Tactile Sketch Saliency

Jianbo Jiao∗
University of Oxford

Ying Cao
City University of Hong Kong

Manfred Lau
City University of Hong Kong

Rynson Lau
City University of Hong Kong

Figure 1: Given an input sketch, our model can predict its tactile saliency map, indicating where people would likely grasp (e.g., for cup), press (e.g., for game controller) or touch (e.g., for statue) the object depicted by the sketch.

ABSTRACT
In this paper, we aim to understand the functionality of 2D sketches by predicting how humans would interact with the objects depicted by sketches in real life. Given a 2D sketch, we learn to predict a tactile saliency map for it, which represents where humans would grasp, press, or touch the object depicted by the sketch. We hypothesize that understanding 3D structure and category of the sketched object would help such tactile saliency reasoning. We thus propose to jointly predict the tactile saliency, depth map and semantic category of a sketch in an end-to-end learning-based framework. To train our model, we propose to synthesize training data by leveraging a collection of 3D shapes with 3D tactile saliency information. Experiments show that our model can predict accurate and plausible tactile saliency maps for both synthetic and real sketches. In addition, we also demonstrate that our predicted tactile saliency is beneficial to sketch recognition and sketch-based 3D shape retrieval, and enables us to establish part-based functional correspondences among sketches.

CCS CONCEPTS
• Computing methodologies → Interest point and salient region detections; Image representations; Multi-task learning.

KEYWORDS
Saliency, Sketch, Tactile

ACM Reference Format:

1 INTRODUCTION

Sketching is one of the intuitive ways for visual communication. The increasing availability and widespread use of sketches have motivated many recent works on sketch analysis (e.g., sketch recognition [31, 42, 52, 54], segmentation [20, 29, 43], consolidating [30] and abstraction [39]), and applications (e.g., sketch-based image retrieval [37, 40, 45, 46, 51] and sketch-based 3D modeling [2, 6, 8, 36, 44]).

When looking at a sketch, humans can recognize not only what object it is depicting, but also where to touch or grasp this object. Therefore, a fundamental question to ask is: whether a computer is able to reason about how humans interact with an object depicted by a sketch? Such knowledge can provide useful information about the functionality of a sketch, which in turn helps facilitate visual interpretation of sketches and informs the algorithms for sketch-based 2D/3D content synthesis.

While recent works have focused on analyzing the visual and semantic properties of sketches, in this paper, we make an initial effort to understand the functional aspect of sketches, by addressing the tactile sketch saliency prediction problem. Unlike visual saliency that describes where people will look at, the tactile saliency of a sketch reflects where people will grasp, press, or touch an object as depicted by the sketch. Here the concept of tactile saliency on sketches does not involve any interactions with real objects, but virtually consider where the depicted object could be interacted with. Given a 2D sketch, we aim to predict a tactile saliency map, where the value of each pixel represents its likelihood of being
grasped, pressed, or touched. To this end, we propose a learning-based framework to directly map a sketch to its tactile saliency map in an end-to-end manner. Our key observation is that knowing the 3D structure and object category of a sketch can benefit the prediction of which part of the sketch to touch. Hence, our model jointly solves three mutually beneficial tasks: tactile saliency prediction, depth estimation, and sketch recognition in a unified framework. To train our model, a dataset of sketches with labeled tactile saliency is required. However, pixel-wise annotation of saliency values on a large number of sketches is labor-intensive and expensive. To construct our training dataset, we propose a data synthesis strategy, where we render a collection of 3D models with available tactile information to form sketches and transfer the depth and tactile information from the 3D models to the sketches directly.

Our experiments on both synthetic and real sketches show that the proposed method can predict accurate and plausible tactile saliency consistently. Examples are illustrated in Figure 1. Through extensive qualitative and quantitative evaluations, we demonstrate that our model, although trained on synthetic data, can favorably generalize to real sketches. We have also explored a few applications that can benefit from learning to predict tactile sketch saliency. In particular, we show that our predicted tactile saliency can help improve sketch recognition and sketch-based 3D shape retrieval, and makes it possible for us to establish sparse correspondences between functional parts across a collection of sketches.

Our primary contributions are: 1) We introduce the concept of tactile sketch saliency, as an initial effort towards understanding the functional aspects of 2D sketches; 2) We propose a joint reasoning approach for tactile sketch saliency prediction; 3) We show how to leverage synthetic data to learn tactile sketch saliency and propose a data synthesis pipeline, which utilizes 3D shapes to generate 2D tactile sketch saliency data for training; 4) We demonstrate that such tactile saliency can impact many sketch analysis tasks. We believe that the insights brought by our work in learning sketch functionality and how it may benefit other vision tasks could be important contributions to the community and potentially lead to a new research direction.

2 RELATED WORK
2.1 Saliency Prediction
Visual saliency prediction has been an important research problem in computer vision [21]. A recent review of this problem can be found in [4]. Many algorithms have been proposed to model visual saliency using hand-crafted low-level features [7, 12, 34] and high-level features [15, 22, 33]. Recently, there is a trend in using deep convolutional neural networks (CNNs) to automatically learn hierarchical features [3, 17, 19, 28, 32, 47, 48, 55, 56]. In our work, we also make use of CNNs for saliency prediction, but focus on functional saliency rather than visual saliency.

In the area of robotics, there are some studies on affordance detection [23, 35, 41, 53]. However, these works focus on inferring contact and grasping regions from the 3D geometry of an object/scene, while our work, for the first time, introduces the tactile saliency concept to sketches and aims at inferring the functional/tactile saliency from 2D sketches. Our work is closely related to a recent work on computing the tactile saliency on 3D meshes [24] from their projected depth maps. Compared with their work that regresses saliency values from continuous depth maps, our problem setting is more challenging, as we aim at predicting a dense saliency map from a sketch with sparse strokes. Therefore, rather than using a single-task network as in [24], we propose a multi-task architecture to facilitate the learning of our model.

2.2 Sketch Analysis
There have been a lot of research efforts on sketch analysis. A detailed literature review is beyond the scope of this paper. Readers may refer to recent works on sketch recognition [10, 31, 42, 52, 54], segmentation [20, 29, 43, 57], and sketch-based retrieval for 2D images [9, 37, 40, 50, 51] and 3D shapes [6, 8, 11, 27, 46, 49].

In recent years, deep CNNs have been widely applied to solve various sketch-related problems. For example, Yu et al. [52] proposed a multi-scale, multi-channel network for sketch recognition, which outperforms humans. Sangkloy et al. [40] published a large-scale dataset of sketch-photo pairs and used it to train a cross-domain CNN for fine-grained sketch-based image retrieval. Wang et al. [46] used Siamese networks to learn feature representations of both sketches and 2D views of 3D models for sketch-based 3D shape retrieval. A recent work [39] proposed a sketch abstraction model through reinforcement learning of a stroke removal policy without degrading its recognizability. In contrast to these prior works that seek to understand the visual content and semantics of sketches, we focus on the unexplored topic of analyzing the functionality of sketches by considering how humans would interact with real-world objects depicted by sketches.

3 OUR APPROACH
We present a learning-based model for tactile sketch saliency prediction. One naive approach is to train a single-task encoder-decoder (SED) network to directly map an input 2D sketch to a saliency map. Such a basic model, however, does not work well since regressing a continuous saliency map from a set of sparsely-distributed strokes is inherently ambiguous. To address this challenge, we propose to jointly reason about three properties of a sketch: tactile saliency, depth and semantic categories via a multi-task network architecture. Our intuition is that knowing what the object is and its 3D structure can help determine where humans can interact with the object.

3.1 Direct Regression of Tactile Saliency
The SED model follows an encoder-decoder architecture [1, 38]. While the encoder extracts a sketch representation from the input sketch, the decoder takes the feature representation to generate a tactile saliency map. SED is fully convolutional without using any pooling layers or fully-connected layers, which can help preserve spatial information throughout the intermediate representations. This is desirable for our problem since we aim to predict a pixel-wise dense saliency map, which relies on some local information from the input sketch. To propagate low-level information towards the output more efficiently, we use skip connections between encoder and decoder. SED is trained by minimizing a saliency loss \(L_s \) that penalizes \(\ell_2 \) distance between a predicted saliency map and the ground truth.
While our network takes as input the entire sketch, it is also possible to predict the saliency based on local patches, as in [24]. However, we have empirically found that patch-based prediction does not give meaningful results for our problem, mainly due to the sparsity nature of sketches where local patches are mostly empty and may not contain enough information for reliable saliency prediction.

3.2 Joint Reasoning of Multiple Properties

Based on the SED model (saliency branch in Figure 2), we develop our joint reasoning framework to incorporate more semantic and structural information to guide the training process, as shown in Figure 2. Specifically, we add a depth map prediction branch to predict the depth information of the input sketch, and a classification branch to predict the category of the sketch. The encoder is shared among the three branches so that it can learn a common sketch representation (green cube) for the three tasks. In order for our network to complete the three tasks well, the encoder should learn a sketch representation that captures the semantics, structure as well as functionality of the input sketch. The depth branch maps the shared sketch representation to a depth map. We concatenate the feature maps of the up-convolutional layers in the depth branch with those of the corresponding up-convolutional layers in the saliency branch, in order to provide multi-level structural features for the saliency prediction. In addition, skip connections are linked from the encoder to both the saliency and depth branches, in order to propagate high-frequency information to the reconstruction process. The classification branch receives the shared sketch representation and outputs the probabilities of object categories. It has two fully-connected layers followed by a softmax layer. ReLU [14] activations are used in each layer of the network.

To train our multi-task network, in addition to saliency loss L_s, we also define a ℓ_2 loss L_d for depth prediction and a cross-entropy loss L_c for sketch classification. Our final loss is a weighted sum of the three task-specific losses: $L = \xi_1 \cdot L_s + \xi_2 \cdot L_d + \xi_3 \cdot L_c$, where $\{\xi_i\}$ are weight parameters to control the contribution of each loss term.

4 TACTILE SALIENCY DATA SYNTHESIS

To train our network, we need a dataset of 2D sketches with tactile saliency and depth annotations. Unfortunately, such a dataset is not available and can be expensive to acquire since it requires labeling the saliency and depth of each sketch in a pixel-wise manner. Hence, we address this problem by proposing a new synthetic training dataset.

To construct our training dataset, we first start with the same 3D shape dataset obtained from [24]. In this dataset, each 3D model already has its dense 3D tactile saliency data generated by their model, where each vertex has a tactile saliency value indicating how likely a person would grasp, press, or touch the location when interacting with the 3D object. There are a total of 19 shape categories for the three tactile modalities, i.e., grasp, press and touch. Although there might be other tactile modalities, as an initial step towards this direction, we choose these commonly observed interaction-activation modalities in this work and leave a more thorough study for future research. To further increase the diversity of our training data, besides the 19 shape categories from [24], we introduce 6 additional shape categories: including 3 categories for the grasp modality (backpack, spray bottle, and handbag) and 3 categories for the touch modality (horse statue, sit-man statue, and human with bird statue). Statues are chosen here since they have been used for studying touch saliency in [24] and shows that people have high consistency in touching for statues. For the new categories and shapes, we generate the 3D tactile saliency data using the same model [24] as for the other 19 categories, which predicts vertex-wise 3D tactile saliency given a 3D shape. In total, we have...
collected 3D shapes in 25 shape categories, which cover many of the shape categories in ShapeNet [5] that humans can interact with in a tactile sense.

Given all the collected 3D shapes, we obtain the 2D data (i.e., sketches, 2D tactile saliency, and depth maps) via projection as follows. For each 3D model M_i from a particular viewpoint v, we generate the 2D synthetic data in the form of (I_{iv}, S_{iv}, D_{iv}), where I_{iv} is a sketch of M_i for viewpoint v, S_{iv} is the corresponding 2D tactile saliency map, and D_{iv} is the corresponding depth map. To generate 2D tactile saliency map S_{iv}, we use ray casting. To generate 2D sketch I_{iv}, we take the depth map D_{iv}, and perform Sobel edge detection to generate an outline of the projected 3D shape. All generated 2D sketches, tactile saliency maps, and depth maps have a resolution of 200×200. We end up with around 1,800 synthetic sketches in our dataset. Figure 3 shows some examples of the synthetic data.

5 EXPERIMENTS

In this section, we evaluate our model quantitatively and qualitatively on both synthetic and real sketches, test the importance of network design choices, and demonstrate the applications of our model in various sketch analysis tasks.

5.1 Implementation Details

Our network is trained end-to-end using mini-batch stochastic gradient descent, with a momentum of 0.9 and a batch size of 1. We use an initial learning rate of 10^{-5} and divide it by 10 for every 20 epochs until 10^{-7}. We initialize our network with the modified Xavier initializer [16], and train it until convergence. The weights for the saliency, depth, and classification loss terms are set to 0.4, 0.3, and 0.3, respectively. We split our dataset so that 85% of it is for training and the remaining 15% for testing. We perform data augmentation on the training set by random cropping, flipping, and rotation (with a degree between $[-10, 10]$). The augmentation results in a total of 2 million training examples. Dataset and implementations are available online.

1https://bitbucket.org/JianboJiao/tactilesketchsaliency

5.2 Evaluation on Synthetic Data

We first evaluate the effectiveness of our model on our synthetic test dataset.

Evaluation Metrics. Since the ground truth saliency maps for the synthetic sketches are known, we measure the performance of our model using two common metrics for saliency detection: PR-curve and F-Measure [21]. Most commonly used evaluation metrics for saliency detection are mainly based on pixel-wise mean square error (MSE). However, for our problem, we are more interested in the relative saliency between two points (i.e., whether one point is more salient than the other) than the absolute saliency value at a single point. Further, these metrics require pixel-wise ground truth saliency maps, which are quite expensive to obtain for real sketches. Thus, inspired by [24], we instead propose a point-pair based evaluation metric especially designed for our problem. Given a predicted tactile saliency map, we first generate several pairs of points, where each pair consists of two randomly-sampled points (within the depicted object). We then compare the saliency values at the two points to determine their relative relation (i.e., greater or smaller). The relative relation between a pair of points is considered as correctly predicted if it is the same as the ground truth.

Baselines. Since there are no prior works on tactile sketch saliency prediction, we use visual saliency prediction methods as baselines for comparison: a classic method with hand-crafted features (IT) [21], DSS [18] and MC [55]) and our SED: (a) precision-recall curves; (b) precision, recall, and F-measure values; (c) a visual comparison of the results from all these methods.

Figure 4: Comparison of our model against some baselines, including three methods on visual saliency prediction (IT [21], DSS [18] and MC [55]) and our SED: (a) precision-recall curves; (b) precision, recall, and F-measure values; (c) a visual comparison of the results from all these methods.
Table 1: Accuracy (%) comparison of our model (Ours) with the baselines using the point-pair based evaluation metric on both synthetic (Synthetic) and freehand (Real) sketch datasets.

<table>
<thead>
<tr>
<th>Sketch Category</th>
<th>Acc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic</td>
<td></td>
</tr>
<tr>
<td>Real</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Prediction accuracy on real freehand sketches from 27 categories. The accuracy values for the seen categories are underlined and the overall accuracy is in bold.

<table>
<thead>
<tr>
<th>Sketch Category</th>
<th>Acc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mug</td>
<td>100.00</td>
</tr>
<tr>
<td>tennis racket</td>
<td>97.30</td>
</tr>
<tr>
<td>pen</td>
<td>93.55</td>
</tr>
<tr>
<td>wineglass</td>
<td>93.10</td>
</tr>
<tr>
<td>hammer</td>
<td>93.02</td>
</tr>
<tr>
<td>toothbrush</td>
<td>91.43</td>
</tr>
<tr>
<td>teapot</td>
<td>91.30</td>
</tr>
<tr>
<td>knife</td>
<td>90.91</td>
</tr>
<tr>
<td>microphone</td>
<td>90.91</td>
</tr>
<tr>
<td>spoon</td>
<td>89.47</td>
</tr>
<tr>
<td>baseball bat</td>
<td>84.78</td>
</tr>
<tr>
<td>comb</td>
<td>84.09</td>
</tr>
<tr>
<td>cooking pan</td>
<td>83.33</td>
</tr>
<tr>
<td>ice-cream-cone</td>
<td>82.98</td>
</tr>
</tbody>
</table>

Figure 5: Tactile saliency prediction on synthetic sketches of different object categories. We show example results for grasp saliency (first row), press saliency (second row), and touch saliency (third row).

Figure 6: Our model fails to predict correctly on watch sketches. The human responses (from 9 participants) collected using AMT and our predictions are shown. Note that where to touch seems to be ambiguous even for humans in these examples. Participants tend to choose the strap to be more salient in the left example, but the dial part to be more salient in the right example.

Dataset and Evaluation Method. To evaluate our model, we have selected 27 categories of freehand sketches (Table 2), which are more relevant to tactile interaction by hand, from the TU Berlin sketch dataset [10]. The other categories are relatively ambiguous for tactile interaction, and hence difficult to evaluate quantitatively (see examples in Figure 8). For each category, we randomly select 10 sketches, resulting in a test dataset of 270 freehand sketches. Among these 27 categories in the test set, 11 appear in our training set, while the others do not.

Unlike our synthetic training data where ground truth saliency maps are known a priori, our real test dataset has no ground truth saliency maps for quantitative evaluation. Hence, we use the point-pair based metric introduced in Section 5.2 for evaluation. We have conducted a user study using Amazon Mechanical Turk (AMT). Given a sketch and a pair of labeled points (A and B) on it, the participants were asked to choose the point that they would more likely grasp, press, or touch via two alternative forced choice. Our evaluation consists of 1,350 pairs for comparison (27 categories × 10 sketches per category × 5 pairs of (A,B) points per sketch). For each...
Figure 7: Tactile saliency prediction on 27 categories of freehand sketches. The 11 categories at the bottom row appear in our training dataset (i.e., seen categories), while the rest do not (i.e., unseen categories).

Quantitative Results. Table 2 shows the performance of our model. We can see that although our model is only trained on synthetic data, it generalizes well to real sketches, with an overall accuracy of 82.95%, and even to the unseen categories (e.g., tennis racket, hammer and toothbrush). Specifically, average accuracy for the 11 seen categories and 16 unseen categories are 83.32% and 82.70%, respectively. Note that the accuracy for “watch” is relatively lower. This is mainly because there are many possible ways of grasping a watch. It is often ambiguous even for humans to decide which point is more salient. Figure 6 shows two example cases that our model predicts incorrectly for “watch”. In general, our model performs well for the object categories whose tactile parts are defined clearly and consistently across instances (e.g., the left part of Table 2), but less well for those with ambiguous tactile regions. We also present the performance of the baseline models in Table 1 (Real). Since our model is trained on synthetic data, it performs slightly worse on real freehand sketches whose visual appearance differs from that in our synthetic data.

Qualitative Results. Figure 7 shows example results of tactile saliency predicted by our model on real sketches. Although some sketches are rough and have distorted shapes, our model can still output good saliency maps. In particular, although 16 of the categories are unseen by our model during training, our model can still generalize well and predict plausible tactile saliency results.

5.4 Ablation Study

We perform an ablation study to investigate the importance of each design choice of our model. In particular, we compare our full model (Ours) with its four variants: 1) removing the skip connections (w/o Skip); 2) removing the depth branch (w/o Depth); 3) removing the cross links (w/o CrsLk) from the depth branch to the saliency branch; 4) removing the classification branch (w/o Cls).

Table 3 shows the results. Since the ground truth dense saliency maps are unavailable for real sketches, FM is only reported for the synthetic data. We can see that our full model achieves the best performance. Specifically, when we remove the depth branch or the cross links, the performance drops significantly. This means that the 3D structural information of sketches plays an important role in tactile saliency prediction. In addition, if we remove the skip connections between the encoder and decoder, the performance also drops. We have empirically found that adding skip connections can result in smoother predictions qualitatively. Finally, without the classification branch, the performance declines slightly. This experiment confirms the advantage of our multi-task joint reasoning framework for tactile saliency prediction.

5.5 Generalization to Objects with Ambiguous Tactile Saliency

We are interested in knowing how well our model may perform when applied to some unseen object categories with ambiguous tactile properties such as fruits, plants and animals. Figure 8 shows...
the predicted results. Although humans will unlikely have a consistent view on the tactile saliency of these objects, we can see that our model can still predict some plausible tactile saliency for them.

6 APPLICATIONS

6.1 Sketch Recognition

We first explore using our learned representation as features for sketch recognition. We replace the encoder in a state-of-the-art sketch recognition model, Sketch-a-Net [52], with our trained encoder and fine-tune the whole model on the training dataset of [52]. We then compare the performance of Sketch-a-Net with and without using our learned representation on the full test dataset of [52] containing 20,000 sketches from 250 categories. As we are unable to train their multi-scale architecture due to its large memory requirement, we use their single-scale architecture instead. This means that the recognition performance reported here may not be state-of-the-art. However, it can still reflect if our learned representation is useful.

The accuracy of the original Sketch-a-Net is 69.28%, which is increased to 70.65% after using our learned representation. This suggests that our representation can help improve sketch recognition. Note that the test set contains 250 categories, in which 236 categories are unseen by our model during training. We believe a higher performance gain can be expected when training our model on more categories. We have also experimented with using the learned representation by removing our saliency branch, but find that the accuracy drops (69.45%). This again confirms the importance of tactile saliency prediction in helping sketch recognition. Figure 9 shows some visual results with and without using our learned representation. We can see that access to tactile information can help resolve some ambiguous and challenging cases in sketch recognition, especially when the sketches of different categories have similar shape and structure. For example, while the original Sketch-a-Net classifies a frying pan as snake or computer mouse, our revised Sketch-a-Net with the learned representation can correctly recognize it via the additional tactile cues.

We have also tried directly feeding the concatenation of an input sketch and our predicted tactile saliency into Sketch-a-Net for sketch recognition. As we are unable to train our model on the categories outside our training dataset (due to the lack of 3D shapes and 2D tactile saliency ground truth), we directly use our model trained on our training set. Thus, there are 236 out of 250 testing categories unseen by our model. In this case, we still observe a marginal performance gain (69.75%). In addition, when we evaluate the models only on the categories that are seen by our model during training, our model achieves a much better performance (85.71%) than Sketch-a-Net (78.57%).

6.2 Sketch-based 3D Shape Retrieval

We have also investigated if our learned sketch representation is useful for sketch-based 3D shape retrieval. Given a query 2D sketch,
we need to find the corresponding 3D shape from a database of 3D shapes. Following previous methods [11, 46, 49], we project each 3D shape to 2D sketches from multiple viewpoints, and use our representation to compute the similarity between a query sketch and the 2D projections.

For comparison, we choose the representation from a CNN model (SiameseCNN), which is used in a recent sketch-based 3D shape retrieval method [46]. For a fair comparison, both representations are integrated into the multi-view projection framework proposed by [46] and tested on SHREC’13 [25] and SHREC’14 [26]. Figure 10(a) shows the qualitative results. Compared with SiameseCNN, our representation can take advantage of the tactile information in both the query sketch and 2D projections of the 3D shapes (e.g., where to grasp a shovel) for similarity computation, and thus retrieve more relevant 3D shapes even though some of the 3D shapes may look somewhat different from the query sketch. We have also tried to retrieve using our learned representation without the saliency branch, which gives worse results. This shows that learning tactile sketch saliency is crucial to extracting effective features for this task. Figure 10(b) shows the corresponding quantitative comparison. We can see that our full model outperforms the other two by a large margin.

6.3 Part-based Functional Correspondence

Finally, we have explored using the predicted tactile sketch saliency to find functionally similar regions across different sketches. This problem is particularly challenging since it involves matching the regions that may have different geometric shapes across different sketches with varying global structures. Given a query region on a sketch, the goal is to find functionally similar regions on other sketches. We do this by first computing the saliency values of the query region as well as the saliency values on other sketches, and normalize them to be in [0, 1]. We can then identify the functionally similar region in a sketch by sliding a window over the sketch to find the best matching region to the query region, measured by pixel-wise saliency difference.

Figure 11 shows some results. The top row shows the correspondence among sketches across different categories, while the bottom row shows that even for sketches whose functionally corresponding parts have quite different shapes, our method can still give promising results. This experiment demonstrates that with the help of our tactile sketch saliency, part-based correspondence across different sketches can be established in a functionally meaningful way. It is worth noting that since our method is purely based on tactile sketch saliency, it can only find correspondences among regions with high tactile saliency (i.e., regions likely to be grasped/pressed/touched). We believe that more sophisticated methods are needed for this problem, which is left as future research.

7 CONCLUSION

In this paper, we have investigated the tactile sketch saliency problem, and learned a deep model for predicting tactile saliency on input sketches using just synthetically generated training data. We have demonstrated that our model can achieve promising results on both synthetic and real sketches, and have a real impact on many sketch analysis problems. In addition to the depth and classification tasks used in our model, other types of tasks may also be helpful to our problem. For example, surface normal estimation can provide structure information as well. However, it is difficult to enumerate all possible tasks in a single paper. Thus, in this paper, we explore the two auxiliary tasks that can provide the information we need, and leave investigating the effect of other possible tasks as an interesting direction to explore in the future. As a future work, we would also like to explore a wider range of applications of our model in sketch analysis. For example, our model can be integrated into a sketch abstraction model [39] to help ensure that abstracted sketches are both recognizable and functionally valid. We envision our work as just a first step towards the challenging goal of understanding the functional properties of sketches, which could enable a human-centric and physical interpretation of 2D sketches. We hope that our work will inspire the community to further explore this direction.

ACKNOWLEDGMENTS

Manfred Lau acknowledges the Hong Kong Research Grants Council (General Research Fund numbers 11206319 and 11205420).

REFERENCES

[8] Manfred Lau acknowledges the Hong Kong Research Grants Council (General Research Fund numbers 11206319 and 11205420).