in I$, and $\psi_2(j m) = \pi(j) m$

Therefore, the number of paths in case 5 or case 8 is $\sum_{D \subset I}^{|marked(D)|}$.

On the other hand, $path(j, \pi(j))$ belongs to case 1 or case 4 if and only if

- (i) $j < m, j \notin I$, and $\psi_i(j) = \pi(j)$, or
- (ii) $j \ge m$, $j m \notin I$, and $\psi_2(j m) = \pi(j) m$

Thus, the number of paths in case 1 or case 4 is $\sum_{D \in I} |marked(D)|$. From (2.3), we have

$$\sum_{D \subset I} | marked(D) | \leq \sum_{D \not\subset I} | marked(D) |. \quad \Box$$

Theorem 3.4. Algorithm REALIZE (π, H^d) produces a 2-realization R for any permutation π on H^d such that:

(i) at most $d2^d$ edges are used in R.

(ii) the length of every path is bounded by 2d - 3 ($d \ge 3$).

Proof. We prove this theorem by induction on d. Theorem 2 in [9] can serve as the inductive basis that realizes any permutation with the shortest path on a hypercube H^d ($d \le 3$). By the inductive assumption, $REALIZE(\pi_1, H_1)$ and $REALIZE(\pi_2, H_2)$ produce a 2-realization R_1 of π_1 and a 2-realization R_2 of π_2 . According to Lemma 3.1, each edge within H_1 or H_2 will be used at most twice in R. Besides, by Lemma 3.2, each dth-dimensional edge is also used at most twice in R. Thus, R is a 2-realization. Moreover, by the inductive assumption, R_1 and R_2 have used at most $(d-1)2^{d-1}$ edges each. From Lemma 3.3, the number of dth-dimensional edges (counting every repetition) is bounded by $n = 2^d$. Thus, the total number of edges contained in R is bounded by $2(d-1)2^{d-1} + 2^d = d2^d$. The bound on lengths of paths can also be proved by a simple induction. \Box

Let T(n) be the time complexity of $REAL-IZE(\pi, H^d)$, $n=2^d$. It is not difficult to see that $T(n)=O(n \log n)=O(d2^d)$, because obtaining sequences ψ_1 and ψ_2 , computing the equivalent classes, constructing graph $G'=(V', E', \omega)$, and finding set I need only linear time each. (We may need to compute the inverse mappings of π , ψ_1 and ψ_1 , which can also be done in linear time.) In addition, Procedure CONSTRUCT needs linear time also. Thus, T(n)=2T(n/2)+O(n), which implies $T(n)=O(n \log n)=O(d2^d)$.

Now we introduce a corollary on the packet-switched hypercube. In a packet-switched hypercube, at each synchronous step, a processor may receive a packet from each of its neighbors through an incoming edge, and/or send a packet to a neighbor through an outgoing edge. Moreover, we do not allow a packet to be buffered in any intermediate processor. An interesting problem occurs in routing packets such that every packet will reach its destination (defined by a permutation π) in a minimum number of steps. We assume that the packet generated by processor i is labeled with pair $(i, \pi(i))$. We use $x \rightarrow y$ denote that vertex x sends a packet to vertex y.

Currently, the best known result for this problem is 2d - 1, although it is conjectured that d steps are enough [9].

Corollary 3.5. Any permutation π can be realized on the packet-switched H^d $(d \ge 3)$ within 2d-3 steps.

Proof. We realize an arbitrary π on a packetswitched H^d by the following algorithm:

If d = 3 then realize π in 3 steps by the algorithm provided in [9].

If d > 3, do the following:

- (1) generate π_1 and π_2 by $PARTITION(\pi)$;
- (2) in the first synchronous step, do: for each $0 \le i \le m$, if $i \in I$, then $i \to i'$ and $i' \to i$; (Note that every processor still holds a
- unique packet.)
 (3) realize π_1 and π_2 on H_1 and H_2 recursively, which costs 2d-5 steps without using any
- edges between H₁ and H₂;
 (4) in the last synchronous step, do:
 check every pair (i, π(i)),
 if it belongs to cases 2 or 8, then π(i) →
 π(i)';
 if it belongs to cases 3 or 5, then π(i)' →
 π(i).

The correctness of this algorithm is evident from the discussion in Sections 2 and 3. □

Acknowledgement

The authors thank David Gries for his helpful comments on the writing.

References

- [1] S. Abraham and K. Padmanabhan, Performance of the direct binary *n*-cube network for multiprocessors, in: *Proc.* 1986 *Internat. Conf. on Parallel Processing*, pp. 636-639.
- [2] E. Choi et al., Hyperswitch network for the hypercube computer, in: Proc. Ann. Symp. on Computer Architecture (1988) 90-99.

- [3] T.-Y. Feng, A survey of interconnection networks, *IEEE Comput*. December (1981) 12–27.
- [4] W.D. Hillis, The Connection Machine (MIT Press, Cambridge, MA, 1985).
- [5] A. Lubiw, A counter-example to a conjecture by Szymanski on hypercube routing, *Inform. Process. Lett.* 35 (1990) 57–61.
- [6] G.M. Masson, G.C. Ginger and S. Makamura, A sampler of circuit switching networks, *IEEE Comput*. June (1979) 32–48.
- [7] H.J. Siegel, The multistage cube: A versatile interconnection network, *IEEE Comput*. December (1981) 65-76.
- [8] H.J. Siegel, Interconnection Networks for Large Scale Parallel Processing (McGraw-Hill, New York, 1990).
- [9] T. Szymanski, On the permutation capability of a circuitswitched hypercube, in: *Proc.* 1989 *Internat. Conf. on Parallel Processing*, Vol. I, pp. 103-110.
- [10] T. Szymanski, A fiber-optic hypermesh for SIMD/MIMD machines, IEEE & ACM Supercomputing '90 (1990) 710-719.