
Profit Maximization for Service Placement and Request
Assignment in Edge Computing via Deep Reinforcement Learning

Yuchen Li
The Australian National University

Canberra, Australia

Weifa Liang
City University of Hong Kong

Hong Kong, P. R. China

Jing Li
The Australian National University

Canberra, Australia

ABSTRACT
With the integration of Mobile Edge Computing (MEC) and Net-
work Function Virtualization (NFV), service providers are able to
provide low-latency services to mobile users for profit. In this paper,
we study the problem of service instance placement and request as-
signment in an MEC network for a given monitoring period, where
service requests arrive into the system without the knowledge of fu-
ture arrivals. Each incoming request requires a specific service with
a maximum tolerable service delay requirement. The problem is to
maximize the profit of the service provider by admitting service
requests for the monitoring period, which can be achieved by pre-
installing service instances into cloudlets to shorten service delays,
and accommodating new services by removing some idle service
instances from cloudlets due to limited computing resources. We
then devise an efficient deep-reinforcement-learning-based algo-
rithm for this dynamic online service instance placement problem.
We finally evaluate the performance of the proposed algorithm by
conducting experiments through simulations. Simulation results
demonstrate that the proposed algorithm is promising.

CCS CONCEPTS
• Networks→ Network services.

KEYWORDS
Mobile edge-cloud networks, service request provisioning, service
instance placement, profit maximization.
ACM Reference Format:
Yuchen Li, Weifa Liang, and Jing Li. 2021. Profit Maximization for Service
Placement and Request Assignment in Edge Computing via Deep Rein-
forcement Learning. In Proceedings of the 24th ACM International Confer-
ence on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM ’21), November 22–26, 2021, Alicante, Spain. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3479239.3485673

1 INTRODUCTION
Mobile edge computing (MEC) has been envisioned as a promis-
ing solution to provide adequate computing resources with high
Quality of Service (QoS) through deploying cloudlets (edge servers)
within the proximity of mobile users [7]. Combining MEC with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSWiM ’21, November 22–26, 2021, Alicante, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9077-4/21/11. . . $15.00
https://doi.org/10.1145/3479239.3485673

virtualization techniques such as Network Function Virtualization
(NFV), service providers now can rent cloudlet resources from in-
frastructure service providers to provide services for mobile users
by implementing their services as VM instances in cloudlets for
profits. Usually, when a user requests a service, its service provider
will admit the request and initialize a service instance for the user.
Once the requested service finishes, the service instance will be
released back to the system to reduce the operational cost of the
service provider and available resources can be utilized by future
service requests. In contrast, we consider that the service providers
can pre-install some service instances before the arrivals of service
requests, since the locations and arriving rates of different service
requests usually follow certain spatial or temporal patterns. The
pre-installed service instances can be allocated to users without
service initialization delays, which further shortens end-to-end
service delays. Consequently, this will bring more profits by ad-
mitting more user requests while satisfying their end-to-end delay
requirements.

The challenge thus lies in the fact that we can only install limited
numbers of service instances at a cloudlet. It is challenging to decide
how many instances of a specific service should be installed at
cloudlets in order to maximize the profit of the service provider,
and there are several critical questions to be addressed. For example,
when should we remove idle VNF instances? the removal of an idle
VNF instance may reduce the operational cost immediately, but if
newly arrived requests demand the removed instances, they may
not be admitted due to the violation of user QoS requirements.
Also, it causes an initialization cost if we frequently install and
remove service instances. Another challenge is how to predict
future arrivals of user service requests. An inaccurate prediction
may incur a large initialization cost.

Several studies on service provisioning and Virtual Network
Function (VNF) instance placement in MEC environments have
been conducted. For example, Xu et al. [12] jointly considered the
placement of VNF instances for data processing and data traffic
routing path planning for user requests in a multi-tier edge cloud
network to maximize network throughput. Cziva et al. [2] studied
the dynamic VNF placement problem to minimize the end-to-end
latency of users, considering the network dynamics, user resource
demands and user mobility. Li et al [6] considered a VNF provision-
ing problem to maximize the revenue by admitting user requests
with service reliability requirements. They proposed two online
algorithms with provable competitive ratios for the problem by
adopting the primal-dual technique. He et al. [3] focused on the ser-
vice placement and request scheduling while considering sharable
and non-shareable resources in an MEC network with the aim to
maximize the number of requests admitted. Xu et al. [11] considered
the assignment of requests to shared VNF instances to maximize

Session: Edge/Fog Computing MSWiM ’21, November 22–26, 2021, Alicante, Spain

51

the network throughput while minimizing the operational cost.
They proposed a prediction mechanism to dynamically adjust the
number of VNF instances needed in cloudlets, which later will serve
as a baseline algorithm in our experimental section.

Unlike the aforementioned studies that only determine the ser-
vice placement when service requests arrive or have the knowledge
of future arrivals, The novelties of this paper lie in that we focus on
placing service instances prior to request arrivals, which is much
more difficult as there is no way to know when and how many
requests will arrive in advance.

The main contributions of this paper are given as follows. We
first formulate the profit maximization problem of delay-sensitive
service provisioning in MEC networks, by assigning service re-
quests to cloudlets and pre-installing or removing service instances
in cloudlets dynamically, through analyzing historical user service
request patterns, subject to computing capacity on each cloudlet.
We then develop an efficient algorithm for the problem, which uti-
lizes a deep-reinforcement-learning-based prediction mechanism
that is formulated as a Multi-agent Markov decision process to pre-
dict which types of services arrivals in the future, and pre-install
service instances accordingly.

2 PRELIMINARIES
In this section, we introduce the system model and define the prob-
lem precisely.

2.1 System model
We consider a mobile edge computing network G = (V ∪ 𝑆, 𝐸)
that consists of a setV of access points (APs) and a set 𝐸 of links
between the access points. For each link 𝑒 = (𝑖, 𝑗) ∈ 𝐸, there is
a transmission delay 𝑙𝑒 = 𝑙 (𝑖, 𝑗) on it. Also, a set of cloudlets 𝑆 is
co-located with some of the APs. For each cloudlet 𝑐 𝑗 ∈ 𝑆 , it has
limited computing capacity 𝐶𝐴𝑃 𝑗 for hosting service instances. Let
𝑓𝑘 ∈ 𝐹 with 𝑘 = 1, 2, . . . , |𝐹 | be a service function in the service set
𝐹 provided by the MEC network. We assume that a service instance
of 𝑓𝑘 can only serve one user’s request. We denote by 𝑐 (𝑓𝑘) the
computation requirement of the service instance of 𝑓𝑘 . We further
assume that the monitoring time period𝑇 is divided into equal time
slots, denoted by 𝑡 the time slot index with 1 ≤ 𝑡 ≤ 𝑇 , and each
time slot is split into two stages: the service placement stage and the
request admission stage, respectively.

Let 𝑛𝑡
𝑗,𝑘
∈ 𝑍+ ∪ {0} be the number of instances of service 𝑓𝑘 at

cloudlet 𝑐 𝑗 after the service placement stage at time slot 𝑡 . Since
cloudlets have limited computing capacity, the number of installed
service instances in cloudlet 𝑐 𝑗 is constrained by

∑ |𝐹 |
𝑘=1 𝑛

𝑡
𝑗,𝑘
·𝑐 (𝑓𝑘) ≤

𝐶𝐴𝑃 𝑗 . In service placement stage, we can add or remove service
instances from cloudlets. Denote by 𝛿𝑡

𝑗,𝑘
the number of instances

to be installed or deleted at the service placement stage of time slot
𝑡 . If 𝛿𝑡

𝑗,𝑘
> 0 then 𝑐 𝑗 instantiates 𝛿𝑡𝑗,𝑘 instances of 𝑓𝑘 at the service

placement stage. If 𝛿𝑡
𝑗,𝑘

< 0, |𝛿𝑡
𝑗,𝑘
| instances of 𝑓𝑘 will be released

from 𝑐 𝑗 . During the service placement stage, we need to consider
that some instances are serving unfinished tasks. These instances
should not be revoked. The number of instances at each cloudlet
after the service placement stage should be larger than the number
of unfinished requests at the cloudlet. For convenience, we use 𝜙𝑡

𝑗,𝑘

to denote the number of requests that are still being processed but
arrive before time slot 𝑡 , and we have 𝜙𝑡

𝑗,𝑘
≤ 𝑛𝑡

𝑗,𝑘
.

Mobile users can offload their tasks to cloudlets via their nearby
APs. Let 𝑅 be the set of service requests arrived at different APs
during the monitoring period of 𝑇 . We assume that at time slot 𝑡 ,
a subset of requests 𝑅(𝑡) (⊂ 𝑅) arrives from APs, where request
𝑟𝑖 ∈ 𝑅 can be described by a tuple (𝑡𝑖 , 𝑓𝑘𝑖 , 𝑣𝑖 , 𝜏𝑖 , 𝑑𝑖), where 𝑡𝑖 is the
time slot of its arrival; 𝑓𝑘𝑖 ∈ 𝐹 represents its service type, 𝑣𝑖 ∈ V
represents its closest AP to the device, 𝜏𝑖 represents its execution
duration, and 𝑑𝑖 is its end-to-end delay requirement.

At the arrival of request 𝑟𝑖 , we use a binary variable 𝑥𝑡
𝑖, 𝑗
∈ {0, 1}

to denote whether request 𝑟𝑖 is admitted by cloudlet 𝑐 𝑗 or not.
Request 𝑟𝑖 can only be admitted by one cloudlet at the time slot of
its arrival. We have

∑𝑇
𝑡=1

∑ |𝑆 |
𝑗=1 𝑥

𝑡
𝑖, 𝑗
≤ 1 and 𝑥𝑡

𝑖, 𝑗
= 0 .

Each request has an execution duration of 𝜏𝑖 time slots and once
a request is admitted, the request leaves the MEC system at the
end of (𝑡𝑖 + 𝜏𝑖 − 1)-th time slot. We use 𝑃𝑡

𝑖, 𝑗
∈ {0, 1} to denote that

request 𝑖 is being processed by cloudlet 𝑐 𝑗 at time slot 𝑡 , and thus

∀𝑖, 𝑗, 𝑡 𝑃𝑡𝑖, 𝑗 =

{
𝑥
𝑡𝑖
𝑖, 𝑗
, 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖 + 𝜏𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

We use a binary variable 𝑥𝑖𝑑𝑙𝑒
𝑡,𝑖, 𝑗
∈ {0, 1} to indicate if 𝑟𝑖 is offloaded

to an idle instance, and 𝑥𝑡
𝑛𝑒𝑤

𝑖, 𝑗
∈ {0, 1} to indicate if request 𝑟𝑖 is

served by initializing a new instance.

𝑥𝑡𝑖, 𝑗 = 𝑥𝑖𝑑𝑙𝑒𝑡,𝑖, 𝑗 + 𝑥
𝑛𝑒𝑤
𝑡,𝑖, 𝑗 , ∀𝑖, 𝑗, 𝑡 . (2)

The number of requests offloaded to idle instances on 𝑐 𝑗 should
be smaller than the number of idle instances on 𝑐 𝑗 , and thus∑︁

𝑖∈{𝑖′ | 𝑓𝑘′
𝑖
=𝑓𝑘 }

𝑥𝑖𝑑𝑙𝑒𝑡,𝑖, 𝑗 ≤ 𝑛𝑡
𝑗,𝑘
− 𝜙𝑡

𝑗,𝑘
, ∀𝑗, 𝑘, 𝑡 . (3)

Also, cloudlet 𝑐 𝑗 must have sufficient resources to initialize new
service instances for admitted requests, then,

|𝐹 |∑︁
𝑘=1

𝑛𝑡
𝑗,𝑘
· 𝑐 (𝑓𝑘) +

∑︁
𝑖∈{𝑖′ | 𝑡 ′

𝑖
=𝑡 }

𝑥𝑛𝑒𝑤𝑡,𝑖, 𝑗 · 𝑐 (𝑓𝑘𝑖) ≤ 𝐶𝐴𝑃 𝑗 , ∀𝑗, 𝑡 (4)

Recall that 𝜙𝑡
𝑗,𝑘

is the number of unfinished requests for service
𝑓𝑘 at the service placement stage of time slot 𝑡 , we have

𝜙𝑡
𝑗,𝑘

=
∑︁

𝑖∈{𝑖′ | 𝑓𝑘𝑖′ =𝑓𝑘 𝑎𝑛𝑑 𝑡𝑖′≠𝑡 }
𝑃𝑡𝑖′, 𝑗 , ∀𝑡, 𝑗, 𝑘, (5)

The number of instances of service 𝑓𝑘 at time slot 𝑡 + 1 then is

𝑛𝑡+1
𝑗,𝑘

= 𝑛𝑡
𝑗,𝑘
+

∑︁
𝑖∈{𝑖′ | 𝑓𝑘′

𝑖
=𝑓𝑘 }

𝑥𝑛𝑒𝑤𝑡,𝑖, 𝑗 + 𝛿
𝑡+1
𝑗,𝑘

, ∀𝑡, 𝑗, 𝑘 . (6)

Assigning request 𝑟𝑖 to a cloudlet 𝑐 𝑗 will experience the network
delay and potential initialization delay. We define the network delay
as the accumulative delay along the shortest path from the arrived
AP to the target cloudlet. The network delay of offloading request 𝑟𝑖
from 𝑣𝑖 to cloudlet 𝑐 𝑗 is 𝐿𝑖, 𝑗 =

∑
𝑒∈𝑝𝑖,𝑗 𝑙𝑒 , where 𝑝𝑖, 𝑗 is the shortest

path in the MEC network between AP 𝑣𝑖 and AP 𝑣 𝑗 . We assume that
the initialization time of service 𝑓𝑘 is 𝑖𝑛𝑠𝑘 . If request 𝑟𝑖 is offloaded
to cloudlet 𝑐 𝑗 while 𝑐 𝑗 does not have an idle instance for 𝑓𝑘𝑖 at the

Session: Edge/Fog Computing MSWiM ’21, November 22–26, 2021, Alicante, Spain

52

moment, the cloudlet will instantiate a new instance for 𝑓𝑘 . This
will result in an initialization delay. The latency constraint thus is:

𝐿𝑖, 𝑗 · 𝑥𝑡𝑖, 𝑗 + 𝑥
𝑛𝑒𝑤
𝑡,𝑖, 𝑗 · 𝑖𝑛𝑠𝑘𝑖 ≤ 𝑑𝑖 , ∀𝑖, 𝑗, 𝑡 . (7)

The operational expenditure of the MEC network consists of
three components: the energy consumption for hosting service
instances even the instances are idle; the processing energy con-
sumption for serving a service instance; the initialization for the
creation of service instances. Let C𝑖𝑑𝑙𝑒 (𝑓𝑘) be the energy consump-
tion per time slot for hosting an instance of service 𝑓𝑘 , C𝑠𝑒𝑟 (𝑓𝑘)
be the energy cost per time slot for processing a request of service
𝑓𝑘 , and C𝑖𝑛𝑠 (𝑓𝑘) be the initialization cost for an instance of service.
The operational cost C𝑐 𝑗 (𝑡) of cloudlet 𝑐 𝑗 at time slot 𝑡 thus is

C𝑐 𝑗 (𝑡) =
∑︁

𝑖∈{𝑖′ | 𝑡 ′
𝑖
=𝑡 }

𝑥𝑛𝑒𝑤𝑡,𝑖, 𝑗 · C
𝑖𝑛𝑠 (𝑓𝑘𝑖) +

|𝐹 |∑︁
𝑘=1
[𝛿𝑡

𝑗,𝑘
]+ · C𝑖𝑛𝑠 (𝑓𝑘)

+
∑︁

𝑖∈{𝑖′ | 𝑡 ′
𝑖
=𝑡 }

𝑥𝑛𝑒𝑤𝑡,𝑖, 𝑗 · C
𝑖𝑑𝑙𝑒 (𝑓𝑘𝑖) +

|𝐹 |∑︁
𝑘=1

𝑛𝑡
𝑗,𝑘
· C𝑖𝑑𝑙𝑒 (𝑓𝑘𝑖)

+
∑︁

𝑖∈{𝑖′ | 𝑡 ′
𝑖
=𝑡 }

𝑃𝑡𝑖, 𝑗 · C
𝑠𝑒𝑟 (𝑓𝑘𝑖) (8)

where [𝑎]+ = max(𝑎, 0).
We assume that the service provider will earn the amount𝑅𝑉 (𝑓𝑘)

of revenues per time slot for processing each request of service 𝑓𝑘 .
Therefore, the earned revenue by cloudlet 𝑐 𝑗 at time slot 𝑡 is

𝑅𝑉𝑐 𝑗 (𝑡) =
∑︁

𝑟𝑖 ∈𝑅 (𝑡)
𝑥𝑡𝑖, 𝑗 · 𝜏𝑖 · 𝑅𝑉 (𝑓𝑘𝑖) . (9)

The profit of cloudlet 𝑐 𝑗 at time slot 𝑡 is 𝑅𝑉𝑐 𝑗 (𝑡) − C𝑐 𝑗 (𝑡). Thus,
the total profit of the service provider obtained by admitting user
service requests for the monitoring period 𝑇 is

|𝑆 |∑︁
𝑗=1

𝑇∑︁
𝑡=1
(𝑅𝑉𝑐 𝑗 (𝑡) − C𝑐 𝑗 (𝑡)). (10)

2.2 Problem formulation
The online service placement and request assignment problem is de-
fined as follows. Given a mobile edge-cloud network G = (V∪𝑆 ;𝐸),
a set 𝐹 of services provided by the network, a finite time horizon
that is divided into equal 𝑇 time slots, and a sequence of offloading
task requests arriving one by one without the knowledge of future
arrivals, let 𝑅 be the set of arrived requests within the given time
horizon, where each request 𝑟𝑖 ∈ 𝑅 demands a service 𝑓𝑘𝑖 with a
tolerable maximum delay requirement 𝑑𝑖 . The problem is to assign
the requests to different cloudlets while meeting their delay require-
ments through (1) pre-deploying different service instances in 𝐹

to cloudlets and determining the number of each of such service
instances deployed to meet service delays of admitted requests;
and (ii) removing some existing idle service instances from the
system to accommodate new service instances due to limited com-
puting resources in cloudlets, such that the accumulative profit∑ |𝑆 |

𝑗=1
∑𝑇
𝑡=1 (𝑅𝑉𝑐 𝑗 (𝑡) − C𝑐 𝑗 (𝑡)) of admitted requests within the given

time horizon is maximized, subject to the computing capacity on
each cloudlet in G.

3 AN ONLINE ALGORITHM
In this section we devise an online algorithm for the online service
placement and request assignment problem.

We start with formulating the online service placement and
request assignment problem as a multi-agent Markov Decision
Process (MMDP) as follows.

1) Agent. Each cloudlet 𝑐 𝑗 with 𝑗 ∈ {1, 2, . . . , |𝑆 |} is modeled by
an agent N𝑗 to manage its service placement.

2) State. The state 𝑠 ∈ S describes the status of the MEC net-
work. The system state 𝑠𝑡 ∈ S at time slot 𝑡 is defined by a tuple
(𝑅[(𝑡), 𝑛(𝑡), 𝑅∗ (𝑡), 𝑡), where 𝑅[(𝑡) = 𝑅(1) ∪𝑅(2) ∪ . . .∪𝑅(𝑡 − 1) is
the set of service requests that arrive before time slot 𝑡 , 𝑛𝑡

𝑗,𝑘
∈ 𝑛(𝑡)

is the number of instances of service 𝑘 at cloudlet 𝑐 𝑗 , 𝑅∗ (𝑡) de-
notes the set of service tasks that are currently being processed at
cloudlets and 𝑡 is the current time slot.

3) Action. In service placement stage of each time slot, the agents
decide to install or delete some instances at their own cloudlets. Ac-
tion𝑎 𝑗 ∈ A of agentN𝑗 is defined as a vector𝑎 𝑗 = (𝑎 𝑗,0, 𝑎 𝑗,1, 𝑎 𝑗,2, . . .
, 𝑎 𝑗, |𝐹 |),

∑ |𝐹 |
𝑘=0 𝑎

′
𝑗,𝑘

= 1, where 𝑎′
𝑗,𝑘

represents the percentage of
available computational capacity to be allocated to service 𝑓𝑘 if
𝑘 ≠ 0 and 𝑎′

𝑗,0 represents the percentage of available computa-
tional capacity will remain unused. The available computational
capacity that we can allocate on 𝑐 𝑗 at time slot 𝑡 is 𝑐𝑎𝑝

𝑟𝑒 𝑗
𝑡, 𝑗

=

𝐶𝐴𝑃 𝑗 −
∑ |𝐹 |
𝑘=1 𝜙

𝑡
𝑗,𝑘
· 𝑐 (𝑓𝑘). The service placement decision variable

𝛿𝑡
𝑗,𝑘

can be obtained by 𝛿𝑡
𝑗,𝑘

= ⌊
𝑐𝑎𝑝

𝑟𝑒 𝑗

𝑡,𝑗
·𝑎′

𝑗,𝑘

𝑐 (𝑓𝑘) ⌋.

4) State transition. After the agents take actions, the system state
will transit to the next state, following the state transition func-
tion 𝑃 (𝑠𝑡 , 𝑎𝑡1, 𝑎

𝑡
2, . . . , 𝑎

𝑡
|𝑆 |, 𝑠

𝑡+1). First, the number of instances at any
cloudlet 𝑐 𝑗 ∈ 𝑆 changes under the agent’s action 𝑎 𝑗 in the service
placement stage, that is, 𝑛𝑡

𝑗,𝑘
← 𝑛𝑡

𝑗,𝑘
+ 𝛿𝑡

𝑗,𝑘
. Second, after the place-

ment of service instance, a set of requests 𝑅𝑡 arrives and we apply
Procedure 1 to assign the requests to cloudlets. After assigning the
requests, since some running requests have finished and left in the
end of each time slot, set 𝑅∗ (𝑡 + 1) will be updated to exclude these
finished requests.

5) Reward. To encourage each agent to maximize its contribution
to the total profit, we define a reward function R 𝑗 (𝑠𝑡 , 𝑎𝑡1, 𝑎

𝑡
2, . . . ,

𝑎𝑡|𝑆 |, 𝑠
𝑡+1) that describes how much reward an agent N𝑗 receives

after a state transition. Assume that we have a state transition

𝑠𝑡 = (𝑅[(𝑡), 𝑛(𝑡), 𝑅∗ (𝑡), 𝑡)
𝑎𝑡1,𝑎

𝑡
2,...,𝑎

𝑡
|𝑆 |−−−−−−−−−−→ 𝑠𝑡+1 = (𝑅[(𝑡 + 1), 𝑛(𝑡 +

1), 𝑅∗ (𝑡 + 1), 𝑡 + 1), and let 𝑥𝑛𝑒𝑤
𝑡,𝑖, 𝑗

and 𝑥𝑖𝑑𝑙𝑒
𝑡,𝑖, 𝑗

be the results during
the transition. The revenue and operation cost by cloudlet 𝑐 𝑗 is
calculated, by both Eq. (8) and Eq. (9). The reward function of agent
N𝑗 thus is defined as follows

R 𝑗 (𝑠𝑡 , 𝑎𝑡1, 𝑎
𝑡
2, . . . , 𝑎

𝑡
|𝑆 |, 𝑠

𝑡+1) = 𝑅𝑉𝑐 𝑗 (𝑡) − C𝑐 𝑗 (𝑡) . (11)

The cumulative reward of agent N𝑗 from time slot 𝑡 ′ to 𝑇 then
is defined as

𝐺 𝑗 (𝑡 ′) =
|𝑇 |∑︁
𝑡=𝑡 ′
R 𝑗 (𝑠𝑡 , 𝑎𝑡1, 𝑎

𝑡
2, ...𝑎

𝑡
|𝑆 |, 𝑠

𝑡+1), (12)

Session: Edge/Fog Computing MSWiM ’21, November 22–26, 2021, Alicante, Spain

53

Procedure 1 A heuristic procedure for request assignment

Input: An MEC network G = (V ∪ 𝑆 ;𝐸) with a set of cloudlets𝐶 ,
and a set of requests 𝑅(𝑡) that arrives at time slot 𝑡 .

Output: Find an assignment of requests in 𝑅(𝑡) at time slot 𝑡
1: for 𝑖 ← 1, 2, . . . , |𝑅(𝑡) | do
2: Find a set 𝑆 ′ of cloudlets that has enough capacity and the

delay requirement of 𝑟𝑖 can be fulfilled and a set 𝑆 ′
𝑖𝑑𝑙𝑒
⊂ 𝑆 ′

of cloudlets that has idle service instance 𝑓𝑘𝑖 .
3: if 𝑆 ′ ≠ ∅ then
4: If 𝑆 ′

𝑖𝑑𝑙𝑒
≠ ∅, find the cloudlets 𝑐 𝑗 with maximum residual

capacity𝐶𝐴𝑃 𝑗 −
∑ |𝐹 |
𝑘=1 𝑛

𝑡
𝑗,𝑘
· 𝑐 (𝑓𝑘), and set 𝑥𝑖𝑑𝑙𝑒𝑖, 𝑗,𝑡

← 1. Oth-
erwise, 𝑟𝑖 is assigned to the cloudlet 𝑐 𝑗 ∈ 𝑆 ′\𝑆 ′

𝑖𝑑𝑙𝑒
with

maximum residual capacity. We then update 𝑥𝑛𝑒𝑤
𝑖,𝑗,𝑡
← 1.

5: else
6: 𝑟𝑖 is rejected and 𝑥𝑡

𝑖, 𝑗
← 0.

7: end if
8: end for
9: return 𝑥𝑛𝑒𝑤

𝑖,𝑗,𝑡
and 𝑥𝑖𝑑𝑙𝑒

𝑖, 𝑗,𝑡
for each request 𝑟𝑖 and cloudlets 𝑐 𝑗 .

We can see that
∑ |𝑠 |

𝑗=1𝐺 𝑗 (0) is equivalent to (10).
The basic idea of the algorithm is that for any agent N𝑗 , we

deploy a deep neural network(DNN) called actor network to approx-
imate policy function 𝜋 𝑗 , where 𝜋 𝑗 (𝑎 𝑗 | 𝑠;\ 𝑗) is the distribution
of probability of service placement decision on 𝑐 𝑗 under system
state 𝑠 and \ 𝑗 is the learnable DNN parameters. We make use of the
Advantage Actor-Critic(A2C) algorithm to train the DNNs for bet-
ter performance [10]. Specifically, define the expected cumulative
rewards of agent N𝑗 from time slot 𝑡 as a function 𝐽 𝑡

𝑗
with respect

to parameter \ 𝑗 as follows

𝐽 𝑡𝑗 (\ 𝑗) = E𝑎 𝑗∼𝜋\ℎ [𝐺 𝑗 (𝑡);\ 𝑗] . (13)

which means, our goal is to find the optimal parameter \∗
𝑗
, to maxi-

mize 𝐽 𝑡
𝑗
(\ 𝑗). Stochastic gradient descent(SGD) is used to optimize

the parameters [5]. In SGD, \ 𝑗 is updated as:

\ 𝑗 ← \ 𝑗 + [∇\ 𝑗
𝐽 𝑡𝑗 (\ 𝑗), (14)

where ∇\ 𝑗
𝐽 𝑡
𝑗
(\ 𝑗) is the gradient of 𝐽 𝑡𝑗 (\ 𝑗) and [is the learning rate

to control the step of gradient descent. As claimed by [1], we use

∇\ 𝑗
log𝜋\ 𝑗

(𝑎𝑡𝑗 | 𝑠
𝑡 ;\ 𝑗) (𝐺 𝑗 (𝑡) − E[𝐺 𝑗 (𝑡) | 𝑠𝑡]) (15)

as the gradient, where E[𝐺 (𝑡) | 𝑠𝑡] is the expected cumulative
rewards that the agent obtains from state 𝑠𝑡 following policy 𝜋 𝑗 .
Thus, we introduce another DNN called critic network to output
value function𝑉 𝜋 𝑗

𝑗
(𝑠𝑡 ;𝜔 𝑗) to approximate E[𝐺 (𝑡) | 𝑠𝑡]. Then, \ 𝑗 is

updated as follows.

\ 𝑗 ← \ 𝑗 + [∇\ 𝑗
log𝜋\ 𝑗

(𝑎𝑡𝑗 | 𝑠
𝑡 ;\ 𝑗) (𝐺 𝑗 (𝑡) −𝑉

𝜋 𝑗

𝑗
(𝑠𝑡 ;𝜔 𝑗)) . (16)

To minimize the difference between the output 𝑉 𝜋 𝑗

𝑗
(𝑠𝑡 ;𝜔 𝑗) and

E[𝐺 (𝑡) |𝑠𝑡], the value of 𝜔 𝑗 is updated as follows

𝜔 𝑗 ← 𝜔 𝑗 − [∇𝜔 𝑗
(𝐺 𝑗 (𝑡) −𝑉

𝜋 𝑗

𝑗
(𝑠𝑡 ;𝜔 𝑗))2 . (17)

The training process then proceeds as follows. All the agents’
actor and critic networks have randomly initialized parameter \0

𝑗

and 𝜔0
𝑗
. The agents simulate the whole service placement process

using a historical monitoring period. From time slot 0 to 𝑇 , agent

Algorithm 1 Training for the Actor network

Input: An MEC network G = (V ∪ 𝑆 ;𝐸) with a set of cloudlets𝐶 ,
and a set of services 𝐹 provided by the network and historical
requests in the monitoring area.

Output: The service placement decision and request assignment
at each time slot.

1: Randomly initialize an actor network with parameter \ 𝑗 and a
critic network with parameter 𝜔 𝑗 for each agent N𝑗 ;

2: while \ 𝑗 and 𝜔 𝑗 has not converged do
3: Select a set 𝑅′ of service requests from request history;
4: for 𝑡 ← 1, 2, . . . ,𝑇 do
5: Let 𝜋 𝑗 (𝑎𝑡𝑗 | 𝑠

𝑡 ;\ 𝑗) be the output of the actor network
of agent N𝑗 for the input of system state 𝑠𝑡 . Sample ac-
tion 𝑎𝑡

𝑗
according to the distribution 𝜋 𝑗 (𝑎𝑡𝑗 | 𝑠

𝑡 ;\ 𝑗) . Ini-
tialize or delete service instances according to 𝛿𝑡

𝑗,𝑘
←

⌊
𝑐𝑎𝑝

𝑟𝑒 𝑗

𝑡,𝑗
·𝑎′𝑡

𝑗,𝑘

𝑐 (𝑓𝑘) ⌋, ∀𝑘 ∈ {1, 2, . . . , |𝐹 |};
6: Assign the set 𝑅′(𝑡) of requests one by one by invoking

Procedure 1 and update the system according to the as-
signment.

7: Calculate the rewards 𝐺𝑡
𝑗
for each agent;

8: end for
9: for 𝑡 ← 1, 2, . . . ,𝑇 do
10: Input system state 𝑠𝑡 into the critic networks of each agent

N𝑗 and update \ 𝑗 and 𝜔 𝑗 following (16) and (17).
11: end for
12: end while;
13: for 𝑡 ← 1, 2, . . . ,𝑇 do
14: Let 𝜋 𝑗 (𝑎𝑡𝑗 | 𝑠

𝑡 ;\ 𝑗) be the output of the actor network of agent
N𝑗 for the input of system state 𝑠𝑡 . Sample action 𝑎𝑡

𝑗
accord-

ing to the distribution 𝜋 𝑗 (𝑎𝑡𝑗 | 𝑠
𝑡 ;\ 𝑗) . Initialize or delete

service instances according to 𝛿𝑡
𝑗,𝑘
← ⌊

𝑐𝑎𝑝
𝑟𝑒 𝑗

𝑡,𝑗
·𝑎′𝑡

𝑗,𝑘

𝑐 (𝑓𝑘) ⌋, ∀𝑘 ∈
{1, 2, . . . , |𝐹 |};

15: Assign the set 𝑅(𝑡) of requests one by one by invoking
Procedure 1 and update the system according to the as-
signment.

16: end for
17: return The service placement decision 𝛿𝑡

𝑗,𝑘
derived from the

actions 𝑎𝑡
𝑗
and the request assignments 𝑥𝑛𝑒𝑤

𝑡,𝑖, 𝑗
, 𝑥𝑖𝑑𝑙𝑒

𝑡,𝑖, 𝑗
.

N𝑗 inputs the system state 𝑠𝑡 into its actor network and places
the service instance in 𝑐 𝑗 based on the output 𝜋 𝑗 (𝑎 𝑗 | 𝑠𝑡 ;\0𝑗). The
system state 𝑠𝑡 , actions 𝑎𝑡

𝑗
, and reward R𝑡

𝑗
are recorded at each time

slot. After the agents finish the simulation of a historical monitoring
period, we input 𝑠𝑡 to critic networks to obtain 𝑉 𝜋 𝑗

𝑗
(𝑠𝑡 ;𝜔0

𝑗
). Then,

we can calculate the gradient by Eq.(15) and update \ 𝑗 following
Eq. (16), followed updating 𝜔 𝑗 by Eq.(17). After updating \ 𝑗 and 𝜔 𝑗 ,
we select another historical monitoring periods and repeat the sim-
ulation and training until \ 𝑗 and 𝜔 𝑗 converge. Having trained the
DNNs, the actor networks can then be used for service placement.

In summary, to solve the online service placement problem,
we propose its equivalent MMDP formulation and then adopt the
Advantage-Actor-Critic algorithm which uses historical requests to
train the DNNs. In the end, we use the trained DNNs to decide the

Session: Edge/Fog Computing MSWiM ’21, November 22–26, 2021, Alicante, Spain

54

(a) (b)

Figure 1: Performance of different algorithms by varying the
size of the MEC network from 50 to 250.

service placement at each time slot. The detailed process is shown
in Algorithm 1.

4 PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed algo-
rithm.

4.1 Experimental settings
We consider an MEC network that consists of 100 APs, where 20%
of them are equipped with cloudlets. The computing capacity of
each cloudlet is randomly selected from 2,000 MHz to 4,000 MHz [4].
We assume that the MEC network provides 20 services, and each
service instance requires 40 to 400 MHz computing capacity [4].
The network delay on the link between two APs is set from 2𝑚𝑠 to
5𝑚𝑠 [8]. The initialization delay of service instances varies from
20𝑚𝑠 to 40𝑚𝑠 [9].The initialization cost of an instance is randomly
drawn within [20, 50] [11]. The profit per time slot to process a user
request is set within [0.2, 0.3] per MHz in each time slot [11], and
the idle cost for a type of service instance is set within [0.02, 0.03]
per MHz per time slot. The arrivals of a certain type of service
requests at an AP follows a Poisson distribution, where the mean
of Poisson distribution _ is randomly chosen within [0.05, 1]. The
delay requirements of these requests vary from 10𝑚𝑠 to 50𝑚𝑠 and
each request has a duration of 1-5 time slots [4].

We then compare Algorithm 1 against algorithm Auto-regre
proposed by [11], where we adopt an auto-regression method to
predict the number 𝑛𝑡

𝑗,𝑘
of required service instances. We also pro-

pose a baseline algorithm for service placement which immediately
releases idle service instances and does not pre-install service in-
stances, and we refer to this algorithm as NoCache.

4.2 Performance evaluation for the online
algorithm

We study the performance of algorithm Algorithm 1, by varying
the network size from 50 to 250. The total profit of Algorithm 1 out-
performs those delivered by both Auto-regression and NoCache
in all cases, and the performance gap between Algorithm 1 and
the other comparison algorithms become larger with the increase
on network size. Fig. 1(b) depicts the running times of all algo-
rithms. Among the comparison algorithms, Algorithm 1 has the
longest running time. Although algorithms Auto-regression and
NoCache have less running time, they earn much less profits.

We then investigate the impact of the arriving rate of tasks on
Algorithm 1 by varying themean of the Poisson distribution _ from
within [0.025, 0.075] to within [0.1, 0.15]. As shown in Fig. 2(a), the

(a) (b)

Figure 2: Performance of different algorithms by varying
the Possion distribution parameter _ from the interval
[0.025, 0.075] to the interval [0.1, 0.15].

total profit of Algorithm 1 outperforms Auto-regression and
NoCache, facing different frequency of request arriving rates. Also,
we can see that Algorithm 1’s finishes within an applicable time
in Fig. 2(b).

5 CONCLUSIONS
In this paper, we studied the online service placement and service
request assignment problem in an MEC network while meeting
service delay requirements. We proposed an efficient algorithm the
problem and conducted experiments through simulations. Experi-
mental results demonstrate that the proposed algorithm is efficient
and superior to the benchmark algorithms.

REFERENCES
[1] Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan

Kautz. 2016. Reinforcement learning through asynchronous advantage actor-
critic on a gpu. arXiv preprint arXiv:1611.06256 (2016).

[2] Richard Cziva, Christos Anagnostopoulos, and Dimitrios P Pezaros. 2018. Dy-
namic, latency-optimal vNF placement at the network edge. In Ieee infocom
2018-ieee conference on computer communications. IEEE, 693–701.

[3] Ting He, Hana Khamfroush, Shiqiang Wang, Tom La Porta, and Sebastian Stein.
2018. It’s hard to share: Joint service placement and request scheduling in edge
clouds with sharable and non-sharable resources. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 365–375.

[4] Mike Jia, Weifa Liang, and Zichuan Xu. 2017. QoS-aware task offloading in
distributed cloudlets with virtual network function services. In Proceedings of
the 20th ACM International Conference on Modelling, Analysis and Simulation of
Wireless and Mobile Systems. 109–116.

[5] Jack Kiefer, JacobWolfowitz, et al. 1952. Stochastic estimation of the maximum of
a regression function. The Annals of Mathematical Statistics 23, 3 (1952), 462–466.

[6] Jing Li, Weifa Liang, Meitian Huang, and Xiaohua Jia. 2020. Reliability-aware
network service provisioning in mobile edge-cloud networks. IEEE Transactions
on Parallel and Distributed Systems 31, 7 (2020), 1545–1558.

[7] Jing Li, Weifa Liang, Zichuan Xu, and Wanlei Zhou. 2020. Service provisioning
for IoT applications with multiple sources in mobile edge computing. In 2020
IEEE 45th Conference on Local Computer Networks (LCN). IEEE, 42–53.

[8] Yu Ma, Weifa Liang, Zichuan Xu, and Song Guo. 2018. Profit maximization for
admitting requests with network function services in distributed clouds. IEEE
Transactions on Parallel and Distributed Systems 30, 5 (2018), 1143–1157.

[9] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art of Network Function
Virtualization. In Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation (Seattle, WA) (NSDI’14). USENIX Association, USA,
459–473.

[10] Fangxin Wang, Feng Wang, Jiangchuan Liu, Ryan Shea, and Lifeng Sun. 2020.
Intelligent video caching at network edge: A multi-agent deep reinforcement
learning approach. In IEEE INFOCOM 2020-IEEE Conference on Computer Com-
munications. IEEE, 2499–2508.

[11] Zichuan Xu, Weifa Liang, Mike Jia, Meitian Huang, and Guoqiang Mao. 2018.
Task offloading with network function requirements in a mobile edge-cloud
network. IEEE Transactions on Mobile Computing 18, 11 (2018), 2672–2685.

[12] Zichuan Xu, Zhiheng Zhang, Weifa Liang, Qiufen Xia, Omer Rana, and Guowei
Wu. 2020. QoS-aware VNF placement and service chaining for IoT applications
in multi-tier mobile edge networks. ACM Transactions on Sensor Networks (TOSN)
16, 3 (2020), 1–27.

Session: Edge/Fog Computing MSWiM ’21, November 22–26, 2021, Alicante, Spain

55

