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Abstract—With the fast development of next-generation net-
working techniques, a Network Function Virtualization (NFV)
market is emerging as a major market that allows network
service providers to trade various network services among
consumers. Therefore, efficient mechanisms that guarantee stable
and efficient operations of the NFV market are urgently needed.
One fundamental problem in the NFV market is how to maximize
the social welfare of all players, so they have incentives to
participate in activities of the market. In this paper, we first
formulate the social welfare maximization problem, with an
aim to maximize the total revenue of all players in the NFV
market. For the social welfare maximization problem, we design
an efficient incentive-compatible mechanism and analyze the
existence of a Nash equilibrium of the mechanism. We also
consider an online social welfare maximization problem without
the knowledge of future request arrivals. We devise an online
learning algorithm based on Multi-Armed Bandits (MAB) to
allow both customers and network service providers to make
decisions with uncertainty of customers’ strategy. We evaluate
the performance of the proposed mechanisms by both simulations
and test-bed implementations, and the results show that the
proposed mechanisms obtain at most 23% higher social welfare
than existing studies.

Index Terms—Mobile edge clouds, network function virtual-
ization, near optimal incentive-compatible mechanisms, price of
anarchy, online learning.

I. INTRODUCTION

With the fast development of 5G technology, a market that
regulates the production and consumption of 5G network
services is emerging. For example, the global 5G network
services market is expected to grow from USD 53.93 billion in
2020 to USD 123.27 billion by 2025, at a Compound Annual
Growth Rate (CAGR) of 18.0% during the forecast period [1].
The ETSI Industry Specification Group on Network Function
Virtualization (NFV) is developing a set of specifications and
reports to enable an open NFV market [25]. In such a market,
various 5G service providers can build services consisting
of sequences of Virtualized Network Functions (VNF) and
offer customers on demand [4], [42]. Customers can browse
a list of available service chains offered by each network

service provider to implement their services. The interactions
between network service providers and customers are important
to guarantee the success of a NFV market. We thus investigate
the problem how to maximize the social welfare of the markets
such that all players can maximize their revenues. To this
end, network service providers need to carefully determine the
placement locations and prices of VNF instances, given that
each player is selfish and aims to maximize his/her own revenue.
In this paper, we consider the social welfare maximization
problem in a NFV market in a mobile edge cloud, by designing
stable and efficient mechanisms, such that the social welfare
of the market is maximized.

Designing efficient mechanisms for stable and efficient
operations of a NFV market is challenging. First, VNF
placements need considering both the resource requirement of
VNFs and the demands of traffic routing. Second, there exist
various selfish players in the NFV market, such as network
service providers and customers. It is challenging to design
an incentive-compatible and stable mechanism with a Nash
equilibrium (NE), so that both network service providers and
customers have incentives to participate in the NFV market to
obtain revenues. Besides, the social welfare achieved through
the NE needs to be guaranteed to ensure that such a solution is
not far from the optimal one. Third, considering that existing
customers may leave and new customers may enter the NFV
market, how to design an “online mechanism” that allows
network service providers to quickly determine the optimal
locations for their VNFs to respond to dynamic requests.
Fourth, customers’ strategies are usually not known by other
customers and the network service provider, how to design
an “online mechanism” that allows network service providers
to determine the optimal locations for their VNFs without
complete information of customers is the fourth challenge.

Although there are extensive studies on NFV in both software
defined networks, mobile edge networks, and conventional
cloud networks [19], [27], [28], [35], [36]. There are only
several studies on mechanism design for NFV markets [4],
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[42], by proposing a double-auction approach [4] or an online
stochastic buy-sell mechanism [42]. These proposals basically
require a central or multiple collaborating brokers to implement
the mechanisms, and may suffer the scalability issues.

To the best of our knowledge, we are the first to investigate
the online social welfare maximization problem in a NFV
market under a mobile edge network. The main contributions
of this paper are as follows.
• We formulate the social welfare maximization problem

in a NFV market with multiple network service providers
leasing virtual machine (VM) resources to implement
VNF services, as well as customers with NFV-enabled
requests. Then we formulate the online social welfare
maximization problem with stochastic arriving requests.

• We develop an effective mechanism for the social welfare
maximization problem, and show that the mechanism is
incentive-compatible and exists at least one NE for it.

• We analyze the quality of the NE by showing the Price
of Anarchy (PoA) of the NE, which quantifies the worse
case gap between the social welfare of the NE and the
optimal solution with non-selfish players.

• For the online social welfare maximization problem
with stochastic arriving requests and without complete
information of customers, we design an online algorithm
based on the Multi-Armed Bandit (MAB) method that
allows network service providers to determine the optimal
locations for their VNFs with a bounded regret.

• We evaluate the performance of the proposed algorithms
by extensive simulations and test-bed implementations.
The results show that the proposed algorithm obtains at
most 23% higher social welfare than existing studies.

The remainder of the paper is arranged as follows. Section II
summarizes the state-of-the-art of related studies. Section III
introduces the system model and defines the problems. Sec-
tion IV provides an incentive-compatible facility location
game for the social welfare maximization problem. Section V
devises an online learning algorithm for the online social
welfare maximization problem with uncertain customer strategy.
Section VI provides some experimental results, and Section VII
concludes the paper.

II. RELATED WORK

Network function virtualization has attracted much attention
in the past few years [3], [5], [6], [8], [10], [11], [14], [15],
[18], [19], [21], [23], [24], [27], [30], [31], [32], [33], [38],
[39], [43], [44], [45]. Although there are many studies on the
provisioning and allocation of VMs in cloud networks [7],
[9], [12], [13], [22], [34], [37], [40], they have a fundamental
difference from the VNF service provisioning in a NFV market.
That is, serving service chain requests in a NFV market
require not only the placement of VNFs (run in VMs) but
also traffic routing of customer requests from their sources to
destinations. For example, Ficco et al. [7] proposed a meta-
heuristic method for optimal allocation of cloud resources based
on coral-reefs and game theory. Hassan et al. [13] proposed
two different kinds of utility maximization cooperative games

with the aim to maximize the total profit of the cloud provider.
Zaman et al. [40] proposed two combinatorial auction-based
mechanisms for VM instance allocation in clouds, which bring
a higher revenue to cloud providers. Ghribi et al. [9] introduced
energy-aware VM allocation and migration algorithms in data
centers. Verma et al. [32] proposed a multi-armed bandit based
algorithm to maximize the expected total utility of the network.
Jin et al. [15] formulated a VNF chain deployment problem
as a mixed integer linear programming to minimize the total
resource consumption. Yao et al. [38] propose an efficient
online scaling algorithm, which is composed of two parts: 1)
One is Fourier-Series-based forecasting approach to minimize
cost by avoiding frequent changes in network topology and 2)
the other is online deployment algorithm to properly deploy
VNF instances.These algorithms can reduce more than 20%
cost while maintaining the same system performance as other
heuristic algorithms. Xu et al. [34] provided a comprehensive
survey of managing VM performance in cloud computing,
in which many similar studies on VM provisioning can be
found. Although game theory can be applied to allocation and
pricing of VM resources, it is seldom used in the allocation and
placement of VNFs. These proposed methods thus cannot be
directly applied to VNF placement in mobile edge clouds. There
are several studies on mechanism design for NFV markets [4],
[42], which are closely related to the study of this paper. For
example, Borjigin et al. [4] devised a double-auction approach
for resource allocation in NFV markets, with an objective to
maximize the profits of a NFV broker, customers and resource
suppliers. Zhang et al. [42] devised an online stochastic by-sell
mechanism for network function chaining in a NFV market.
These studies need a central or multiple collaborating brokers
to implement the mechanisms, and may prohibit the scalability
of the proposed mechanisms.

III. PRELIMINARIES

A. System model

We consider a multi-tier cloud network G = (CL ∪ DC, E)
consisting of a set CL of cloudlets in a mobile edge network,
a set DC of remote data centers in the core network, and a
set E of links (or VPN paths) that interconnect cloudlets and
data centers. We consider the scenario that different network
service providers may not have their own infrastructures, but
they can lease Virtual Machines (VMs) from an infrastructure
provider to implement their VNFs. We thus consider a NFV
market consisting of a number of network service providers
that offer services in terms of VNFs in their resource pools
located in different cloudlets or data centers. We assume that
each location can only accommodate a finite number of VMs
to implement VNFs. Let VMj be the set of available VMs in
the location Lj ∈ CL ∪ DC. VMj,m is the mth VM in VMj .
Following the policies of most infrastructure providers [2],
each VM has an uploading bandwidth capacity constraint Buj,m
and a download bandwidth capacity constraint Bdj,m.

There are Q network service providers in the system, and spi
denote the ith network service provider, where 1 ≤ i ≤ Q. In
addition, there are N consumers that request different network
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service chains from these Q network service providers. Let uk
be the kth customer, where 1 ≤ k ≤ N . Each consumer uk is
selfish and can choose an instance of its VNF from any network
service provider to reach lower costs when its performance
requirement is met. Fig. 1 illustrates a multi-tier cloud network
that consists of service providers offering network services to
various customers who have NFV-enabled requests.
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Fig. 1. A multi-tier cloud network with network service providers offering
network services to customers with NFV-enabled requests.

B. NFV-enabled requests

In a NFV market, customers purchase network services to
process and transfer their data. Each request requires a sequence
of VNFs in a specified order, such that the performance and
security of its data transfer is guaranteed. Denote by rk a NFV-
enabled request of consumer uk. It specifies a source node sk
and a destination node tk, and needs to transfer its traffic at a
rate of ρk. In addition, request rk requires to process its traffic
by its specified sequence of VNFs, referred to as a service
function chain, before reaching destination tk. Let SCk be the
service chain of request rk. Let fl be lth VNF in SCk, where
1 ≤ l ≤ |SCk|. Let F be the set of network functions provided
by all network service providers in the multi-tier cloud network.
To reduce the communication cost of transferring traffic among
the VNFs of each SCk, the network functions in SCk are
usually consolidated into a single location [3].

C. Cost and social welfare model

Service providers sell network services to customers for
implementations of their NFV-enabled requests. The costs of
implementing a NFV-enabled request using leased VMs include
the usage costs of both computing and bandwidth resources.
We assume that the cost of processing the traffic of each request
rk in a VNF at location Lj ∈ {CL ∪ DC} is proportional to
the amount of traffic to be processed. Let cpk,j be the cost of
processing a unit data of rk in Lj . The cost ck,j of placing
service chain SCk of rk in location Lj thus is

ck,j = cpk,j · ρk. (1)

Following the conventional settings of most infrastructure
providers, we assume that network service providers lease
a certain amount of bandwidth resource to transfer data in/out
of a location Lj ∈ {CL ∪ DC}. The bandwidth cost of each
NFV-enabled request rk is proportional to the amount of data
it needs to transfer. Let cbk,j be the cost of transmitting a unit
of data traffic from sk of request to location Lj , which can be
derived by finding a shortest path from sk to Lj . Then, the
bandwidth consumption cost for request rk in Lj is cbk,j · ρk.

Network service provider spi sells its network services in
terms of instances of VNFs to its customers at a price. Let
pi,k be the price that network service provider spi asks for an
instance of service chain SCk. A customer uk has to pay the
asked price by spi for using its service chain to process data
traffic. The payoff δi received by spi thus is

δi = pi,k − ρk(cpk,j + cbk,j). (2)

Each customer uk receives a value for a service chain
instance of SCk provided by network service provider spi,
which is denoted by πi,k. If it pays a price pi,k to use service
chain SCk, it collects a revenue of

∆k = πi,k − pi,k. (3)

A customer only buys an instance of its service chain from
service provider spi if πi,k ≥ pi,k, and it pays pi,k. Note that
network service provider spi does not know the exact value
of πi,k, and it can only observe customer’s decisions to buy
the implementation or not.

Since we have multiple players in the NFV market, we aim
to maximize the social welfare, i.e., the total revenue received
by all players that participate in the NFV market. Let ΦQ,N
be the social welfare in a NFV market with Q network service
providers and N customers. ΦQ,N can be calculated by

ΦQ,N =
∑Q

i=1
δi +

∑N

k=1
∆k. (4)

D. Game theory and Nash equilibrium

We consider a game that has Q network service providers
and N customers as players. Each network service provider
spi provides its network services to customers by instantiating
consolidated service chains in leased VMs. Each customer uk
selects an instance of its service chain SCk from the ones
provided by the Q network service providers. Therefore, the
strategy space of each customer uk is the set of network service
providers, and each candidate network service provider has a
number of instances of SCk of uk, i.e., {sp1, sp2, · · · , spQ}.
On the other hand, network service provider spi makes its
decision of where to implement request rk in which cloudlet
or data center in {CL ∪ DC}. It also decides the price for
the implemented request, such that its revenue is maximized.
Notice that each location Lj in {CL ∪DC} is considered as a
candidate location of service provider spi, when spi has VMs
in Lj . Let Li be the candidate locations for spi, and let VMj,i

be the set of VMs of spi in location Lj ∈ Li. For each service
chain SCk, the strategy space of network service provider spi
includes all locations in Li. Each player in the NFV market is
selfish by maximizing its own revenue.

The aforementioned game can be considered as a facility
location game, which is related to the facility location problem.
The facility location problem deals with placing facilities in a
network, and each facility serves a certain number of clients.
In a facility location game, we have a set of selfish players
wish into place facilities into a network with an objective of
maximizing their own revenues.
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E. Problem definitions

Given a NFV market that is based on a multi-tier cloud
network G = (CL∪DC, E), Q network service providers offer
their network services to customers, and there is a set of R
NFV-enabled requests. We consider the following optimization
problems in G.

Problem 1: The social welfare maximization problem: In
a NFV market of a multi-tier cloud network G, we aim to
maximize the social welfare of the market, subject to the
constraints on available numbers of VMs in each location Lj in
CL∪DC and the upload and download bandwidth requirements
of each VMj,m of the VMs in location Lj ∈ VMj .

Problem 2: In real scenarios, NFV-enabled requests arrive
into G one by one without the knowledge of their future arrivals.
Also, the customers may deviate from their best strategies, and
such information is usually not known to other customers and
network service providers in the NFV market. The online social
welfare maximization problem with uncertainty in G is to admit
or reject each incoming NFV-enabled request immediately,
with an aim to maximize the social welfare of the market,
subject to the constraints on available numbers of VMs in
each location Lj in CL ∪ DC, and the upload and download
bandwidth requirements of each VMj,m of the VMs in location
Lj ∈ VMj .

IV. A FACILITY LOCATION GAME FOR THE SOCIAL
WELFARE MAXIMIZATION PROBLEM

We present an efficient mechanism for the social welfare
maximization problem.

A. Overview

The essence of the proposed mechanism is a multi-stage
facility location game with network service providers and
customers being strategic agents. Specifically, in the first stage,
network service providers decide which cloudlets or data
centers to implement NFV-enabled requests. In the second
stage, service providers set the prices for consumers. And, in
the last stage, each customer selects a network service provider
and pays the specified price. We thus need to specify how
prices are set and how requests are assigned to the candidate
locations by each network service provider. The basic idea of
our mechanism is to adopt a pricing mechanism that allow each
player in the game to make its decision based on its true values
for the service chains offered by network service providers.
Also, we reduce the problem of assigning requests to VMs of
each network service provider to a minimum weight perfect
matching problem [17] in an auxiliary bipartite graph whose
construction is as follows.

B. Mechanism

We now describe the detailed steps of the three stages of
the mechanism: stage 1, location selection by each network
service provider spi, stage 2, pricing by each network service
provider spi for each customer, and stage 3, network service
provider selection by each customer.

Stage 1. Given a set of candidate locations Li, each network
service provider spi first decides locations for NFV-enabled
requests. Recall that we assume each player in the game
strategically makes its decisions based on its own revenue. From
the network service provider’s point of view, to maximize its
own revenue given its limited number of VMs that are available
in the multi-tier cloud network, it needs to admit a subset of
requests that could lead the maximum revenue. To this end,
we transfer the problem of locations choices by each network
service provider spi to the problem of finding a minimum
weight perfect matching in a bipartite graph G′ = (V ′, E′).

We now construct the bipartite graph G′i = (V ′i , E
′
i) for

network service provider spi. Specifically, the node set V ′ of
G′ consists of two disjoint subsets, i.e., V ′a and V ′b . Each node
in set V ′a corresponds a NFV-enabled request rk ∈ R, and each
node in set V ′b denotes an available VM in ∪Lj∈LiVMj,i of
network service provider spi. We add an edge between each
node in V ′a and each node in V ′b , to represent an assignment of
a NFV-enabled request rk to a VM owned by network service
provider spi, if the VM has enough upload and download
bandwidths for the request. Let (rk, V Mj,i) be the edge. Recall
that the revenue received by spi due to serving request rk is
pi,k − ρk(cpk,j + cbk,j). Since pi,k is not determined yet by the
network service provider spi, to maximize its revenue is to
minimize the cost of implementing request rk, i.e., ρk(cpk,j +

cbk,j). We thus consider the cost of assigning rk to its VMj,i

in location Lj as the weight of edge (rk, V Mj,i) by

w(rk, V Mj,i) = ρk(cpk,j + cbk,j). (5)

It must be mentioned that |V ′a| may not be equal to |V ′b |. If
|V ′a| ≥ |V ′b |, we add |V ′a|− |V ′b | dummy VM nodes to V ′b . Each
request node in V ′a connects to each dummy VM node, and
the weight of the edge is set to infinity. Otherwise, we add
|V ′b | − |V ′a| dummy request nodes to V ′a. Fig. (2) shows an
example of the proposed bipartite graph G′i.

Fig. 2. An example of the constructed bipartite graph G′
i.

Having constructed graph G′i, we find a minimum weighted
perfect matching [17] Mi in G′i that minimizes the cost of
network service provider spi.

Given the perfect matching Mi for network service provider
spi, each edge in Mi denotes a preference of spi of admitting
the request. Let Ri be the set of requests assigned to the
VMs of network service provider spi. Initially, Ri includes
the requests that are included in matching Mi. Specifically, if
all requests in Ri select spi, each of their implementation cost
corresponds to the weight of matching M ′i .

Not all requests in Ri will select spi as they may have the
other choices with lower implementation costs. Specifically, for
each request rk ∈ Ri, we exclude it from Ri, if there exists
another network service provider spi′ with i′ 6= i that result in
a lower implementation cost. Let Rexdi be the set of excluded
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requests and VMexd
i the corresponding set of VMs to which

those requests in Rexdi are assigned in matching Mi.
Given requests in ∪Qi=1Rexdi that are excluded from the

initial matching of network service providers, we repeat the
above procedure until there is no excluded requests. So far,
each request in Ri achieves its minimum implementation cost.

Stage 2. We now decide the pricing of the service chains
offered by network service provider spi. Intuitively, to make
each request rk in Ri select spi, the price it sets for the
request should not be higher than the network service provider
achieving the second lowest implementation cost for it. This is
the highest price that spi could expect to get away with charging
request rk; charging any more would give some network
service provider spi′ an incentive to undercut spi. Note that we
consider a scenario that all network service providers can obtain
the implementation costs of requests in different locations,
because the computing and bandwidth resource consumptions
in edge clouds are usually public information. Finally we give
the prices each network service provider set for the requests.

Stage 3. Each customer selects a network service provider
with the lowest price to implement its request rk.

Algorithm 1 provides a detailed procedure of the proposed
mechanism for the social welfare maximization problem, which
is referred to as FLG_SWM.
Algorithm 1 FLG_SWM
Input: A multi-tier cloud network G = (CL ∪ DC, E) and a set of NFV-enabled

requests R.
Output: The assignment of each request in R to a network service provider.
1: /*Stage (1): Location selection by each network service provider*/
2: VMi ← ∪Lj∈CL∪DCVMj,i; /*the set of available VMs of each network

service provider spi*/
3: Radt ← R; /*the set of to-be-admitted requests*/
4: while VMi 6= ∅ or Radt 6= ∅ do
5: for each network service provider spi do
6: if VMi 6= ∅ then
7: VMexd

i ← ∅; /*The set of VMs that are excluded from the initial
minimum weight matching in a bipartite graph G′i*/

8: Construct the bipartite graph G′i = (V ′i , E
′
i) as illustrated in Fig. 2;

9: Find a minimum weight perfect matching Mi in G′i;
10: Exclude a matched pair of VM and request rk in Mi, if the VM is not

the first choice of rk (i.e., there is another VM of another network service
provider spi′ that can achieve a lower implementation cost for rk);

11: Add the excluded VM into VMexd, and the request into Rexd
i ;

12: VMi ← VMexd;
13: If there exists a request in ∪Q

i=1R
exd
i that considers a VM in VMi as its best

choice (the VM that can achieve the minimum implementation cost), Radt ←
∪Q

i=1R
exd
i ;

14: Otherwise, Radt ← ∅;
15: /*Stage (2): Pricing by each network service provider*/
16: For each network service provider spi, set its price for request rk as the cost of

implementing rk in a VM by another network service provider that has the second
lowest implementation cost;

17: /*Stage (3): Service provider selection by each customer*/
18: Each customer selects its best response strategy, by choosing the network service

provider with the lowest price to implement its NFV-enabled request rk;

C. Algorithm analysis

In the following we analyze the economic properties and
performance of the proposed mechanism.

Lemma 1: The proposed facility game for the social welfare
maximization problem in a NFV market under a multi-tier
cloud network G is incentive compatible.

Proof: Showing the lemma is to show that each customer
and each network service provider have incentives to participate
in the game by gaining non-negative revenues.

For each customer uk, it has a value for each service
chain SCk provided by network service provider spi, which is
denoted by πi,k. For its NFV-request rk, it gathers a revenue
of ∆k = πi,k − pi,k, if SCk is implemented in a VM of
network service provider spi. Since we assume that a customer
only buys an implementation of its service chain of service
provider spi if πi,k ≥ pi,k, and it pays pi,k, so the mechanism
is incentive-compatible. On the other hand, for each network
service provider spi, its revenue depends on the prices it sets
for requests and the cost of implementing its admitted requests.
Recall that the price it sets for each request rk the requests is
no higher than the network service provider that achieves the
second lowest implementation cost for request rk. This makes
the customer to consider spi as its best choice, leading to a
non-negative revenue. The game thus is incentive-compatible
for network service providers as well.

Lemma 2: The proposed mechanism for the social welfare
maximization problem is a potential game with potential
function ΦQ,N .

Proof: We first introduce the definition of a potential
game: for any finite game, a potential game Φ is a function
that maps every strategy S to some a real value that satisfies
the following condition: If S ⊂ (S1, S2, · · · , Sk), S′i 6= Si is
an alternate strategy for some player i, and S′ = (S−i, S

′
i),

then Φ(S′)−Φ(S) = ui(S
′)−ui(S), where ui(S) is the utility

of player i under strategy S.
Showing that the game is a potential game, we need to show

that if a network service provider spi changes its selected VM
to implement NFV-enabled requests, then the change in social
welfare ΦQ,N is exactly the change in spi’s welfare. To show
this, imagine that spi chooses to “drop out of the game”. If
network service provider spi drops out, each NFV-enabled
request rk that was served by spi switches to its second best
choice. Recall that pi,k is exactly the cost of the second best
choice. Thus, the NFV-enabled request rk will be served at
cost pi,k, rather than its previous cost ρk(cpk,j + cbk,j), so the
increase in cost is pi,k − ρk(cpk,j + cbk,j), exactly the revenue
of network service provider spi. The facility game thus is a
potential game.

Lemma 3: The proposed facility game has the following
three properties:

• Property (1): ΦQ,N (S) is submodular: for any strategy
set S ⊂ S′ ⊂ A and any element s in A, we have
ΦQ,N (S + s)− ΦQ,N (S) ≥ ΦQ,N (S′ + s)− ΦQ,N (S′)

• Property (2): The total value for all players is less than
or equal to the total social welfare ΦQ,N

• Property (3): The value for one player is at least its added
value for the society: α(si) ≥ ΦQ,N (S)−ΦQ,N (S − si).

Proof: Property (2) is essentially met by the definition
of the social welfare maximization problem.

We first show Property (1). Recall that the social welfare of
the facility game consists of the revenues of both network
service providers and customers, i.e., ΦQ,N =

∑Q
i=1 δi +∑N

k=1 ∆k. The strategy set for network service providers is the
set of locations to instantiate VNF instances. Let Ssp be their
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selected set of locations to serve customers in a NE. To show
that

∑Q
i=1 δi is submodular, we need to show that the marginal

benefit to
∑Q
i=1 δi is diminishing as more locations are added

into Ssp to serve the customers. It must be mentioned that in
the proposed mechanism, the network service providers and
customers are matched via a bipartite matching, and the prices
of each network service provider spi asked is independent of
the location selection. This means that the price each network
service provider sets for each customer is independent of the
locations it selects. Let Lj′ be the location that is to be added
into S. We assume that Lj′ is a better solution for a request
compared with those in S. By re-writing Eq. (4), we have

ΦQ,N (S) =
∑Q

i=1
δi +

∑N

k=1
∆k

=
∑

Lj∈Ssp

∑
rk∈Rj

(
πi,k − pi,k + pi,k − ρk(cpk,j + cbk,j)

)
=
∑

Lj∈Ssp

(∑
rk∈Rj

πi,k − ρk(cpk,j + cbk,j)
)

where Rj is the set of requests that are assigned to location
Lj . Similarly, we have

ΦQ,N (S′ ∪ {Lj′})

=
∑

Lj∈Ssp∪{Lj′}

(∑
rk∈Rj

πi,k − ρk(cpk,j + cbk,j)
)

= ΦQ,N (S) + πi,k − ρk(cpk,j′ + cbk,j′)

−
(
πi,k − ρk(cpk,j + cbk,j)

)
= ΦQ,N (S)− ρk(cpk,j′ + cbk,j′) + ρk(cpk,j + cbk,j) (6)

and

ΦQ,N (S′ + Lj′) = ΦQ,N (S′)− ρk′(cpk′,j′ + cbk′,j′)

+ ρk′(c
p
k′,j + cbk,j), (7)

where rk′ is another request whose implementation cost can
be improved by adding location Lj′ to the location set S′. It is
clear that the saving in the implementation cost for request rk
is higher than that of request rk′ ; otherwise, request rk′ will
be assigned to Lj′ instead of rk. Therefore, we have

ρk′(c
p
k′,j + cbk′,j)− ρk′(c

p
k′,j′ + cbk′,j′)

≤ ρk(cpk,j + cbk,j)− ρk(cpk,j′ + cbk,j′), (8)

which also means that ΦQ,N (S′ + Lj′) − ΦQ,N (S′) ≤
ΦQ,N (S + Lj′)− ΦQ,N (S).

We then show Property (3). Here we need to show that
for all strategy vector S and any player si, we have α(si) ≥
ΦQ,N (S)− ΦQ,N (S − si). Assume that we consider a player
as a network service provider, we have α(si) ≥ ΦQ,N (S)−
ΦQ,N (S−si), as the exclusion of network service provider spi
leads to the reduction of its own revenue and also the revenue
of other customers. On the other hand, the exclusion of any
customer from the game leads to a social welfare reduction
that is equal to the customer’s revenue.

Theorem 1: The best response dynamics of the proposed
mechanism FLG_SWM converge to a pure strategy equilibrium,
and its PoA is at most 2.

Proof: Recall that ΦQ,N is the social welfare delivered
by the proposed facility game. As shown in Lemma 2, we use
ΦQ,N as the potential game for the game. Let S be a pure
strategy vector minimizing ΦQ,N (S). Consider any move by
network service provider spi that results in a new strategy
vector S′. By assumption, ΦQ,N (S′) ≥ ΦQ,N (S), and by
Lemma 2, δi(S′)−δi(S) = ΦQ,N (S′)−ΦQ,N (S). Thus, spi’s
revenue can not increase from this move, and hence S is
stable. Note that any strategy S with the property that ΦQ,N
cannot be decreased by altering any one strategy in S is a NE.
Furthermore, the best response dynamics simulates local search
on ΦQ,N , improving moves for players decreases the value
of the potential function. This means that the best response
dynamics converge to a NE.

We show the quality of the NE. Let S be the set of locations
selected by all network service providers at the NE. Denote
by OPT the set of locations for the socially optimal solution,
and let O be the corresponding strategy space. We first note,
by monotonicity, that ΦQ,N (O) ≤ ΦQ,N (S ∪ O). Oi be the
strategies selected by the first i network service providers in
the socially optimal solution OPT . We have

ΦQ,N (O)− ΦQ,N (S) ≤ ΦQ,N (O ∪ S)− ΦQ,N (S)

=
∑Q

i

(
ΦQ,N (S ∪Oi)− ΦQ,N (S ∪Oi−1)

)
. (9)

By Property (1), we have

ΦQ,N (S ∪Oi)− ΦQ,N (S ∪Oi−1)

≤ ΦQ,N (S + oi − si)− ΦQ,N (S − si), (10)

for all network service provider spi. Using Property (3),
we can further bound inequality (10) by αi(S + oi − si) ≤
αi(S), considering that S is an equilibrium. Together, we
have ΦQ,N (O) − ΦQ,N (S) ≤ ΦQ,N (O ∪ S) − ΦQ,N (S) ≤∑Q
i αi(S). Due to Property (2),

∑Q
i αi(S) ≤ ΦQ,N (S), we

thus have ΦQ,N (O) ≤ 2ΦQ,N (S), which means that the PoA
of the proposed mechanism is at most 2.

V. ONLINE LEARNING ALGORITHM FOR THE DYNAMIC
SOCIAL WELFARE MAXIMIZATION PROBLEM WITH

UNCERTAINTY

We now consider the online social welfare maximization
problem with uncertain customer strategies.

A. Overview

Although network service providers may not have the com-
plete information of customers, they may learn the behaviors
of customers in terms of service selections. However, they
may not do that themselves, and resort to third parties that
serves as ‘experts’ on customers behavior. Specifically, we
assume that there are several experts in the NFV market.
They serve as trustworthy third parties that collects and learns
customers’ distributions of service selection. Each of such
expert recommends a set of customers to the network service
providers. The network service provider however may not fully
trust experts, by dynamically evaluating the experts. Given such
a NFV market, we handle the uncertainties of the distributions
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of customers’ values on network services via leveraging the
technique of multi-armed bandits with experts. That is, experts
predict the values of customers for each type of service chains.
They then feed such predicted information to the proposed
online learning algorithm. The proposed algorithm then decides
the prices of each instance of service chains of network service
providers, by invoking algorithm FLG_SWM. The real values of
customers are then revealed, and the costs of network service
providers and experts are calculated.

B. Online learning algorithm

We now describe the proposed online algorithm. We assume
that there are Y experts in the multi-tier cloud network G.
Each expert is considered as an arm, and each expert is in
charge of a subset of arms in G. Without loss of generality,
each expert will always recommend its arms by predicting
their values for the services of network service providers. Each
expert recommends its arms (customers) by revealing its learnt
value of each customer for each instance of service chains
of all network service providers, and receives a cost if its
recommendation deviates from the real values of customers.

Let expn be an expert, with 1 ≤ n ≤ Y . Initially, the
algorithm assigns each expert a weight of 1, meaning a full
trust of the predicted values of its customers for all service
chain instances. As the algorithm proceeds, it degrades the
weight of each expert according to the cost (a.k.a penalty)
received by the expert. To determine which customers to select
in the game, we select an expert and its responsible customers
with a probability that is proportional to the weight of the
expert. Denote by wr(expn) be the current weight of expert
expn in the current round r, and pr(expn) be the probability
of choosing expert expn in round r, we then have

pr(expn) = wr(expn)/(
∑Y

n′=1
wr(expn′)). (11)

The selected expert and its customers will be allowed to
participate in the game in the current round. We then invoke
algorithm FLG_SWM, by considering the chosen customers
and all network service providers as the input. Algorithm
FLG_SWM then returns the pricing of network service providers
and customer’s selection of services, based on the predicted
values of experts. Once the customers select their network
service providers, their values will be released. Recall that
the value of customer uk for the services of provider spi is
denoted by πi,k, and it only selects a network service provider
when πi,k ≥ pi,k. Let π̂i,k be the predicted value of customer
uk by expert expn. The social welfare may be reduced to the
inaccurate predictions of πi,k of each expn. We thus define the
penalty received by each expert expn as the reduced revenue
based on the predicted value, i.e.,

cr(expn) =
∑Q

i=1
δi +

∑Nr

k=1
∆k −

∑Q

i=1
δi −

∑Nr

k=1
∆̂k,

=
∑Nr

k=1

(
∆k − ∆̂k

)
. (12)

where Nr is the number of customers that are selected to
participate the game, and ∆̂k = π̂i,k−pi,k if uk selects network

service provider spi. To avoid such reduction of social welfare
caused by the selection of experts and their customers, we
decrease the weight of expert expn after round r by

wr+1(expn) = wr(expn) · (1− ε)cr(expn), (13)

The detailed steps of the proposed algorithm are elaborated
in Algorithm 2, which is referred to as Algorithm OL_FLG.
Algorithm 2 OL_FLG
Input: G = (CL ∪ DC, E), a set of NFV-enabled requests.
Output: An assignment of each request to either a cloudlet or datacenter for processing.
1: Initialize the weights of experts as w1(expn) = 1 for the expert expn in time

slot 1;
2: for each round r ← 1 . . . T do
3: Calculate the probability pr(expn) of selecting an expert expn by Eq.(11);
4: Select each expert expn with probability pr(expn);
5: Each selected expert predicts the values of its customers;
6: Invoke Algorithm FLG_SWM;
7: In the end of round r, observe the costs of experts, and update its weight by

Eq.(13);

C. Regret analysis

Theorem 2: Algorithm OL_FLG has a regret of lnT
ε +

2εUd, assuming that there is a bound on the minimum and
maximum values of each customer, let Ud be this bound,
i.e., Ud = πmax − πmin, where πmax = maxi,k πi,k and
πmin = mini,k πi,k.

Proof: We first give the definition of regret of following the
predictions of experts in the NFV market of the multi-tier cloud
network. Considering that online social welfare maximization
problem in the multi-tier cloud network is to maximize the
revenue of customers and service providers, we define the
regret as the expected deviation of the social welfare of the
obtained solution from the optimal solution in each round by
Reg(T ) = Φ(OL FLG) − E[Φn∗ ], where Φ(OL FLG) is the
social welfare obtained by algorithm OL_FLG and Φn∗ is the
social welfare that is obtained based on the predictions of the
best expert exp∗ of the Y experts. The total cost cost(expn)
of each expert expn is

∑T
r=1 cr(expn), we then have exp∗ ∈

arg min1≤n≤Y cost(expn), and its cost is denoted by cost∗.
Recall that algorithm OL_FLG dynamically adjusts its weight

of each weight according to the penalty of the expert. Basically,
an expert with a higher penalty will receive a lower weight
(corresponding to less trust).

Let Wr =
∑Y
n=1 wr(expn) be the total weight before

round r. The weight of each expert after round T then is
wT+1(expn) = w1(expn)ΠT

r=1(1 − ε)cost(expn). The total
weight after round T is

WT+1 > wT+1(exp∗) = (1− ε)cost
∗
> (1− ε)Φn∗ , (14)

due to the definition of costs and the fact that (1−ε)a > (1−ε)b
for any positive values of a and b with a < b.

We first show the relation between the costs received by
experts and the social welfare of all players in the game.

Wr+1/Wr = (
∑Y

n=1
wr+1(expn))/Wr

= (
Y∑
n=1

(1− ε)cr(expn)wr(expn))/Wτ , due to Eq. (13) (15)
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<
∑Y

n=1
(1− αcτ(expn) + βcτ (expn)2) · pτ (expn),

since Wτ ≥ 1

and ∃α, β > 0, (1− ε)x < 1− αx+ βx2 for all x > 0.

=
∑Y

n=1
pr(expn)− α

∑Y

n=1
pr(expn)cr(expn)

+ β
∑Y

n=1
pr(expn)cr(expn)2 (16)

= 1− α
∑Y

n=1
pr(expn)

∑Nr

k=1
(∆k − ∆̂k)

+ β
∑Y

n=1
pτ (expn)

(∑Nr

k=1
(∆k − ∆̂k)

)2

< 1− α
Y∑
n=1

pr(expn)

Nr∑
k=1

(

Q∑
i=1

δi + ∆k − (

Q∑
i=1

δi + ∆̂k))

+ β
Y∑
n=1

pτ (expn)
(∑Q

i=1
δi + ∆k − (

∑Q

i=1
δi + ∆̂k)

)2

< 1− α
∑Y

n=1
pr(expn)

∑Nr

k=1

∑Q

i=1
(δi + ∆k)

+ β
∑Y

n=1
pτ (expn)

(∑Q

i=1
(δi + ∆k)

)2

= 1− αE(Φ(OL FLG, r)) + βE(Φ(OL FLG, r)2), (17)

where Φ(OL FLG, r) is the total social welfare in round r,
clearly we have Φ(OL FLG) =

∑T
r=1 Φ(OL FLG, r).

By taking a logarithm on the above inequality, we have

ln(Wτ+1/Wτ )

< ln(1− αE(Φ(OL FLG, r)) + βE(Φ(OL FLG, r)2))

< −αE(Φ(OL FLG, r)) + βE(Φ(OL FLG, r)2), (18)

since ln(1 − x) < −x for any x ∈ (0, 1). In particular, this
holds when (α, β) = (ε, 0).

Considering all rounds with 1 ≤ r ≤ T , we have∑T

r=1
(αE(Φ(OL FLG, r))− βE(Φ(OL FLG, r)2))

< − ln(Wr+1/Wr) < − ln ΠT
r=1(Wr+1/Wr)

= − ln(Wr+1/Wr) = lnW1 − lnWT+1

< lnT − ln(1− ε)Φn∗ . (19)

With (α, β) = (ε, 0), we have

E(Φ(OL FLG)) < lnT/ε+ (1/ε) ln[1/((1− ε))]E(Φn∗).

Assuming that ε ∈ (0, 1/2), we have 1
ε ln 1

(1−ε) ≤ 1 + 2ε,
which means

E(Φ(OL FLG)− Φn∗) < lnT/ε+ 2εE(cost∗). (20)

Clearly we have cost∗ < Ud. The regret of algorithm OL_FLG
thus is E(Φ(OL FLG)− Φn∗) < lnT/ε+ 2εUd.

VI. EXPERIMENTS

We now evaluate the performance of the proposed algorithms
via both simulations and test-bed implementations.

A. Experiment Settings
We consider multi-tier cloud networks by varying their sizes

from 50 to 200 switch nodes and 5 data centers, where each
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Fig. 3. The performance of algorithms FLG_SWM and DA

network topology is generated using GT-ITM [41]. The number
of cloudlets in the mobile edge network is set to 10% of the
network size, which are randomly distributed in the network
edge. We also use a real network topologies AS1755 from [16].
The numbers of VMs provided by each cloudlet and data
center are randomly generated from [10, 15] and [15, 50],
respectively. The bandwidth capacity of each VM is drawn
from the range of [10Mpbs, 100Mbps]. Each NFV-enabled
request demands a service chain containing at most 5 VNFs,
picked among Firewall, Proxy, NAT, IDS, and Load Balancing
(LB). The costs of transmitting and processing 1 GB of data are
set within [$0.05, $0.12] and [$0.15, $0.22]. The pre-defined
threshold of revenue decreases ϑ is set 20%. The traffic volume
of each request is randomly drawn from [10, 200] Megabytes.
The running time of each algorithm is obtained based on a
machine with a 3.70GHz Intel i7 Hexa-core CPU and 16 GiB
RAM. Unless otherwise specified, these parameters will be
adopted in the default setting.

We evaluate the performance of the proposed algorithms
against the following benchmarks. We first consider the double
auction of [4]. In the mechanism, potential customers submit
their bids and potential service providers simultaneously submit
their ask prices to an auctioneer, and then the auctioneer
chooses some price that clears the market: all the sellers who
asked less than the chosen price sell and all buyers who bid
more than the chosen price buy at this chosen price. The
offline and online versions of this double auction mechanism
are referred to as DA and Online_DA, respectively. We then
consider an online auction in [20]. In the auction, customers
calculate the payoffs of potential service providers based on
their true value, and choose the service provider with the
highest payoff. We refer to this benchmark as Online_A.

B. Performance of the facility location game FLG_SWM

We first evaluate the performance of algorithm FLG_SWM
against that of algorithm DA, in terms of the social welfare,
payoff of customers, payoff of service providers, and the
running time, in GT-ITM generated networks with their sizes
varied from 50 to 250. Fig. 3 shows the results can see from
Fig. 3 (a) that the social welfare achieved by FLG_SWM is
higher than that of DA. The reason is that in DA, the trade
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(d) Running time.

Fig. 4. The performance of algorithms OL_FLG, Online_A, and
Online_FLG

between a bidder and an asker happens as long as the bid is
greater than the ask. In contrast, FLG_SWM finds an optimal
matching between buyers and sellers, by finding a minimum
weighted perfect matching in the constructed auxiliary graph
with dummy nodes, as shown in Fig. 2. We can also see that
the social welfare decreases with the growth of the network
size from 50 to 200, and then keeps stable afterwards when the
network size increases from 200. The rationale behind is that
a larger network size means a higher cost for service providers
to implement each request. However, as the mechanism is
incentive compatible the payoff of each provider will never
be negative. Therefore, the payoff is stable when the network
size is increased from 200. Similar patterns of payoffs can be
seen in from Fig. 3(b) and Fig. 3(c). From Fig. 3(d), we can
see that FLG_SWM has a lower running time than DA, since
DA spends much time in messaging among different players.

C. Performance of the online learning algorithm OL_FLG

We then compare the performance of algorithm OL_FLG
against that of algorithms Online_A and Online_DA in
terms of the social welfare, payoff of customers, payoff of
service providers, and running times, in a GT-ITM generated
network with network size of 200. The social welfare achieved
by OL_FLG, Online_A and Online_DA are shown in Fig. 4
(a). We can see from the figure that OL_FLG consistently
delivers a higher social welfare than those by Online_A
and Online_DA, because it learns request arrivals via a
reinforcement learning process. The payoffs of customers and
service providers are shown in Fig. 4 (b) and Fig. 4 (c), we can
see from the figure that they consistently have a nonnegative
payoff. We can also see from the figure that Online_A always
provides higher payoffs of customers than Online_DA and
OL_FLG, since it chooses the customers’ payoffs maximization
strategy that greatly reduces the payoffs of service providers.

D. Performance evaluation in a test-bed

We evaluate the performance of the online games in a real
test-bed with five hardware switches, as shown in Fig. 5 (b). To
testify the scalability of the proposed online game, we adopt a
two-layered network architecture: an underlay and an overlay.
The underlay is a network that interconnects five physical

Underlay

Overlay

      Servers             VM       RYU Controller

      Physical Switch     OVS      VXLAN Channel

RYU

(a) Overlay and underlay of the test-bed. (b) Physical
switches.

Fig. 5. The test-bed.
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Fig. 6. The performance of algorithms Online_FLG, Online_A, and
Online_DA in the test-bed.

switches, and five servers with each having an i7-8700 CPU
and 16G RAM. Based on this underlay, an overlay with an
AS1755 topology is built based on VXLAN and Open vSwitch
(OVS) [26]. All other settings are the same as the simulations.

Fig. 6 shows the performance of algorithms OL_FLG,
Online_A and Online_DA in terms of social welfare and
running times, in the test-bed. It can be seen that algorithm
OL_FLG delivers much better social welfare than those of
algorithms Online_A and Online_DA. For example, when
there are 80 requests, OL_FLG has around 23.82% higher
social welfare than that of Online_A and Online_DA.

VII. CONCLUSION

In this paper, we studied the social welfare maximization
problems in a NFV market in a multi-tier cloud network. We
first devised an efficient incentive-compatible mechanism and
analyzed the existence of a Nash equilibrium for the social
welfare maximization problem. We then designed a method
based on multi-armed bandit for the dynamic social welfare
maximization problem without the knowledge of future request
arrivals and with uncertain customer payoffs, which allows
network service providers to make their decisions with bounded
regrets. We finally evaluated the performance of the proposed
mechanisms by both simulations and test-bed implementations,
base on synthetic and real network topologies. Results show
that the performance of the proposed mechanisms obtain 23%
higher social welfare than existing studies in the test-bed.
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