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Abstract—This study is motivated by the maximum connect-
ed coverage problem (MCCP), which is to deploy a connected
UAV network with given K UAVs in the top of a disaster
area such that the number of users served by the UAVs is
maximized. The deployed UAV network must be connected, since
the received data by a UAV from its served users need to be
sent to the Internet through relays of other UAVs. Motivated
by this application, in this paper we study a more generalized
problem – the h-hop independently submodular maximization
problem, where the MCCP problem is one of its special cases
with h = 4. We propose a 1−1/e

2h+3
-approximation algorithm for the

h-hop independently submodular maximization problem, where
e is the base of the natural logarithm. Then, one direct result
is a 1−1/e

11
-approximate solution to the MCCP problem with

h = 4, which significantly improves its currently best 1−1/e
32

-
approximate solution. We finally evaluate the performance of the
proposed algorithm for the MCCP problem in the application of
deploying UAV networks, and experimental results show that
the number of users served by deployed UAVs delivered by the
proposed algorithm is up to 12.5% larger than those by existing
algorithms.

Index Terms—UAV communication networks; maximum
connected coverage problem; submodular function maximization;
approximation algorithms.

I. INTRODUCTION

In this paper, we study an h-hop independently sub-
modular maximization problem, which is defined later. The
problem has many potential applications. One important ap-
plication arises in the context of Unmanned Aerial Vehicles
(UAV) networks. Wireless communication by leveraging the
use of UAVs has attracted lots of attentions recently [13],
[22], [42]. Unlike terrestrial communication systems, low-
altitude UAV systems are more cost-effective by enabling on-
demand operations, more swift and flexible for deployment
and configuration [9], [14], [32], [35], [36], [40], [41]. Due to
its maneuverability and flexibility, a UAV can act as an aerial
base station (BS) by equipping with a lightweight base station
device [8], [24]. It is expected that UAV networks consists
of multiple UAVs are perfectly suitable for unexpected and

Fig. 1. A UAV network that provides communication services for ground
users in a disaster area, where the network is connected to the Internet via an
emergency communication vehicle.

temporary communication demands, such as natural disasters,
traffic congestion, and concerts [3]. In addition, because of
their high flying height, UAVs usually have higher Line-of-
Sight (LoS) link opportunities with ground users, compared to
terrestrial BSs [1]. Fig. 1 shows a UAV network in which four
UAVs serve as aerial base stations to provide communication
services to the trapped people in a disaster zone. With the
help of the UAV network, the trapped people can send and
receive critical voices, videos, and data to/from the rescue
team, thereby saving their lives and reducing injuries.

Assume that all UAVs hover at the same altitude Huav ,
which is the optimal altitude for the maximum coverage from
the sky [1], [42], e.g., Huav = 300 m. Denote by R the
communication range between any two UAVs at altitude Huav ,
and denote by r′ the communication range between a ground
user and a UAV at altitude Huav . Notice that r′ is no greater

than R [15]. Let r =
√
r′2 −H2

uav . Assume that a UAV
hovers at a location with its coordinate (xi, yi, Huav). Then,
its coverage area is a disk that centers at location (xi, yi, 0)
with radius r, i.e., the set of points with coordinates (x, y, 0)
such that (x−xi)2+(y−yi)2 ≤ r2. Thus, the ground users in
the disk can communicate with the UAV directly. Let α = r

R .
Then, 0 < α ≤ 1, as r ≤ r′ ≤ R.

Our study is motivated by a fundamental maximum con-
nected coverage problem (MCCP) [42] in a UAV network,

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 1099

IE
EE

 IN
FO

C
O

M
 2

02
2 

- I
EE

E 
C

on
fe

re
nc

e 
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 | 
97

8-
1-

66
54

-5
82

2-
1/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IN
FO

C
O

M
48

88
0.

20
22

.9
79

69
57

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on June 26,2022 at 00:59:11 UTC from IEEE Xplore.  Restrictions apply. 



which is to deploy K UAVs for serving people in a disaster
zone, such that the number of users served is maximized,
subject to the constraint that the communication subnetwork
induced by the K UAVs is connected. The rationale behind
the connectivity constraint is that, the received data by a UAV
from its served users need to be sent to a gateway UAV in
the UAV network, where the gateway UAV is connected to
the Internet, with the help of an emergency communication
vehicle or satellites, see Fig. 1.

In this paper, we study a more generalized problem –
the h-hop independently submodular maximization problem,
which is briefly defined as follows. Notice that the MCCP
problem is a special case of the problem studied in this paper
with h = 4.

Given an undirected, connected graph G = (V,E), let
f : 2V 7→ Z≥0 be a monotone function on the subsets of V ,
i.e., f(A) ≤ f(B) for any subsets A and B of V with A ⊆ B.
In addition, given a positive integer h ≥ 1, we say that f is
h-hop independently submodular based on G if it meets the
following two properties:

(i) Submodularity: f(A ∪ {v})− f(A) ≥ f(B ∪ {v}) +
f(B) for any two subsets A and B of V with A ⊆ B, and
any node v ∈ V \B. The submodularity captures the property
of diminishing returns in economics and many fields [6].

(ii) h-hop independence: f(A) + f(B) = f(A ∪ B) for
any two non-empty subsets A and B of V with the minimum
number of hops in G between any node in A and any node in
B being at least h.

In this paper, we consider an h-hop independently sub-
modular maximization problem in G(V,E), which is to find
a subset S of K nodes in V such that the value of f(S) is
maximized, subject to the constraint that the induced subgraph
G[S] of G by the nodes in S is connected, where K is a
given positive integer with 1 ≤ K ≤ |V | and f is h-hop
independently submodular.

In addition to the aforementioned application of deploy-
ing UAV networks, there are many other potential applications
of the h-hop independently submodular maximization prob-
lem. For example, consider the problem of placing K sensors
at some strategic locations to monitor PoIs (Points of Interest)
in an IoT network such that the number of PoIs monitored
by the K sensors is maximized, subject to the constraint that
the communication subnetwork induced by the K sensors is
connected [15]. Other applications include deploying wireless
power chargers in wireless sensor networks [38], [39], placing
wireless routers in wireless networks [20], choosing influential
connected users in social networks [2], [17], [18], [23], [29],
[31], [33].

There are several studies on special cases of the h-
hop independently submodular maximization problem. For
example, Garg [12] proposed a 1

3+ε -approximation algorithm
for the problem when h = 1, where ε is a given constant with
0 < ε ≤ 1. Notice that the submodular function f meets
the additive property when h = 1, i.e., for any subset S
of V , f(S) =

∑
v∈S f({v}). Khuller et al. [18] proposed a

1−1/e
12 -approximation algorithm for the problem when h = 3,

where e is the base of the natural logarithm. Yu et al. [38],
[39] proposed a 1−1/e

8(d 4√
3
αe+1)2

-approximation algorithm for the
MCCP problem, where α = r

R with 0 < r ≤ R. It can be
seen that the approximation ratio is a value between 1−1/e

128

and 1−1/e
32 , as 0 < α ≤ 1.

A. Main contributions

The main contributions of this paper are as follows.
(i) To the best of our knowledge, we are the first to

introduce the h-hop independently submodular maximiza-
tion problem, which generalizes many optimization problems
arisen in different domains, such as the MCCP problem of
deploying a UAV network to serve as many users as possible.

(ii) In this paper, we propose a 1−1/e
2h+3 -approximation

algorithm for the problem when h ≥ 2. Consequently, the
proposed algorithm delivers 1−1/e

9 and 1−1/e
11 approximate

solutions to the problem, when h = 3 and h = 4, respectively,
while the best approximation ratios so far for these two special
cases with h = 3 and h = 4 are 1−1/e

12 [18] and 1−1/e
32 [38],

[39], respectively.
(iii) We finally evaluate the performance of the proposed

algorithm for the MCCP problem in the application of de-
ploying UAV networks, and experimental results show that
the number of users served by deployed UAVs in the solution
delivered by the proposed algorithm is up to 12.5% larger than
those by existing algorithms.

B. Technical novelties

We are motivated by the study in [18]. There are two
major technical differences between our work and the work
in [18]. The first one is that, unlike the algorithm in [18] that
assigns profits to nodes in only one way, we assign profits to
nodes in multiple ways. We show that there is a tree T in
G with the profit sum of the nodes in T being no less than
(1− 1/e)OPT among one of the multiple profit assignments,
and the number of the edges in T is no greater than (K−1)h,
which is less than the number (Kh− 1) in [18] when h ≥ 1.

The other difference is that the traditional tree decompo-
sition technique adopted in [18] decomposes a tree T with
(K − 1)h edges into 4h subtrees so that the number of
nodes in each subtree is no more than K

2 . We here propose
a novel tree decomposition technique that decomposes a tree
T with (K − 1)h edges into 2h + 3 subtrees, such that the
number of nodes in each subtree is no more than K

2 , by
exploring important structure properties of the tree T . Note
that 2h + 3 < 4h for any integer h if h ≥ 2. By utilizing
the proposed tree decomposition technique, we devise a novel
approximation algorithm for the h-hop independently submod-
ular maximization problem, and its approximation ratio is 1

4

and 1−1/e
2h+3 when h = 1 and h ≥ 2, respectively.
The rest of the paper is organized as follows. Section II

introduces preliminaries and defines the problem. Section III
proposes a 1−1/e

2h+3 -approximation algorithm for the h-hop in-
dependently submodular maximization problem, while Sec-
tion IV shows the approximation ratio. Section V evaluates the
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performance of the proposed algorithms. Section VI reviews
related work, and Section VII concludes the paper.

II. PRELIMINARIES

We consider an undirected, connected graph G = (V,E),
where V is the set of nodes and E is the set of edges. For
any two nodes u and v in V , denote by l(u, v) the minimum
number of hops (i.e., edges) in G between nodes u and v.
Also, for any two non-empty subsets A and B of V , denote
by l(A,B) the minimum number of hops between nodes in A
and B, i.e., l(A,B) = minu∈A,v∈B{l(u, v)}.

We consider a nondecreasing submodular function f :
2V 7→ Z≥0, which meets the following three properties:
(i) f(∅) = 0;

(ii) Monotonicity: f(A) ≤ f(B) for any two subsets A and
B of V with A ⊆ B; and

(iii) Submodularity: f(A∪{v})−f(A) ≥ f(B∪{v})+f(B)
for any two subsets A and B of V with A ⊆ B, and any
node v ∈ V \B.
A function f : 2V 7→ Z≥0 is an h-hop independently

submodular function in a graph G = (V,E) if and only if
(i) f is nondecreasing and submodular; and (ii) for any two
non-empty subsets A and B of V , if the minimum number of
hops between the nodes in A and the nodes in B is no less
than h (i.e., l(A,B) ≥ h), then f(A) + f(B) = f(A ∪ B),
where h ≥ 1 is a given positive integer.

In this paper, we consider an h-hop independently sub-
modular maximization problem, which is defined as follows.
Given an undirected, connected graph G = (V,E), an h-hop
independently submodular function f : 2V 7→ Z≥0, and a
positive integer K, the problem is to find a set S of K nodes
in V such that the value of f(S) is maximized, subject to the
constraint that the induced subgraph G[S] by the nodes in S
is connected.

We assume that the values of h and K satisfy the
following relationship: 2h + 3 ≤

√
K. The rationale behind

the assumption is as follows. Xu et al. [34] devised a 1−1/e√
K

-
approximation algorithm for finding a set S with K nodes
in G such that a submodular function f(S) is maximized,
subject to that G[S] is connected, where e is the base of the
natural logarithm. This implies that the algorithm also delivers
a 1−1/e√

K
-approximate solution to the problem considered in this

paper. However, the approximation ratio 1−1/e√
K

is small when
K is large. Under the assumption that 2h+3 ≤

√
K, we will

propose an improved algorithm with an approximation ratio
1−1/e
2h+3 for the problem in this paper, which is no less than
1−1/e√

K
.

We define a Quota Steiner Tree (QST) problem [16].
Given an undirected graph G = (V,E), a profit function
p : V 7→ Z≥0, a cost function c : E 7→ Z≥0, and a positive
integer (quota) q, the problem is to find a subtree T in G
such that the cost of the T , i.e.,

∑
e∈E(T ) c(e), is minimized,

subject to the constraint that the profit sum of nodes in T is
no less than q, i.e.,

∑
v∈V (T ) p(v) ≥ q. Notice that there is

a 2-approximation algorithm for the QST problem [12], [16],

and the algorithm will be part of the solution to the problem
in this paper.

III. APPROXIMATION ALGORITHM

In this section, we propose a 1−1/e
2h+3 -approximation algo-

rithm for the h-hop independently submodular maximization
problem.

A. Basic idea

The basic idea behind the proposed algorithm is that we
assign profits to nodes in graph G in n different ways with
n = |V |. We find a tree Ti in G with no more than K nodes
so that the profit sum of nodes in Ti is maximized in each
of the n profit assignments, by invoking the 2-approximation
algorithm for the QST problem, where the QST problem here
is to find a tree in G such that the number of nodes in the
tree is minimized, subject to the constraint that the profit sum
of nodes in the tree is at least a given quota q. The solution
to the problem then is the set of nodes in one of the n found
trees T1, T2, . . . , Tn such that the profit sum of nodes in the
tree is maximized.

B. Approximation algorithm

Given an undirected, connected graph G = (V,E), an h-
hop independently submodular function f : 2V 7→ Z≥0, and a
positive integer K, let V = {v1, v2, . . . , vn}, where n = |V |.
We assign profits to nodes in G with n different ways.

Denote by pi(v) the profit assigned to node v ∈ V in G
in the ith way with 1 ≤ i ≤ n. This profit assignment proceeds
as follows.

We start by assigning a profit f({vi}) to node vi, i.e.,
pi(vi) = f({vi}). We then choose a node v in V \ {vi} with
the maximum marginal profit f({v, vi})−f({vi}) and assign
node v the profit pi(v) = f({v, vi})−f({vi}), where ties are
broken arbitrarily. The profit assignment procedure continues
until each node in G is assigned a profit. The detailed profit
assignment procedure is given in Algorithm 1.

Algorithm 1 Profit assignment procedure
Input: An undirected, connected graph G = (V,E), an h-hop

independently submodular function f : 2V 7→ Z≥0, and a
starting node vi

Output: the assigned profit pi(v) of each node v ∈ V in the ith
way

1: Assign profit f({vi}) to the starting node vi, i.e., pi(vi) =
f({vi});

2: Let D ← {vi}; /* the set of nodes assigned profits already*/
3: Let U ← V \D;
4: while U 6= ∅ do
5: Choose a node v in U with the maximum marginal profit

f({v} ∪D)− f(D), i.e., v = argmaxvj∈U{f({vj} ∪D)−
f(D)};

6: Let pi(v) = f({v} ∪D)− f(D);
7: Let D ← D ∪ {v};
8: Let U ← U \ {v};
9: end while

10: return the assigned profit pi(v) of each node v in V .
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Having assigned a profit pi(v) to each node v ∈ V in the
ith way, we find a tree Ti with no more than K nodes such
that the profit sum of the nodes in Ti is maximized, based on
the profit assignment. Denote by qopt the optimal profit sum.

Since the total profit qopt must be in the interval of
[f({vi}), f(V )], the value of qopt can be calculated by a
binary search. Specially, let lb and ub be the lower and upper
bounds on qopt, respectively. Initially, let lb = f({vi}) and
ub = f(V ). Let q = b lb+ub2 c. We can find a tree Tq in G based
on the profit assignment of the ith way so that the number of
nodes in Tq is minimized, subject to the constraint that the
profit sum of nodes in Tq is no less than q, by invoking the 2-
approximation algorithm for the QST problem. Consider the
number of nodes |V (Tq)| in tree Tq . If |V (Tq)| ≤ K, this
implies that q(= b lb+ub2 c) is no more than the optimal profit
sum qopt. In this case, let q become the updated lower bound
on qopt, i.e., lb = q. Otherwise (|V (Tq)| > K), this indicates
that the value q is larger than qopt, i.e., q > qopt. Let q become
the updated upper bound on qopt, i.e., ub = q. The binary
search will terminate when ub = lb + 1. Finally, the tree Ti
can be found, by invoking the 2-approximation algorithm for
the QST problem with a quota of lb(= ub− 1).

The algorithm for the h-hop independently submodular
maximization problem is presented in Algorithm 2.

IV. ANALYSIS OF THE APPROXIMATION ALGORITHM

Denote by L0 the set of nodes in an optimal solution to
the problem. Then, OPT = f(L0). Also, denote by Lh−1
the set of nodes such that the minimum number of hops in
G between any node v in Lh−1 and any node in L0 is no
more than h − 1, but node v is not contained in L0, i.e.,
Lh−1 = {v | v ∈ V \ L0, l(v, L0) ≤ h − 1}, where h ≥ 1,
and l(v, L0) is the minimum number of hops between node v
and nodes in L0 in G. Let Lh = V \ (L0 ∪ Lh−1). It can be
seen that the minimum number of hops between nodes in L0

and nodes in Lh is no less than h, i.e., l(L0, Lh) ≥ h.
Consider a node vi with the maximum profit in the optimal

solution L0, i.e., vi = argmaxv∈L0{f(v)}. Recall that in
the ith ‘for’ loop of Algorithm 2, we first assign a profit
pi(vi) = f(vi) to node vi, then assign profits to the other
nodes in G greedily. Denote by D′ the first K nodes in
set L0 ∪ Lh−1 that have been assigned profits by the profit
assignment procedure. Let D′ = {vi, v1, v2, . . . , vK−1} with
i 6∈ {1, 2, . . . ,K − 1}. Denote by pi(D

′) the profit sum of
nodes in D′, i.e., pi(D′) =

∑
v∈D′ pi(v).

Proof roadmap: In the rest, we first show that the profit
sum of nodes in D′ is no less than (1 − 1/e) · OPT , i.e.,
pi(D

′) ≥ (1 − 1/e)OPT . We then prove that there is a tree
T in G spanning the nodes in D′, such that the number of
nodes in T is no more than (K − 1)h+ 1. The profit sum of
nodes in T thus is no less than (1− 1/e)OPT . We also show
that tree T can be decomposed into no more than 2h + 3
subtrees such that the number of nodes in each subtree is
no more than K

2 . Then, there must have a subtree T ′ among
the 2h + 3 subtrees such that the profit sum of nodes in T ′

is no less than 1
2h+3 of the profit sum of nodes in T , i.e.,

Algorithm 2 Approximation algorithm for the h-hop indepen-
dently submodular maximization problem
Input: An undirected, connected graph G = (V,E), an h-hop

independently submodular function f : 2V 7→ Z≥0, and a
positive integer K.

Output: A set S of K nodes in G such that the value of f(S) is
maximized, subject to the constraint that the induced subgraph
G[S] is connected.

1: Let S ← ∅;
2: for 1 ≤ i ≤ n do
3: Assign profits to nodes in V starting from node vi by invoking

Algorithm 1;
4: Let lb← f({vi}) and ub← f(V ); /* lb and ub are the lower

and upper bounds on the value of qopt, respectively */
5: while lb+ 1 < ub do
6: Let q ← b lb+ub

2
c; /* q is the quota in the QST problem */

7: Find a tree Tq in G with the minimum number of nodes,
subject to the constraint that the profit sum of nodes in Tq ,
i.e.,

∑
v∈V (Tq)

pi(v), is no less than quota q, by invoking
the 2-approximation algorithm for the QST problem;

8: if the number of nodes in Tq is no greater than K then
9: Let lb← q; /* the quota q is no more than qopt */

10: else
11: Let ub← q; /* the quota q is larger than qopt */
12: end if
13: end while
14: Let q ← lb, where lb = ub− 1;
15: Find a tree Ti in G with the minimum number of nodes,

subject to the constraint that the profit sum of nodes in Ti is no
less than quota q, by invoking the 2-approximation algorithm
for the QST problem. Notice that the number of nodes in Ti

must be no greater than K.
16: if f(V (Ti)) > f(S) then
17: Let S ← V (Ti); /* find a better set of nodes */
18: end if
19: end for
20: return set S.

∑
v∈T ′ pi(v) ≥

∑
v∈T pi(v)

2h+3 ≥ 1−1/e
2h+3 OPT . Finally, a tree in G

with no more than 2K2 = K nodes can be found such that the
profit sum of nodes in the tree is no less than 1−1/e

2h+3 ·OPT , by
invoking the 2-approximation algorithm for the QST problem
in [12], [16].

We start by showing that the profit sum of nodes in D′

is no less than (1− 1/e) ·OPT .
Lemma 1: Consider node vi in the optimal solution L0

with the maximum profit and the profit assignment procedure
starting with node vi. Let D′ be the first K nodes in set L0 ∪
Lh−1 with the assigned profits. Then, pi(D′) ≥ (1 − 1/e) ·
OPT .

Proof: The proof is omitted, since it is similar to the
one in [18].

A. The existence of a tree T with (K − 1)h + 1 nodes that
spans all nodes in D′

We then show that there is a tree T in G spanning the
nodes in D′ such that the number of nodes in T is no more
than (K − 1)h+ 1, which is less than Kh in [18].

Lemma 2: Given node vi ∈ L0 with the maximum profit
and the profit function pi : V 7→ Z≥0, there is a tree T in G
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Fig. 2. The constructed tree T spanning the nodes in D′, where K = 17
and h = 3. Notice that node vi is contained by both T ∗ and D′.

with no more than (K − 1)h + 1 nodes such that the profit
sum of nodes in T , i.e.,

∑
v∈V (T ) pi(v), is no less than (1−

1/e) ·OPT , where e is the base of the natural logarithm.
Proof: We construct a tree T in G spanning all nodes

in D′ such that T contains no more than (K−1)h+1 nodes,
based on profit function pi(·).

Since L0 is the optimal solution, the induced subgraph
G[L0] by the nodes in L0 is connected. Denote by T ∗ a
spanning tree in G[L0], assuming that the cost of each edge is
one. Notice that vi is in L0 and each node in D′ is contained
in L0 ∪ Lh−1, where Lh−1 is the set of nodes such that the
minimum number of hops in G between any node v in Lh−1
and any node in L0 is no greater than h−1, but node v is not
contained in L0. Then, it can be seen that there is a path Pk
in G between any node vk in D′ \ {vi} and a node uk in L0

such that the number of edges in Pk is no more than h− 1.
A tree T can be constructed, which is the union of

T ∗ and the K − 1 found paths, i.e., T = T ∗
⋃
(
⋃K−1
k=1 Pk).

Fig. 2 illustrates such a tree, where K = 17, h = 3, L0 =
V (T ∗) = {vi, u1, u2, . . . , u16}, D′ = {vi, v1, v2, . . . , v16},
and the number of edges in each path Pk is no more than
h− 1 = 2.

The number of edges in T is no more than |E(T )| =
|E(T ∗)| +

∑K−1
k=1 |E(Pk)| ≤ K − 1 + (K − 1) · (h − 1) =

(K − 1)h. The number of nodes in T thus is no greater than
(K − 1)h+ 1. The lemma then follows.

B. A novel tree decomposition

We now show that there is a subtree T ′ in G with no
more than bK2 c nodes such that the profit sum of nodes in
T ′ is no less than 1−1/e

2h+3 · OPT . Following Lemma 2, there
is a tree T in G with no more than (K − 1)h + 1 nodes
such that the profit sum

∑
v∈V (T ) pi(v) of the nodes in T

is no less than (1 − 1/e) · OPT . We here propose a novel
tree decomposition technique that decomposes T into no more
than 2h + 3 subtrees such that the number of nodes in each
subtree is no greater than bK2 c, where 2h + 3 < 4h for any
integer h with h ≥ 2. Then, there must be a subtree T ′ among
the 2h + 3 subtrees such that the profit sum of nodes in T ′

is no less than 1
2h+3 of the profit sum of nodes in T , i.e.,∑

v∈T ′ pi(v) ≥
∑

v∈T pi(v)

2h+3 ≥ 1−1/e
2h+3 OPT .

Tree decomposition procedure
We show the tree decomposition procedure when K is

odd. Then, bK2 c =
K−1
2 . On the other hand, bK2 c =

K
2 when

K is even. The procedure with the case that K is even is
omitted, due to its similarity with the case that K is odd.

Recall that tree T is the union of a spanning tree T ∗ in
G[L0] and K − 1 paths P1, P2, . . . , PK−1, where the number
of edges in Pk is no more than h − 1 with 1 ≤ k ≤ K −
1, see Fig. 2. Without loss of generality, we further assume
that P1, P2, . . . , PK−1 are edge-disjoint. Otherwise, the paths
with edge-sharing can be converted to edge-disjoint paths, by
duplicating the shared edges.

Let node vi ∈ L0 be the root of tree T . Denote by Tv
the subtree of T rooted at node v for any node v ∈ T , and
denote by w(Tv) the number of edges in Tv . We decompose
tree T by a Depth-First Search (DFS) starting from node vi,
until the number of edges in the residual tree is no more than
K−1
2 − 1 = K−3

2 . The detailed tree decomposition procedure
is given as follows.

Assume that v is the node being visited by the DFS. If
the number of edges in tree Tv is no more than K−3

2 − 1, i.e.,
w(Tv) ≤ K−3

2 −1, nothing is done and the tree decomposition
procedure continues; otherwise (w(Tv) ≥ K−3

2 as w(Tv) is an
integer), a tree will be decomposed from T as follows. We later
show that node v must be contained in tree T ∗, where T ∗ is
a spanning tree in G[L0] by the optimal solution L0.

Assume that node Tv has nv children v′1, v
′
2, . . . , v

′
nv

.
Denote by tree T ′l the union of edge (v, v′l) and subtree Tv′l
rooted at a child v′l, i.e., T ′l = (v, v′l)∪Tv′l , where 1 ≤ l ≤ nv .

Following the work in [30], the nv subtrees
T ′1, T

′
2, . . . , T

′
nv

can be partitioned into, say n′(≥ 2), groups
g1, g2, . . . , gn′ such that the number of edges of subtrees in
each group is no more than K−3

2 (i.e.,
∑
T ′
l∈gj

w(T ′l ) ≤ K−3
2

for each j with 1 ≤ j ≤ n′), while the number of edges
in the subtrees of any two groups is larger than K−3

2 (i.e.,∑
T ′
l∈gj∪gj′

w(T ′l ) > K−3
2 for each pair of j and j′ with

1 ≤ j, j′ ≤ n′ and j 6= j′). For example, Fig. 3(a) shows that
tree Tu3 rooted at u3 consists of four subtrees, and these four
subtrees are partitioned into n′ = 2 groups, where K = 17
and K−3

2 = 7. Also, it can be seen that the numbers of edges
in the subtrees of groups g1 and g2 are 6 and 3, respectively.
Then, w(g1) = 6 ≤ K−3

2 = 7 and w(g2) = 3 ≤ K−3
2 = 7,

while w(g1) + w(g2) = 6 + 3 = 9 > K−3
2 = 7.

For each group gj with 1 ≤ j ≤ n′, denote by n∗j the
number of edges in gj ∩ T ∗, where T ∗ is a spanning tree in
graph G[L0]. For example, consider two groups g1 and g2 in
Fig. 3(a). It can be seen that n∗1 = 3 and n∗2 = 0.

A tree T ′′j is decomposed from T by distinguishing into
two cases. Case (i): the number of edges in the subtrees of a
group gj is no less than K−3

2 − n∗j − (h− 2), i.e.,

w(gj) =
∑
T ′
l∈gj

w(T ′l ) ≥
K − 3

2
− n∗j − (h− 2). (1)

A tree T ′′j in Case (i) is constructed, which is the union
of the subtrees in group gj , as each subtree in gj contains the
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Fig. 3. The execution illustrations of the tree decomposition procedure.

root v of Tv . Finally, the edges in T ′′j are removed from T .
For example, Fig. 3(a) shows that the number of edges in the
subtrees of group g1 is w(g1) = 3 + 3 = 6 > K−3

2 − n∗1 −
(h− 2) = 17−3

2 − 3− (3− 2) = 3. Tree T ′′j thus is the union
of the subtrees in group g1, see Fig. 3(a).

Case (ii): the number of edges in all subtrees of each
group gj is no more than K−3

2 − n∗j − (h− 2), i.e., w(gj) <
K−3
2 −n

∗
j − (h−2) for each j with 1 ≤ j ≤ n′. For example,

consider node u5 in Fig. 3(b), where the number of edges
in the subtrees of group g1 (or g2) is 4, while the value of
K−3
2 − n∗j − (h − 2) is 17−3

2 − 1 − (3 − 2) = 5. The n′

groups g1, g2, . . . , gn′ are sorted in non-increasing order of
the numbers of their edges in T ∗. Without loss of generality,
assume that n∗1 ≥ n∗2 ≥ · · · ≥ n∗n′ , where n∗j = |E(gj ∩ T ∗)|
with 1 ≤ j ≤ n′. Notice that node v is contained in each
subtree gj ∩ T ∗ with 1 ≤ j ≤ n′, as v is contained in each
subtree of gj and v is in T ∗.

A tree T ′′j in Case (ii) is constructed from T as follows.
First, let T ′′j be the union of the subtrees in group g1. Then,
we duplicate the edges in g2 ∩ T ∗ and add the edges to T ′′j .
Notice that T ′′j is connected after adding the edges in g2∩T ∗,
since node v is contained in both g1∩T ∗ and g2∩T ∗. Finally,
recall that for each node vk in D′ \ {vi}, there is a path Pk
between vk and a node uk in T ∗ such that the number of edges

in Pk is no more than h − 1. We continue adding a path Pk
of a node vk in (D′ \ {vi})∩ g2 to T ′′j as long as the number
of edges in T ′′j is no more than K−3

2 . For example, Fig. 3(b)
illustrates such a tree, where the edge in g2 ∩ T ∗ is (u5, u6),
and path P5 consisting of only edge (v5, u6) is added to T ′′j .

Having constructed tree T ′′j , the edges in T ′′j except the
edges in g2 ∩ T ∗ are removed from T , see Fig. 3(c) for the
residual tree of T after the tree decomposition in Case (ii).

Denote by T the set of the decomposed subtrees from T
by the tree decomposition procedure. For example, Fig. 3(d)
shows that seven subtrees are obtained through the tree decom-
position of tree T . It can be seen that the number of edges
of each tree in T is no more than K−3

2 . Then, the number of
nodes of each tree is no greater than K−3

2 + 1 = K−1
2 ≤ K

2 .

Bound the number of decomposed subtrees in T
Lemma 3: Assume that

√
K ≥ 2h+3. Then, the tree T in

G with no more than (K−1)h+1 nodes can be decomposed
into no more than 2h + 3 subtrees, such that the number of
nodes in each subtree is no more than K

2 . Then, there is a
subtree T ′ among the 2h + 3 subtrees with no more than K

2
nodes such that the profit sum of nodes in T ′ is no less than
1−1/e
2h+3 · OPT , i.e., |V (T ′)| ≤ K

2 and
∑
v∈T ′ pi(v) ≥ 1−1/e

2h+3 ·
OPT .
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Proof: It can be seen that the number of nodes of
each subtree in T is no greater than K

2 . We show that the
number of subtrees in T is no more than 2h+ 3. Recall that,
before splitting any subtree off from tree T , T consists of a
spanning tree T ∗ in G[L0] and K−1 paths P1, P2, . . . , PK−1,
see Fig. 2(a). It can be seen that the numbers of edges in T ∗

and T are K − 1 and (K − 1)h, respectively, by Lemma 2.
Let T = {T ′′1 , T ′′2 , . . . , T ′′x , T ′′x+1} be the set of decom-

posed subtrees of T by the tree decomposition procedure,
where the number of subtrees in T is x + 1 and x is a
nonnegative integer.

Following the tree composition procedure, some edges of
T ∗ will be removed when decomposing each subtree T ′′j from
T , where 1 ≤ j ≤ x+1. The set of the removed edges can be
represented as (E(T ′′j )∩E(T ∗))\E(T ∗). Let n∗j = |((E(T ′′j )∩
E(T ∗)) \ E(T ∗)|. It can be seen that

∑x+1
j=1 n

∗
j ≤ K − 1, as

any edge in T ∗ will not be contained in other subtrees once
it has been removed from T . Especially, we have

x∑
j=1

n∗j ≤
x+1∑
j=1

n∗j ≤ K − 1, (2)

where T ′′x+1 is the final decomposed subtree.
We show that the number of removed edges from T after

decomposing each subtree T ′′j is no less than K−3
2 −n

∗
j−(h−

2), i.e.,
w(T ′′j \ T ) ≥

K − 3

2
− n∗j − (h− 2). (3)

Assume that a node v in T is being visited by the DFS
in the tree decomposition procedure when T ′′j is decomposed.
Then, T ′′j is a subtree of Tv . Subtree T ′′j may be obtained in
either Case (i) or Case (ii) of the tree decomposition procedure,
see Fig. 3. For Case (i) (see Fig. 3(a)), we have

w(T ′′j \ T ) = w(T ′′j ) ≥
K − 3

2
− n∗j − (h− 2), by Ineq. (1). (4)

On the other hand, assume that T ′′j is obtained by Case (ii)
in the tree decomposition procedure. It can be seen that the
number of edges in T ′′j is at least K−3

2 − (h− 2), i.e.,

w(T ′′j ) ≥
K − 3

2
− (h− 2). (5)

Otherwise (w(T ′′j ) <
K−3
2 − (h − 2)), we have w(T ′′j ) ≤

K−3
2 − (h−2)−1 = K−3

2 − (h−1). We then can add another
path Pk′ of a node vk′ in (D′\{vi})∩g2, such that the number
of edges in T ′′j is at most K−3

2 − (h− 1) + |E(Pk′)| ≤ K−3
2 ,

as the number of edges in Pk′ is no more than h − 1. This
however contradicts the construction of tree T ′′j .

It can be seen that the set of edges removed from T after
decomposing subtree T ′′j by Case (ii) is E(T ′′j ) \E(g2 ∩ T ∗),
since the edges in E(g2 ∩T ∗) are not removed from T in the
tree decomposition, see Fig. 3(b) and Fig. 3(c). We then have

w(T ′′j \ T )
= w(T ′′j )− |E(g2 ∩ T ∗)|

≥
K − 3

2
− (h− 2)− |E(g2 ∩ T ∗)|, by Ineq. (5)

=
K − 3

2
− n∗2 − (h− 2), as n∗2 = |E(g2 ∩ T ∗)|

≥
K − 3

2
− n∗1 − (h− 2), as n∗1 ≥ n∗2. (6)

Combining Ineq. (4) and Ineq. (6), Ineq. (3) holds.
Since there are (K − 1)h edges in tree T initially, the

number of edges removed from T after decomposing the first
x subtrees is no greater than (K − 1)h. We thus have

(K − 1)h ≥
x∑

j=1

w(T ′′j \ T )

=

x∑
j=1

(
K − 3

2
− n∗j − (h− 2)), by Ineq. (3)

= (
K − 1

2
− (h− 1)) · x−

x∑
j=1

n∗j

≥ (
K − 1

2
− (h− 1)) · x− (K − 1), by Ineq. (2). (7)

Then,

2(h+ 1) ≥ (1− 2(h− 1)

K − 1
) · x

≥ (1− 2(h− 1)

(2h+ 3)2 − 1
) · x,

by the assumption that
√
K ≥ 2h+ 3. (8)

By re-arranging Ineq. (8), we have

x ≤ 2h+ 3− 5h+ 7

2h2 + 5h+ 5
. (9)

Since x is an integer, we have

x ≤ 2h+ 2. (10)

Then, the number of subtrees in T is x + 1 ≤ 2h + 3. For
example, Fig. 3(d) shows that seven subtrees are obtained after
the tree decomposition of tree T , |T | = 7 ≤ 2h+ 3 = 9, and
the number of edges of each subtree is no more than K−3

2 = 7.
The lemma then follows.

C. Analysis of the approximation ratio

Lemma 4: Given node vi ∈ L0 with the maximum profit,
assign profits to nodes in G with profit function pi : V 7→ Z≥0.
Then, the 2-approximation algorithm for the QST problem
in [12], [16] can find a tree in G with no more than K nodes
such that the profit sum of nodes in the tree is no less than a
quota q if q ≤ d 1−1/e2h+3 ·OPT e. Equivalently, if the algorithm
in [12], [16] delivers a tree with more than K nodes, then the
quota q is larger than d 1−1/e2h+3 ·OPT e.

Proof: Following Lemma 3, there is a tree T ′ in G
with no more than K

2 nodes such that the profit sum of nodes
in T ′ is no less than d 1−1/e2h+3 · OPT e, as the profit sum is an
integer. Therefore, tree T ′ is a feasible solution to the QST
problem when the quota q ≤ d 1−1/e2h+3 ·OPT e. Then, the optimal
solution to the QST problem with a quota q contains no more
than K

2 nodes. We thus conclude that the tree delivered by the
2-approximation algorithm for the QST problem [12], [16]
contains no more than 2 · K2 = K nodes.

We finally analyze the approximation ratio of the pro-
posed approximation algorithm by the following theorem.

Theorem 1: Given an undirected, connected graph G =
(V,E), an h-hop independently submodular function f :
2V 7→ Z≥0, and a positive integer K with K ≤ |V |, Then,
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there is an approximation algorithm, Algorithm 2, for the h-
hop independently submodular maximization problem, which
delivers a 1−1/e

2h+3 -approximate solution, where h is a given
positive integer with h ≥ 2, and e is the base of the natural
logarithm.

Proof: Consider node vi ∈ L0 in the optimal solution
with the maximum profit, and a profit function pi : V 7→ Z≥0.
It can be seen that ub = lb+1 when Algorithm 2 terminates,
where ub and lb are the upper and lower bounds on the value of
d 1−1/e2h+3 ·OPT e. Also, the algorithm in [12], [16] for the QST
problem delivers a tree with no more than K nodes when the
quota q = lb, while it delivers a tree more than K nodes when
the quota q = ub. Then, ub > d 1−1/e2h+3 · OPT e by Lemma 4.
We thus have ub ≥ d 1−1/e2h+3 ·OPT e+ 1, due to that the value
of ub is an integer. Therefore, lb ≥ d 1−1/e2h+3 ·OPT e ≥

1−1/e
2h+3 ·

OPT . That is, the tree delivered by the algorithm for the QST
problem with quota q = lb(≥ 1−1/e

2h+3 · OPT ) in [12], [16]
contains no more than K nodes. Therefore, the approximation
ratio of Algorithm 2 is 1−1/e

2h+3 .

V. PERFORMANCE EVALUATION

A. Experimental environment settings

We consider an application of the problem for deploying
a connected UAV network to serve ground users in a disaster
area. Consider a disaster area of 3 × 3 km2 square [42],
in which 500 to 3,000 users are located, where the human
density follows the fat-tailed distribution, i.e., many people
are located at a small portion of places while a few people are
located at other places [27]. The number of deployed UAVs
K varies from 10 to 50. Then, the approximation ratio of
the proposed algorithm is 1−1/e

11 , where e is the base of the
natural logarithm. We assume that each UAV hovers at altitude
Huav = 300 m [1]. The communication range R between
any two UAVs is 600 m, while the communication range r′

between a user and a UAV is 500 m [42].
To evaluate the performance of the proposed algorithm

ApproAlg for the maximum connected coverage problem,
we adopt the following three benchmarks. (i) Algorithm
MotionCtrl [42] finds a distributed motion control solution
for deploying K UAVs to cover as many as users while main-
taining the connectivity of the UAVs. (ii) Algorithm MCS [32]
delivers a 1−1/e√

K
-approximate solution to the problem of

deploying K UAVs in a disaster area, such that a submodular
function of the deployed UAVs is maximized, subject to the
connectivity constraint that the subnetwork induced by the
K UAVs is connected. (iii) Algorithm GreedyLabel [17]
first assigns profits for deploying a UAV at different hovering
locations in a greedy way, followed by identifying a connected
subgraph with no more than K nodes such that the profit sum
of nodes in the subgraph is maximized.

B. Algorithm Performance

We first study the algorithm performance by varying
the number m of users from 500 to 3,000, when there are
K(= 30) UAVs. Fig. 4 shows that the number of users

served by algorithm ApproAlg is about from 8.5% to 12.5%
higher than those by algorithms MotionCtrl, MCS, and
GreedyLabel. For example, the numbers of users served
by the four algorithms ApproAlg, MotionCtrl, MCS, and
GreedyLabel are 2,600, 1,670, 2,395, and 1,800, respec-
tively when there are 3,000 users in the disaster area. Fig. 4
demonstrates that more users are served by each of the four
algorithms, with the increase on the number m of users.

Fig. 4. The performance of different algorithms by varying the number m
of to-be-served users from 500 to 3,000, when there are K = 30 UAVs.

We then investigate the performance of different algo-
rithms by increasing the number K of UAVs from 10 to 50,
when there are m = 3, 000 users. Fig. 5 plots that the number
of users served by each algorithm increases with more UAVs.
In addition, the deployed UAVs by algorithm ApproAlg
serve 97% (≈ 2,915

3,000 ) of users when there are K = 40 UAVs,
while the deployed UAVs by the other three algorithms serve
no more than 88% (≈ 2,633

3,000 ) of users.

Fig. 5. The performance of different algorithms by increasing the number K
of UAVs from 10 to 50, when there are m = 3, 000 to-be-served users.

We finally study the performance of different algorithms
by varying the communication range R between two UAVs
from 500 m to 1, 000 m while fixing the communication
range r′ of a user at 500 m, when m = 3, 000, K = 30.
Fig. 6 illustrates that the number of users served by each
of the four algorithms ApproAlg, MotionCtrl, MCS, and
GreedyLabel increases with the growth of the communi-
cation range R between two UAVs. The rationale behind the
phenomenon is that less numbers of relaying UAVs are needed
when the communication range R is larger, and more UAVs
thus can be used to serve the users. Fig. 6 also plots the
difference between the numbers of users served by algorithms
ApproAlg, MotionCtrl, MCS, and GreedyLabel. For
example, the number of users served by algorithm ApproAlg
is about 20% larger than the one by algorithm MCS when the
communication range R between two UAVs is 500 m, while
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the number by algorithm ApproAlg is only about 2.2% larger
than the one by algorithm MCS when R = 1, 000 m.

Fig. 6. The performance of different algorithms by varying the communication
range R between two UAVs from 500 m to 1,000 m while fixing r′ = 500 m,
when m = 3, 000 users, K = 30.

VI. RELATED WORK
The use of UAVs as aerial base stations (BS) recently

has gained lots of attentions in public communications. For
example, Zhao et al. [42] presented a motion control algorithm
for deploying a given number K of UAVs to cover as many
as users while maintaining the connectivity among UAVs. Liu
et al. [22] considered the similar problem and proposed a
deep reinforcement learning (DRL) based algorithm. Yang et
al. [37] investigated the problem of scheduling the movement
of multiple UAVs to fairly provide communication services to
mobile ground users for a given period, by using the DRL
method, too. Shi et al. [26] studied the problem of planning
the flying trajectories of multiple UAVs for a period such that
the average UAV-to-user pathloss in the network is minimized,
assuming that a user can be served by only a single UAV
during the period. They decoupled the problem into multiple
subproblems, and solved the subproblems separately.

There are several studies on the special cases of the h-hop
independently submodular maximization problem, subject to
the connectivity constraint that the induced subgraph of G by
a subset of nodes in V is connected. For example, Khuller et
al. [17], [18] devised a 1−1/e

12 -approximation algorithm for the
budgeted connected dominating set (BCDS) problem, which is
to find a set S of K nodes in a graph G such that the number of
nodes dominated by the nodes in S is maximized, subject to
the constraint that the induced subgraph G[S] is connected.
Notice that the objective function of the BCDS problem
is 3-hop independently submodular with h = 3. Huang et
al. [15] proposed a 1−1/e

8(d2
√
2αe+1)2

-approximation algorithm for
the maximum connected coverage problem with h = 4. where
α = r

R , r and R are the sensing range and communication
range of a sensor respectively, and 0 < r ≤ R. It can be
seen that 1−1/e

128 ≤ 1−1/e
8(d2
√
2αe+1)2

≤ 1−1/e
32 , as 0 < α ≤ 1.

Yu et al. [38], [39] recently improved the approximation ratio
to 1−1/e

8(d 4√
3
αe+1)2

, where 1−1/e
128 ≤

1−1/e
8(d 4√

3
αe+1)2

≤ 1−1/e
32 . It can

be seen that both approximation ratios in [15] and [38], [39]
are no greater than 1−1/e

32 .
There are other investigations on maximizing the values

of other submodular functions, not h-hop independently sub-
modular functions, subject to connectivity constraints. For ex-
ample, Kuo et al. [20] considered the problem of deploying K

wireless routers in a wireless network such that a submodular
function of the deployed K routers is maximized, subject to
the constraint that the subnetwork induced by the K routers is
connected, for which they proposed a 1−1/e

5(
√
K+1)

-approximation
algorithm, where e is the base of the natural logarithm.

There are flourishing studies on maximizing the value
of a submodular function without connectivity constraints.
For monotone submodular functions, Nemhauser et al. [25]
considered a problem of choosing K elements from a set
such that a submodular function of the chosen K elements is
maximized. They devised a (1−1/e)-approximation algorithm
for the problem and showed that the result is tight. They also
extended their result to the submodular function maximiza-
tion problem under the constraint of the intersection of M
matroids, and proposed a 1

M+1 -approximation algorithm [11],
and this approximation ratio later is further improved to 1

M+ε
by Lee et al. [21] when M ≥ 2, where ε is a given constant
with 0 < ε ≤ 1. Calinescu et al. [7] and Filmus et al. [10]
proposed a randomized (1 − 1/e)-approximation algorithm
for maximizing a submodular problem under a matroid con-
straint, respectively, while Buchbinder devised a deterministic
(1/2 + ε)-approximation algorithm [4], [5]. Sviridenko [28]
proposed a (1−1/e)-approximation algorithm for maximizing
a submodular function subject to a linear constraint, while
Kulik et al. [19] extended to the solution to multiple linear
constraints by giving a (1−1/e−ε)-approximation algorithm.

VII. CONCLUSIONS

In this paper, we studied the novel h-hop independently
submodular maximization problem, which generalizes many
optimization problems arisen in different domains, such as the
MCCP problem of deploying a connected UAV network to
serve as many users as possible. We then devised a 1−1/e

2h+3 -
approximation algorithm for the problem, where e is the base
of the natural logarithm. The proposed algorithm has many
potential applications, and one direct corollary from this result
is a 1−1/e

11 -approximate solution to the MCCP problem when
h = 4, which significantly improves its currently best 1−1/e

32 -
approximate solution [39].
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