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Abstract—With advances in wireless communication technol-
ogy, more and more people depend heavily on portable mobile
devices for businesses, entertainments and social interactions. Al-
though such portable mobile devices can offer various promising
applications, their computing resources remain limited due to
their portable size. This however can be overcome by remotely
executing computation-intensive tasks on clusters of near by
computers known as cloudlets. As increasing numbers of people
access the Internet via mobile devices, it is reasonable to envision
in the near future that cloudlet services will be available for the
public through easily accessible public wireless metropolitan area
networks (WMANs). However, the outdated notion of treating
cloudlets as isolated data-centers-in-a-box must be discarded as
there are clear benefits to connecting multiple cloudlets together
to form a network. In this paper we investigate how to balance
the workload between multiple cloudlets in a network to optimize
mobile application performance. We first introduce a system
model to capture the response times of offloaded tasks, and
formulate a novel optimization problem, that is to find an optimal
redirection of tasks between cloudlets such that the maximum of
the average response times of tasks at cloudlets is minimized. We
then propose a fast, scalable algorithm for the problem. We finally
evaluate the performance of the proposed algorithm through
experimental simulations. The experimental results demonstrate
the significant potential of the proposed algorithm in reducing
the response times of tasks.

I. INTRODUCTION

In recent years, advances in mobile computing have enabled
mobile users to experience a plethora of engaging applications.
However, while the resource demands of newly developed
applications continue growing, the computing capacity of
mobile devices remains limited due to their portable sizes.
A traditional approach to overcoming the resource poverty
of mobile devices is to leverage the rich computing resource
of clouds. A mobile device can reduce its workload and
prolong its battery life by offloading its computation-intensive
tasks to a remote cloud for execution [7], [20]. However, one
significant limitation of offloading tasks to a remote cloud is
that the distance between the mobile users and the remote
cloud is usually long. Such long distances cause long delays
and even lags in applications with heavy user interactions,
downgrading the user experiences. To mitigate this limitation,
many researchers have suggested the use of clusters of com-
puters called cloudlets, placed within user networks to support

mobile devices by executing offloaded tasks [16], [17], [18],
[19], [20], [22], [23].

A cloudlet is a trusted, resource-rich cluster of computers
wirelessly connected to its nearby mobile users [17]. By
providing low-latency access to rich computing resource,
cloudlets can dramatically improve the performance of mo-
bile applications, through allowing mobile users offload their
applications to near by cloudlets [6], [17]. Although cloudlets
are often defined as isolated “data centers in a box” [17], there
are clear benefits to connecting multiple cloudlets together to
form a network. Recent studies [13], [22], [23] discussed how
cloudlets could be deployed in public wireless metropolitan
area networks (WMANs), as a complimentary service to Wi-
Fi Internet access. Metropolitan areas have a high population
density, thus cloudlets can be accessible to a large number of
users. This improves the cost-effectiveness of cloudlets as they
are less likely to be idle. Furthermore, due to the size of such
a network, WMAN service providers can take advantage of
economies of scale when offering cloudlet services through
WMANs, making cloudlet services more affordable to the
general public.

A major challenge that WMAN service providers face
is how to allocate different user task requests to different
cloudlets so that the loads among the cloudlets in the network
are well balanced, thereby shortening the response times of
offloaded tasks. A typical solution to this problem is to
allocate user requests to their closest cloudlets to minimize
the network access delay. This approach however has been
demonstrated to be inadequate in the WMAN setting [13],
[22], [23]. Specifically, the vast number of users in the network
means that the workload of each individual cloudlet will be
highly volatile. If a cloudlet is suddenly overwhelmed with
user requests, the response times of tasks at that cloudlet will
increase dramatically, causing lags in the user applications
and degrading user experiences. To prevent such issues from
happening, it is critical to allocate user requests to different
cloudlets such that the workload among the cloudlets is well
balanced, thus reducing the average response time of the
offloaded tasks. In this paper, we deal with such a load
balancing problem among the cloudlets in response to dynamic
demands of user requests, by devising an efficient scheduling
algorithm to allocate user requests to different cloudlets.
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In this paper we devise a load balancing algorithm for
cloudlets within a WMAN, to reduce the average response
time of offloaded tasks, for which we first introduce a system
model to capture the response times of tasks, and formulate
a novel optimization problem with the objective of finding
a redirections of tasks between a given set of cloudlets in
a network such that the maximum of the average response
times of offloaded tasks among the cloudlets is minimized.
We then propose a fast and scalable algorithm for the prob-
lem. We finally evaluate the performance of the proposed
algorithm through experimental simulations. The experimental
results demonstrate the significant potential of our algorithm
in reducing response times of user tasks and maximizing user
experiences.

The rest of the paper is organized as follows. Section II
reviews related works. Section III introduces the system model
and problem definition. Section IV gives a detailed description
of the cloudlet placement algorithm, and Section V presents
a case study and simulation results. A conclusion is drawn in
Section VI.

II. RELATED WORKS

Offloading mobile applications to a remote cloud to over-
come the limitations of mobile devices has been studied for
over a decade [2], [16]. Generally, the model for application
offloading systems in mobile cloud computing consists of a
client component on the mobile device and a server component
on a remote cloud [5], [7]. The client component is responsible
for monitoring network performance, predicting computation
requirements of mobile applications, and estimating execution
time on local devices and on the cloud. Using this information,
the client component can decide how much to offload. Recent
works such as ThinkAir [15], Virtual Smartphone [4], and
CloneCloud [5] have made use of virtual machines (VMs) as
a platform for task offloading. A VM image of a mobile device
is transferred to the cloud, and tasks are remotely executed on
the device’s VM in the cloud, using task offloading operations.
In addition, there are studies propose efficient offloading solu-
tions to improve QoS requirements of users [12], smartly admit
user requests to cloudlets [20], [21], jointly consider offloading
to remote clouds and cloudlets [3], [10]. For example, Hoang
et al. [12] aimed to maximize the revenue of service providers
by proposing a linear programming solution for task offloading
to cloudlets. Xia et al. [20], [21] proposed efficient online
algorithms to admit user requests to a cloudlet dynamically.
Gelenbe et al. [10] consider the offloading of user applications
between a local cloud and a remote cloud, by incorporating
energy consumption and QoS requirements of users.

The main drawback of offloading tasks to a remote cloud is
the latency between mobile users and the remote cloud, which
can disrupt the user experiences in interactive applications
such as mobile games. Cloudlets overcome this drawback by
providing low-latency accesses to rich computing resource,
which can dramatically improve the performance of mobile
applications. Application offloading to cloudlets generally fol-
lows a VM-based approach [11], [17], where a mobile device

rapidly instantiates a compressed VM image of the application
and transfers it to a cloudlet. The device then can remotely
execute tasks on the cloudlet. Once a task has been executed,
its result will be returned to its mobile user. By doing so,
cloudlet resources could become constrained if there is a large
number of task requests from users. Two recent studies [3],
[13] presented a system model where the average response
time of tasks at a cloudlet can be estimated, using queuing
theory [14]. They further proposed that a cloudlet can offload
some of its tasks to a remote cloud for execution under extreme
loads. Verbelen et al. [18] proposed a fine grained approach
to cloudlet offloading, where a mobile application would be
dynamically partitioned at run-time into independent remotely
executable components. This approach has the advantage of
distributing its components among multiple cloudlets, thereby
maximizing parallelism. Furthermore, the number of offloaded
components can be dynamically scaled down if the network
connectivity is poor, providing a smoother user experience.

Several recent studies further broadened the definition of
cloudlets to include ad-hoc computers in the network. Verbelen
et al. [18], [19] proposed such a cloudlet architecture, creating
a framework which enables ad-hoc discovery of nearby devices
in the network to share resources. In this paper we restrict
our definition of cloudlets to being a cluster of computers co-
located with an Access Point (AP).

The topic of cloudlet placements within wireless networks
has also been explored recently in [13], [22], and [23]. Jia
et al. [13] showed that a strategic placement of a limited
number of cloudlets in a WMAN can greatly improve the per-
formance of mobile user devices, and presented an algorithm
for solving the cloudlet placement problem. Xu et al. [22],
[23] formulated a capacitated cloudlet placement problem that
places K cloudlets to some potential locations in a wireless
metropolitan aware network with the objective to minimize the
average cloudlet access delay between the mobile users and the
cloudlets serving their requests. They devised approximation
algorithms for the problems with guaranteed approximation
ratios when all cloudlets have identical computing capacities.

III. PRELIMINARIES

In this section we describe the system model and define the
cloudlet load balancing problem.

A. System Model

We assume that a WMAN provider has set up K cloudlets
{1, 2, . . . ,K} at fixed locations in the WMAN.The cloudlets
are co-located at access points (APs) in the network, and
all cloudlets are connected with each other via network
connection. We assume that user applications are dynamically
partitioned into discrete offloadable tasks that can be processed
at any of the K cloudlets. Each user will offload his/her tasks
to a near by AP with a cloudlet, and the cloudlet can either
add incoming tasks to its own queue for processing or redirect
some of its tasks to another cloudlet in the network (See
Fig. 1).



Fig. 1: A WMAN with APs

We model the cloudlets as M/M/n queues, where each
cloudlet i ∈ {1, . . . ,K} has ni servers with the service rate
µi at cloudlet i. Due to the rapidly changing nature of user
demands, the rate of incoming requests can fluctuate wildly
at each cloudlet over time. Therefore, we assume that the
incoming user tasks at cloudlet i randomly arrive according to
the Poisson process with arrival rate λi. The average response
time of tasks at cloudlet i consists of the queuing time and the
service time of tasks. Denote by Ti a function of a given task
arrival rate λ to calculate the average response time of tasks
at cloudlet i,

Ti(λ) =
C
(
ni,

λ
µi

)
niµi − λ

+
1

µi
, (1)
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Eq. (2) is known as Erlang’s C formula [14].
As task arrival rates at different cloudlets can be signif-

icantly different, some cloudlets may be overloaded while
others may be under-utilized. We assume that all cloudlets
are reachable from each other, and that a cloudlet can redirect
a fraction of its task stream to another cloudlet. Denote by
f(i, j) the amount of task flow from cloudlet i to cloudlet j
when i 6= j, see Fig. 2. There are the following constraints on
f(i, j).

f(i, j) =

{
−f(j, i), if i 6= j

0, otherwise
, ∀i, j ∈ {1, . . . ,K} (3)

K∑
i=1

K∑
j=1

f(i, j) = 0, (4)

K∑
j=1

max{f(i, j), 0} ≤ λi, ∀i ∈ {1, . . . ,K}. (5)

Eq. (3) ensures that for any two cloudlets i and j, the flow in
terms of task rate, from cloudlet i to cloudlet j is the negative
of the flow from cloudlet j to cloudlet i. As the flow of tasks
from any given cloudlet i to itself is zero, we have f(i, j) = 0.
Eq. (4) ensures that all flow is conserved. Finally, Eq. (5)
ensures that the sum of all outgoing task flows from cloudlet
i is no greater than its incoming task arrival rate λi.

Fig. 2: Flow of tasks from cloudlet i to cloudlet j

We assume that all offloaded tasks have the same packet
size, thus the delay incurred in transferring any task between
a pair of APs through the network is identical. To model
such a network delay in the WMAN, denote by d ∈ RK×K
the network delay matrix, where entry di,j represents the
communication delay in relaying a task from cloudlet i to
cloudlet j. We assume that the flow of incoming redirected
tasks f(i, j) < 0 at cloudlet i has a delay of −f(i, j) · di,j .
We can then calculate the sum Tnet(i) of all network delays
of incoming tasks from other cloudlets to cloudlet i as

Tnet(i) =

K∑
j=1

|max{f(i, j), 0} · dj,i| . (6)

Using Eqs. (1) and (3), we can calculate D(i), the average
response time of tasks at cloudlet i, as:

D(i) = Ti(λi) + Tnet(i), (7)

where λi is the final incoming task flow that will be processed
at cloudlet i,

λi = λi −
K∑
i=1

f(i, j). (8)

Table I summarizes the symbols that are used in this paper.

B. Problem Definition

The Cloudlet Load Balancing Problem in G is defined as
follows. Given a set of cloudlets {1, . . . ,K}, where each
cloudlet i with task arrival rate λi and ni servers with service
rate µi for all i ∈ {1, . . . ,K}, the problem is to find a set
of inter-cloudlet task flows f = {f(i, j) | i, j ∈ {1, . . . ,K}}
under the constraints given in Eqs. (3), (4), and (5), such that



Symbol Definition
K The number of cloudlets in the network
λi Initial task arrival rate/workload for cloudlet i
ni The number of servers at cloudlets i
f(i, j) The flow of tasks redirected from cloudlet i to cloudlet j
λi Resultant task arrival rate for cloudlet i given the set of inter cloudlet task flows

{f(i, j) | i, j ∈ {1, . . . ,K}}
Ti (λ) The average response time of tasks at cloudlet i when the arrival rate of tasks is λ
Tnet(i) Total network delay of incoming tasks arriving at cloudlet i given the set of inter cloudlet

task flows {f(i, j) | i, j ∈ {1, . . . ,K}}
di,j Network delay between AP i and j
D(i) The average response time of tasks at cloudlet i
φi The fraction of task stream to be redirected from or to cloudlet i
D An average response time of tasks in cloudlets
Tmin min{Ti(λi) | 1 ≤ i ≤ K}
Tmax max{Ti(λi) | 1 ≤ i ≤ K}
Vs The set of overloaded cloudlets, i.e., Vs = {i | Ti(λi) > D̄}
Vt The set of underloaded cloudlets, i.e., Vs = {j | Tj(λj) ≤ D̄}
ε, θ, δ Accuracy thresholds that are used in the algorithm
∆ The difference between the outgoing task flow from overloaded cloudlets and the incoming

task flow to underloaded cloudlets
D
′

max{D(j) | j ∈ Vt}
G = (V,E) A flow network that is used to balance the workload of cloudlets in the algorithm
u(i, j) The capacity of edge 〈i, j〉 in the flow network G
ci,j The delay cost of edge 〈i, j〉 in the flow network G

TABLE I: Symbols

the maximum of average response times of tasks among the
K cloudlets, max

f
{D(i) | i ∈ {1, . . . ,K}}, is minimized.

IV. ALGORITHM

In this section, we propose a fast, scalable heuristic for
the Cloudlet Loading Balancing Problem. The basic idea is
to find an average response time of tasks D first, and then
determine how much of its workload of each cloudlet should
be redirected to other cloudlets such that the average response
time of tasks at the cloudlet is approximately D.

A. The average response time of tasks

Our objective is to minimize the maximum average response
time of tasks in cloudlets. As the flow of tasks is conserved
within the system (Eq. (4)), all tasks must eventually be exe-
cuted. It is clear that we must try to redirect some tasks to and
from cloudlets such that every cloudlet has the same average
response time of tasks. The approach taken in this paper is to
identify an average response time of tasks among the cloudlets
and decide the out-going workload of each overloaded cloudlet
and in-coming workload of each underloaded cloudlet. It then
decides the specific flow of task streams from the overloaded
cloudlets to the underloaded cloudlets.

Let D be the average response time of tasks. To find D and
the amount of outgoing/incoming workload for each cloudlet,
we estimate the value of D and iteratively refine the estimation

until the average response time of tasks at every cloudlet is
within a given bound ε of D.

We begin by examining the value range of D. Let Tmax =
max{Ti(λi) | 1 ≤ i ≤ K} and Tmin = min{Ti(λi) | 1 ≤
i ≤ K}, then it is obvious that D is in the value interval of
[Tmin, Tmax].

We choose (Tmin + Tmax)/2 as the initial value of D. We
then partition all cloudlets into two disjoint sets, the set Vs of
overloaded cloudlets:

Vs = {i | Ti(λi) > D},

and the set Vt of underloaded cloudlets:

Vt = {j | Tj(λj) ≤ D}.

For each overloaded cloudlet i ∈ Vs we need to determine
the amount of task flow that should be redirected from the
cloudlet’s arrival stream λi so that the task response time at
cloudlet i is within an accuracy threshold ε of D, i.e., we need
to find a value of φi such that∣∣D − Ti(λi − φi)∣∣ ≤ ε, (9)

where ε is a given threshold.

For each underloaded cloudlet j ∈ Vt we must determine φj
the amount of task flow to arrive at cloudlet j so that the task
response time at the cloudlet is within an acceptable bound of



D, i.e., ∣∣D − Tj(λj + φj)
∣∣ ≤ ε, (10)

as illustrated by Fig 3.

Fig. 3: An illustration of finding values of φi underloaded and
φj for overloaded cloudlets

Finding values of φi and φj to satisfy Eqs (9) and (10)
requires iterative trials that could take O( 1

ε ). However, if
we precalculate the required workload to achieve the average
response time of tasks D within ε, we can find values of φi
and φj in O(1) time.

Once the desired outgoing flow φi for each overloaded
cloudlet i ∈ Vs and the desired incoming flow φj for
underloaded cloudlets j ∈ Vt have been calculated, we need
to determine the value of f(i, j), i.e., the fraction of task flow
that should be redirected from cloudlet i to cloudlet j, for all
i ∈ Vs and j ∈ Vt such that the accumulated network delay is
minimized. Denote by ∆ the difference between the outgoing
task flow from overloaded cloudlets and the incoming task
flow to underloaded cloudlets, i.e.,

∆ =
∑
i∈Vs

φi −
∑
j∈Vt

φj . (11)

If ∆ = 0, then the flow of tasks can be perfectly matched. If
∆ > 0, then there is a surplus of outgoing tasks. This implies
that the chosen D is too small, as many cloudlets are trying to
offload tasks from themselves to lower their average response
time of tasks in order to meet D. In this case we must therefore
increase the lower bound Tmin ← D. On the other hand, if
∆ < 0, then there is a deficit of outgoing tasks and D is too
high; thus we must decreasing the upper bound Tmax ← D.
We choose (Tmax +Tmin)/2 to be D in the next iteration, and
find an appropriate D, using binary search. The search will
terminate when the accumulated flow ∆ falls within a given
threshold δ, i.e., |∆| ≤ δ.

Since redirecting tasks from overloaded cloudlets to under-
loaded cloudlets will incur a network delay at the destination
cloudlet, we should further adjust D such that at every
underloaded cloudlet j ∈ Vt the sum of queueing time and
network delay Tnet(j) of all tasks to cloudlet j is as close to

D as possible: Tj(λj) +Tnet(j) = D. To this end, there must
be a deficit of outgoing tasks from overloaded cloudlets, i.e.,
∆ < 0.

We determine a set of inter-cloudlet flow f for a given D,
and we let D

′
= max{D(j) | j ∈ Vt}. If the difference

between D and D
′

is within a given threshold θ, done; oth-
erwise, we will need to further refine D. Namely, if D < D

′
,

then there are more outgoing tasks from overloaded cloudlets,
thus we need to increase D to reduce φi for each overloaded
cloudlet i ∈ Vs. If D > D

′
, then there are insufficient outgoing

tasks from overloaded cloudlets, hence we should lower D to
allow the overloaded cloudlets to redirect more tasks to the
underloaded cloudlets. We choose D ← (D + D

′
)/2 to be

the next iteration of D and continue this until the difference
between D and D

′
is within θ. The details of this algorithm

are given in Algorithm 1.
The rest is to find the values of f(i, j) for all i ∈ Vs and

j ∈ Vt that incur minimum delays, given an average response
time D of tasks and the value of φi for each cloudlet i ∈
{1, . . . ,K}.

B. Minimum-latency flow

Having determined the amounts of outgoing and incoming
flows of tasks φi for each cloudlet i, we need to determine
the redirected task flow f(i, j) for each overloaded cloudlet
i ∈ Vs to each underloaded cloudlet j ∈ Vt. We transform
the problem of determining the amounts of outgoing flows of
overloaded cloudlets to underloaded cloudlets into a minimum-
cost maximum flow problem. Namely, we construct a flow
network G = (V,E) from the WMAN as follows.

We first construct a virtual source node s, and a virtual sink
node t, and partition cloudlets into the set Vs of overloaded
cloudlets and the set Vt of underloaded cloudlets based on a
given D. This gives us the set of vertices V = Vs∪Vt∪{s, t}.
We then add a directed edge from s to each node in Vs, a
directed edge from each node in Vt to t, and a directed edge
from each node in Vs to each node in Vt. This gives us the set
of edges E = {〈s, i〉 | i ∈ Vs}∪{〈j, t〉 | i ∈ Vt}∪{〈i, j〉 | i ∈
Vs, j ∈ Vt}.

Fig. 4: A flow network



Algorithm 1 Cloudlet Load Balance Algorithm
Input: The task arrival rate λi, the number of server ni, and the

service rate µi of each cloudlet i ∈ {1, . . . ,K}; the network
delay matrix di,j (i, j ∈ {1, . . . ,K}); and tuning parameters θ,
ε, δ.

Output: Inter-cloudlet task flow f(i, j) for each pair of cloudlets
i, j ∈ {1, . . . ,K}.

1: Tmax ← max{Ti(λi) | 1 ≤ i ≤ K};
2: Tmin ← min{Ti(λi) | 1 ≤ i ≤ K};
3: ∆←∞;
4: /* find the initial value of D using binary search */
5: while (|∆| > δ) do
6: D ← (Tmax + Tmin)/2;
7: Vs ← {i | Ti(λi) > D};
8: Vt ← {i | Ti(λi) ≤ D};
9: for each overloaded cloudlet i ∈ Vs do

10: Find a value of φi such that
∣∣∣D−Ti(λi−φi)

D

∣∣∣ ≤ ε;
11: end for
12: for each underloaded cloudlet j ∈ Vt do
13: Find a value of φj such that

∣∣∣D−Tj(λj+φj)

D

∣∣∣ ≤ ε;
14: end for
15: ∆←

∑
i∈Vs

φi −
∑
j∈Vj

φj ;
16: if |∆| > 0 then
17: Tmin ← D;
18: else
19: Tmax ← D;
20: end if
21: end while
22: /* adjust the value of D for the network delay between cloudlets

*/
23: Vs ← {i | Ti(λi) > D};
24: Vt ← {j | Tj(λj) ≤ D};
25: D

′ ←∞;
26: while (|D −D′| > θ) do
27: for each i ∈ Vs do
28: Find a value of φi such that

∣∣∣D−Ti(λi−φi)

D

∣∣∣ ≤ ε;
29: end for
30: for each j ∈ Vt do
31: Find a value of φj such that

∣∣∣D−Tj(λj+φj)

D

∣∣∣ ≤ ε;
32: end for
33: Calculate f(i, j), by invoking Procedure

minLatencyFlow
(
D,Vs, Vt, ε

)
;

34: for each j ∈ Vt do
35: Calculate D(j), using Eq.(7);
36: end for
37: D

′ ← max{D(j) | j ∈ Vt};
38: D ← (D +D

′
)/2;

39: end while

Denote by u(i, j) the capacity of edge 〈i, j〉 in G. We
begin by setting the edge capacities for the edges between
the source node s and each overloaded cloudlet node i ∈ Vs
to φi, i.e., u(s, i) = φi for all edges 〈s, i〉 with i ∈ Vs, and the
flow capacity of each overloaded cloudlet nodes Vt to φj , i.e.,
u(j, t) = φj for all edges 〈j, t〉 with j ∈ Vt. We then assign
the cost of edges between the source s and cloudlet nodes
in Vs to zeros, i.e., cs,i = 0 for each i ∈ Vs. Similarly, we
set the latency cost of the edges between the sink node t and
cloudlet nodes in Vt to zeros, i.e., cj,t = 0 for each j ∈ Vt.
For each edge 〈i, j〉 from an overloaded cloudlet i ∈ Vs to an

underloaded cloudlet j ∈ Vt, we set its flow capacity to be
the minimum of the incoming capacity at i and the outgoing
capacity at j, i.e., u(i, j) = min{u(s, i), u(j, t)}, and its cost
to di,j , i.e., ci,j = di,j . Fig. 4 illustrates the construction of
the flow network G(V,E).

Having constructed the flow network G, it can be seen
that the problem of routing outgoing flows from overloaded
cloudlets to underloaded cloudlets is transformed to the prob-
lem of finding a minimum cost maximum flow in G from
s to t in terms of network latency. That is, our optimization
objective is to

minimize
∑
〈i,j〉∈E

f(i, j) · ci,j , (12)

subject to the following constraints.

f(i, j) ≤ u(i, j), ∀i, j ∈ V (13)
f(i, j) = −f(j, i), i 6= s or j 6= t (14)∑
j∈V

f(i, j) = 0, i 6= s or j 6= t (15)

where f(i, j) · ci,j is the amount of network delay incurring
by transferring tasks from cloudlet i to cloudlet j.

Procedure 1 minLatencyFlow

Input: An average response time D of tasks; a set of overloaded
cloudlets Vs; a set of underloaded cloudlets Vt; and a tuning
parameter ε

Output: Redirected task flow f(i, j) for all i, j ∈ {1, . . . ,K}.

1: /* Construct a flow network with latency weighted edges. */
2: V ← {1, . . . ,K} ∪ {s, t};
3: Vs ← {i | i ∈ {1, . . . ,K}, Ti(λi) > D};
4: Vt ← {j | i ∈ {1, . . . ,K}, Tj(λj) ≤ D};
5: E ← ∅;
6: for each overloaded cloudlet i ∈ Vs do
7: E ← E ∪ {〈s, i〉};
8: Find a value of φi such that

∣∣∣D−Ti(λi−φi)

D

∣∣∣ ≤ ε;
9: u(s, i)← φi;

10: cs,i ← 0;
11: end for
12: for each underloaded cloudlet j ∈ Vt do
13: E ← E ∪ {〈j, t〉};
14: Find a value of φj such that

∣∣∣D−Tj(λj+φj)

D

∣∣∣ ≤ ε;
15: u(j, t)← φj ;
16: cj,t ← 0;
17: end for
18: for each i ∈ Vs do
19: for each j ∈ Vt do
20: E ← E ∪ {〈i, j〉};
21: u(i, j)← min {u(s, i), u(j, t)};
22: end for
23: end for
24: Find a minimum-cost maximum-flow in the flow network

G(V,E), subject to edge capacities u(u, v) for 〈u, v〉 ∈ E, by
invoking the transportation algorithm in [9].

This is clearly the Hitchcock Transportation Problem [9],
which aims to find a maximum flow in G from s to t such that
the total cost of the flow is minimized, which can be solved,



using the Transportation Algorithm [8], [9] within O(K4) time
complexity, where K = |V | is the number of cloudlets in G.
Procedure 1 details the construction of the flow network G
for a given average response time D of tasks.

In summary, the proposed algorithm is to identify an average
response time D of tasks and to determine the out-going work-
load for each overloaded cloudlet and the in-coming workload
for each underloaded cloudlet, based on the value of D. We
begin with binary search to find D such that the outgoing
task demand from overloaded cloudlets is within a given
threshold δ of the incoming task demand from underloaded
cloudlets. We then compute the specific flow of task streams
from overloaded cloudlets to underloaded cloudlets, using a
transportation algorithm [9]. We finally calculate the total
network latency caused by the flow of tasks through refining
D iteratively until the value of D is within the bound θ of D

′
,

where D
′

= max{D(j) | j ∈ Vt}.

V. SIMULATION

In this section we evaluate the performance of the proposed
algorithm in simulation environments. We begin by explaining
the simulation settings, and then evaluating the performance
of the proposed algorithm, using different networks.

A. Simulation Environment

We first study a hypothetical structure of a cloudlet net-
work. We adopted a similar method used in [13] to generate
WMANs. We assume that the positions of cloudlets in a
WMAN follow a scale-free distribution, and we generate
random scale-free cloudlet network topologies, using the
Barabasi-Albert Model [1]. Similar to [13], we assume that
network delay between two APs in the network is proportional
to their physical distance. As distances between real APs
are essentially random, we assign the network delay between
each pair of directly linked cloudlets randomly, according to
the Normal distribution: 0.1 ≤ N (0.15, 0.05) ≤ 0.2. This
randomizes the delay in the network while preserving the
triangle distance inequality, as any pair of nodes with 2 degrees
of separation has an intermediary distance of at least 0.2.

For each cloudlet i, we assign its service rate µi by sampling
the Normal distribution N (5, 2) > 0, and the number of
servers by sampling the Poisson distribution with a mean of
3. The task arrival rate λi at cloudlet i is determined by the
Normal distribution 0 < N (15, 6) < µi · ni − 0.25. Notice
that the arrival rate λi must not exceed µi · ni, otherwise, the
queue time at cloudlet i will be infinite.

B. Simulation Results

Fig. 5(a) plots the probability distributions of response times
of tasks with and without adopting the proposed algorithm,
respectively. As these figures indicate that the proposed al-
gorithm narrows the range of cloudlet task response times
between 0.4 and 0.8 seconds. The range is larger than our
accuracy bound θ = 0.1, which is partially due to network
delay causing a mismatch between outgoing task demands at

Symbol Definition Default
K Number of cloudlets in the network 20
λi Average task arrival rate at cloudlet i 15
µi Service rate of servers at cloudlet i 5
ni Average number of servers at cloudlet i 3
ci,j Network delay between AP pi and pj 0.15
θ Termination quality of D and Dt. 0.1
ε Accuracy bound for calculating task

demand φi for cloudlet i
0.05

TABLE II: Default simulation settings

overloaded cloudlets, and incoming task demands at under-
loaded cloudlets.

Fig. 5(b) shows the curves of the maximum and minimum
response times of tasks after running the proposed algorithm
with the average response time D of tasks being set at a
fixed value. As previously discussed, when D is too low,
the outgoing task demands from overloaded cloudlet are
higher than the incoming task demands from the underloaded
cloudlets. This limits the amount of flow between cloudlets,
resulting in a wider range of cloudlet task response times.
Similarly, when D is too high, the total outgoing task demand
is lower than the total incoming task demand, and task flow
in the network is limited. When D is close to zero, all the
cloudlets are considered “overloaded” and consequently no
flow can be redirected. When D = 0.5, the minimum response
time of tasks increases slightly as the algorithm identifies
the first underloaded cloudlet j, and flow is redirected to
meet the underloaded cloudlet’s incoming task demand φj .
The minimum response time of tasks begins to drop as D
continues to increase, because more cloudlets are considered
underloaded. It is worth noting that the minimum cloudlet
task response time reaches a local maximum when D = 0.6,
whereas the maximum cloudlet task response time reaches the
local minimum at D = 0.8. The difference between these two
stationary points correspond to the network delay between the
overloaded and underloaded cloudlets.

Fig. 5(c) examines the maximum response time of tasks
when there is no task flow and after task flow is calculated
by the proposed algorithm, with the growth of the number
of cloudlets in the network. As there are more and more
cloudlets in the system, the likelihood of an overloaded
cloudlet increases in the system increases, and so the blue
line tends towards the maximum cloudlet task response time
limit we have imposed (by restricting cloudlet task arrival rate
λi < µi · ni − 25). As can be seen, the performance of our
algorithm is unaffected as we increase the number of cloudlets
in the network.

Fig. 5(d) shows the running time of the proposed algorithm
with the increase of the number of cloudlets in the network.
The running time was obtained based on a machine with
a 3.40 GHz Intel i7 Quadcore CPU and 16GiB RAM.The
running time increases dramatically as the number of cloudlets
increases. However, the flow can still be calculated on a
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Fig. 5: Performance evaluation of the proposed algorithm

desktop machine within less than 0.3 seconds for a network
with 200 cloudlets. Large city areas typically span no more
than several hundred square kilometers (km), so by placing a
cloudlet every 2–3 km2, even a large WMAN can be supported
by a few hundred cloudlets. Refreshing the algorithm results
every few seconds is sufficient to ensure that the redirection of
cloudlet tasks in the network is up to date, while user demands
shift around the network.

Fig. 5(e) compares the maximum cloudlet task response
time in a static network, and after flow is calculated by the
proposed algorithm, with increasing the average arrival rate
of tasks under sampling the normal distribution, from which
it can be seen that the maximum cloudlet task response time
can increase dramatically as cloudlet task arrival rate increases,
while the maximum cloudlet task response time increases at
a low rate. A plateau is reached as cloudlet arrival rate λi
for cloudlet i is capped for each cloudlet, even as the average
cloudlet arrival rate according to the normal distribution.

Fig. 6 studies the two accuracy measures in the proposed
algorithm: θ and ε, where θ determines how close the maxi-
mum underloaded cloudlet task response time (after network
flow) is to the chosen D cloudlet task response time before
the solution is acceptable, while ε controls how accurate the
cloudlet task demand φi is for each cloudlet i.

Fig. 6(a) plots the maximum and minimum cloudlet task
response time in the network against the algorithm’s main
termination accuracy θ. With the increase of the value of θ,
the termination condition of the proposed algorithm becomes

more lax, and the number of incremental refinements of D is
reduced. This results in the maximum cloudlet task response
time increasing and the minimum cloudlet task response time
decreasing.

Fig. 6(b) studies the maximum and minimum cloudlet task
response time in the network against the algorithm’s accuracy
bound ε of the task demand φi for given cloudlet i. As ε
increases, the error margin of task demand at each cloudlet
increases too, resulting in the algorithm redirecting the correct
amount of flow for a given balanced cloudlet task response
time D. Despite the accuracy bound θ being unchanged, the
proposed algorithm is less likely to converge towards the
optimal D, and as a result, the algorithm can terminates with
a suboptimal flow.

Fig. 6(c) shows the running time the proposed algorithm as
θ increases. Clearly, the curve is asymptotic as θ approaches
zero, and as θ increases, the running time converges towards
0.6 milliseconds. While the results presented here are not
conclusive, there is clearly a trade-off between the running
time accuracy and the maximum cloudlet task response time
delivered by the algorithm. The ε accuracy bound does not
necessarily affect the running time of the algorithm, as we can
precalculate the required load λ for any cloudlet task response
D within ε accuracy for all cloudlets i. In this case, ε only
affects the per-processing time whenever cloudlet hardware is
installed or upgraded.

To conclude, the proposed algorithm can significantly re-
duce the maximum cloudlet task response time in a network
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Fig. 6: The impacts of thresholds θ and ε on the performance of the proposed algorithm

of cloudlets, while the running time of the proposed algorithm
for large numbers of cloudlets, is modest.

VI. CONCLUSION

Cloudlets are an important technology that provides per-
formance improvements to mobile applications. As wireless
Internet availability continues growing, public available and
easy-to-access cloudlets will be vital to the future mobile
computing. In this paper, we studied the problem of cloudlet
load balancing in a WMAN, and proposed a fast and scalable
algorithm for workload balancing among the cloudlets to
shorten the average response time of tasks. Simulation results
demonstrated that the proposed algorithm is promising.
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