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a b s t r a c t

In this paper, we study the scheduling problem of jobs with multiple active intervals. Each
job in the problem instance has n (n > 1) disjoint active time intervals where it can be
executed and a workload characterized by the required number of CPU cycles. Previously,
people studied multiple interval job scheduling problem where each job must be assigned
enoughCPU cycles in one of its active intervals.We study a different practical versionwhere
the partial work done by the end of an interval remains valid and each job is considered
finished if total CPU cycles assigned to it in all its active intervals reach the requirement.
The goal is to find a feasible schedule that minimizes energy consumption. By adapting
the algorithm for single interval jobs proposed in Yao, Demers and Shenker (1995) [1], one
can still obtain an optimal schedule. However, the two phases in that algorithm (critical
interval finding and scheduling the critical interval) can no longer be carried out directly.
We present polynomial time algorithms to solve the two phases for jobs with multiple
active intervals and therefore can still compute the optimal schedule in polynomial time.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The energy efficiency problem in processor scheduling has become increasingly important these years, partly because
portable electronic devices which are mainly powered by batteries are widely in use nowadays. Among various techniques
aiming to provide possibilities for energy efficient schedules, DVS (Dynamic Voltage Scaling) technique has been adopted
by major chip manufacturers like Intel, IBM and AMD. The microprocessors which support DVS allow the speed of the
processors to be adjusted in runtime so that the goal of energy efficiency can be achieved if jobs are suitable scheduled.
A theoretical study of min-energy DVS scheduling was initiated by Yao, Demers and Shenker [1]. They formulated the

optimization problem and gave an O(n3) algorithm YDS for computing the optimal schedule, which is later improved to
O(n2 log n) in [2]. In their formulation, each job Ji has an arrival time ai, a workload Ri (which means the number of CPU
cycles this job needs in order to finish), and a deadline bi by which the job must be finished. We call these types of jobs
single interval jobs. If job Ji is run at speed s, then it needs Ri/s time to finish. They also assumed a speed to power function
P(s) = sα , where α ≥ 2 is a system constant (usually α = 3 according to the cubic-root rule). Their model allows the
processor speed to be set at any real value and any feasible schedule must guarantee that each job Ji is assigned enough CPU
cycles within its interval [ai, bi].
The seminal paper [1] mentioned above is about the scheduling problems in which each job has a single time interval.

There are also some works on the scheduling problem for jobs with multiple time intervals in a processor with constant
speed. In their multiple interval setting, a job has n (n > 1) disjoint time intervals. Such a job could be scheduled in any
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of its intervals. If the job is incomplete by the end of one of its intervals, the partial work done is lost. When it is scheduled
in a later interval, it has to restart from the very beginning. A job fails when it is still incomplete by the end of the last
interval. [3] investigated multiple interval model for unit length jobs and showed that the general problem is NP-complete,
but for a special case one can determine in polynomial time whether a feasible schedule exists. [4] proved the NP-hardness
of the problem of scheduling real-time jobs that have multiple feasible intervals. They presented an exponential optimal
algorithm, and gave some polynomial time heuristics. [5] and [6] considered how to find a schedule in which the number of
jobs completed in one of their feasible intervals is maximized. They showed that the maximization problem is NP-hard for
both non-preemptive and preemptive jobs, and presented two approximation algorithms for them respectively.
Practically, we observe that there exists another kind of multiple interval jobs as follows: A job with a required amount

of workload can be executed in certain discontinuous multiple time intervals (we call these intervals active intervals for
this job). The job is regarded finished when the sum of workload done in all active intervals achieves the requirement. Thus,
the consideration of energy efficient schedules for these types of jobs naturally arises. In this paper, we investigate how to
compute amin-energy schedule for jobswithmultiple active intervals. Different from [3–6], in our problem, the partialwork
is not lost by the end of one active interval and the processor we investigate can adjust its speed when executing jobs. We
present a polynomial time offline schedule to solve the problem as follows. First we find the critical interval set by adopting
a similar method proposed in [1] for single interval jobs, and then schedule the jobs whose intervals are totally included in
the critical interval set. For the first step, original methods for single interval jobs [1] needs exponential time and therefore
we find another way to calculate the results in polynomial time; for the second step, we observe that EDF scheduling policy,
which can guarantee the feasibility for the single interval jobs, cannot guarantee a feasible schedule for themultiple interval
jobs, therefore, we use Linear Programming to calculate a feasible schedule in polynomial time. More works investigating
different aspects of DVS can be found in [7–14].
The rest of this paper is organized as follows. Section 2 describes the model and gives some definitions. Section 3 gives a

polynomial time offline method for the min-energy scheduling problem of multiple interval jobs. Finally, we conclude the
paper in Section 4.

2. Preliminaries

We first describe the min-energy scheduling model. Since our model is similar to that described in [1], we adopt the
similar notation for consistency and modify slightly when necessary.
Let J be a set of jobs to be executed during time interval [0, 1]. Each job Jk ∈ J is characterized by parameters below.

• Tk: a set of time intervals in which Jk could be executed. We represent Tk as Tk =
⋃
16i6mk

[tk,i, t ′k,i] (0 ≤ tk,1 < t
′

k,1 <

· · · < tk,mk < t
′

k,mk
≤ 1),

• Rk: required number of CPU cycles.

If job Jk is run at constant speed s, then it needs
Rk
s time to finish its workload. A schedule S is a pair of functions

(s(t), job(t)) defined over [0, 1]where s(t) > 0 is the processor speed at time t and job(t) defines the job being executed at
time t (or idle if s(t) = 0). Both s(t) and job(t) are piecewise constant with finitely many discontinuities.

A feasible schedule for an instance J is a schedule S that satisfies
∑mk
i=1

∫ t ′k,i
tk,i s(t)δ(job(t), Jk)dt = Rk for all Jk ∈ J .

Here, δ(x, y) is 1 if x = y and 0 otherwise, and mk denotes the number of intervals in Tk. In other words, S must give
each job Jk the required number of cycles in its time intervals Tk (with perhaps intermittent execution). The total energy
consumed by a schedule S is E(S) =

∫ 1
0 P(s(t))dt , where power function P(s) is usually assumed to be P(s) = s

α .
Now we present the formalized definition of our scheduling problem below:
Given a job set J = {J1, J2, . . . , Jn}, in which each job Jk(1 6 k 6 n) requires Rk CPU cycles , and could be executed in a

given finite set of time intervals Tk =
⋃
16j6mk

[tk,j, t ′k,j] (tk,1 < t
′

k,1 < · · · < tk,mk < t
′

k,mk
,mk > 1), the objective is to find a

min-energy schedule S = (s(t), job(t)) where each job Jk (1 6 k 6 n) completes workload Rk within Tk.
We should compute both the optimal speed function s(t) and the related function job(t) which decides the job to be

executed at time t .

3. The offline energy optimal algorithm

We first give two definitions below.

Definition 1. Define the intensity of a set of intervals T to be g(T ) =
∑
Ri
|T | , where the summation is taken over all jobs Ji

with Ti ⊆ T .

Definition 2. Let T ∗ be a set of intervals that maximizes g(T ). We call T ∗ the critical interval set for J , and call the set of jobs
JT∗ = {Ji|Ti ⊆ T ∗} the critical group for J .

The algorithm we propose is quite similar to the algorithm proposed in [1] for single interval jobs. We proceed by
identifying the critical interval set for J, scheduling jobs whose intervals are totally included in the critical interval set, then
constructing a subproblem for the remaining jobs and solving it recursively. However, finding the critical interval set and
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Fig. 1. A 3-job set with 5 intervals and 8 pieces.

scheduling jobs within the critical interval set are no longer straightforward. Firstly, finding the critical interval set by
enumerating all the possible T will require exponential time because of the existence of jobs with multiple active intervals.
To overcome this, we find that zero-one fractional programming given in [15] can be specialized to solve our problem in
polynomial time. Secondly, even if the critical interval set is found, we observe that the commonly used scheduling policy
EDF could no longer guarantee a feasible schedule. Therefore,wepropose amethodbased on linear programming to generate
a feasible schedule in the critical interval set. The complete algorithm is given in Algorithm 1.

Algorithm 1 Optimal Schedule for Multiple interval Jobs
Input: a job set J
Output: Optimal Schedule S = (s(t), job(t))
while J 6= ∅ do
Find the critical interval set T ∗ using the method proposed in Section 3.1.
Schedule the critical group JT∗ using a linear programming method proposed in Section 3.2.
J ← J − JT∗
for all Jk ∈ J do
for i=1 tomk do
ak,i = ak,i − |T ∗ ∩ [0, ak,i]|.
bk,i = bk,i − |T ∗ ∩ [0, bk,i]|.

end for
end for

end while

3.1. Finding the critical interval set

We first process our model by dividing the time intervals into pieces, and then prove that finding a critical interval is in
fact a special case of zero-one fractional programming problem proposed in [15].
Given a job set J = {J1, J2, . . . , Jn}. Letmi be the number of time intervals of Ji, and there are altogether

∑n
i=1mi original

intervals in the input. Each interval has two endpoints. Viewing each endpoint of the intervals as a break point, we can divide
the time span [0, 1] into m (m 6 2 ·

∑n
i=1mi − 1) pieces. An instance consisting of 3 jobs with 5 intervals and 8 pieces is

shown in Fig. 1. Notice that the piece of time during which no jobs can be executed is not counted as a piece. We say a job Ji
is covered by a set of pieces if Ti is contained in the union of the set of pieces. We define the density of a set of pieces as the
total workload of the jobs covered by this set of pieces divided by the total length of the set of pieces. Then finding a critical
interval set can be interpreted as finding a set of pieces (intervals) with maximum density.
Now we describe the zero-one fractional programming problem proposed in [15].
Suppose f (x) > 0 and g(x) > 0 are given polynomials defined for all x = (x1, x2, . . . , xn) in L = {0, 1}n − {0}n.

f (x) =
∑
P∈A

aP
∏
i∈P

xi +
n∑
i=1

aixi

g(x) =
∑
Q∈B

bQ
∏
i∈Q

xi +
n∑
i=1

bixi

The sets A and B are given collections of non-empty non-singleton subsets of {1, . . . , n}, aP > 0 for each P ∈ A, and bQ 6 0
for each Q ∈ B. Since f (x) > 0 and g(x) > 0 for all x ∈ L, we have ai > 0 and bi > 0 for each i ∈ {1, . . . , n}. The objective is
to find x∗ such that:

λ(x∗) = max
x∈L
{λ(x) = f (x)/g(x)}

We observe that by some transformations we could specialize the zero-one fractional programming problem mentioned
above to the problem of finding the critical interval set.
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J1: 2

J2: 4

Ji:Ri

t
0 1/5 2/5 3/5 4/5 1

Fig. 2. A simple instance where EDF policy does not work.

Firstly, we specialize f (x) and g(x) a bit as follows by letting B = ∅ in g(x) and incorporating the second term into the
first term in f (x). Therefore, we only require P to be non-empty in the following formulation.

f (x) =
∑
P∈A

aP
∏
i∈P

xi

g(x) =
n∑
i=1

bixi

Given a minimum energy scheduling problem instance with jobs J = {J1, J2, . . . , Jn} and corresponding pieces {p1,
p2, . . . , pm}, we do the following mapping. For each piece pi, we map it to a variable xi and let bi be equal to the length
of pi. For each job Jk, we construct one element P in A which consists of all the pieces contained by the job and let aP = Rk.
Then xi = 1 means piece pi is chosen.
After the transformation, the problem of finding a set of intervals with maximum density becomes a special case of zero-

one fractional programming in [15]. Therefore, the set of intervals with maximum density can be computed in polynomial
time since zero-one fractional programming problem can be solved in polynomial time [15].

3.2. Scheduling the critical interval set

Even if the critical interval set of some cases is found, we may find that the commonly used scheduling policy EDF, which
can guarantee feasibility in the single interval setting, no longer guarantees a feasible schedule in the multiple interval
setting. A sample instancewith two jobs is shown in Fig. 2. The parameters are set as T1 = [ 15 ,

3
5 ], R1 = 2, T2 = [0,

2
5 ]∪[

3
5 , 1],

R2 = 4. We could easily find the critical interval set T ∗ = [0, 1], the critical group JT∗ = {J1, J2}, and the intensity g(T ∗) = 6.
There are two possible interpretation of EDF in the multiple interval setting. Firstly, if we treat the latest time a job can be
done as its deadline, then according to EDF, J2 should be executed for 15 unit of time first, then J1 for

1
3 unit. And then there is

not enough time left for executing the remaining workload of J2 using the speed 6 in [ 35 , 1]. Secondly, if we treat the ending
point of the current active interval as the deadline of a job, then J2 will be executed in [0, 25 ], which makes it impossible for
J1 to be finished in its remaining time [ 25 ,

3
5 ].

We find amethod to solve this problembased on Linear Programming (A similar one is first proposed by [16] for a different
problem setting). Given a job set Jwith the critical interval set T ∗, the critical group JT∗ , and the intensity g(T ∗), suppose that
JT∗ = {Jσ(1), Jσ(2), . . . , Jσ(k)}. And T ∗ is divided intom′ pieces p′1, p

′

2, . . . , p
′

m′ using arrival times and deadlines of jobs in JT∗ .
Suppose the length of the piece p′j is lj.
We can formulate the scheduling problem in the critical interval set T ∗ into the following linear program:

max 1
m′∑
j=1
xi,j =

Ri
g(T∗) , i=1, 2, . . . , k

k∑
i=1
xi,j = lj, j=1, 2, . . . , m’

xi,j > 0, if Tσ(i) ∩ p′j 6= ∅
xi,j = 0, if Tσ(i) ∩ p′j = ∅

Here, xi,j represents the length of time assigned to Jσ(i) in piece p′j . Because g(T
∗) is the maximum speed needed in the

optimal schedule, the above LP will have a feasible solution.

3.3. Optimality proof

In [7], Bansal et al. proved the optimality of YDS proposed in [1] which deals with tasks with single active interval. They
gave an elegant proof by modeling the optimization problem as a convex program. Since our problem also fits into their
convex program formulation, their optimality proof can also be used for our problem. We briefly state the proof as follows.

Theorem 1. Algorithm 1 can compute the optimal schedule in polynomial time.
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Proof. We first show how to express themin-energy scheduling problem for jobs withmultiple active intervals as a convex
program, and then show that the schedule computed by Algorithm 1 is exactly the solution to this convex program.
To state the energy minimization problem as a convex program, we break time into intervals (pieces) p1, p2, . . . , pm at

release times and deadlines of the tasks t0, . . . , tm as shown in Section 3.1 (Any time period where no jobs are available will
be removed before we break the time into pieces and this will not affect the optimality of schedules). Let J(i) be the tasks
that can be executed during the time interval pi = [ti, ti+1], and J−1(j) be the index of intervals during which task Jj can be
feasibly executed. We introduce a variable wi,j , for Jj ∈ J(i), that represents the work done on task Jj during time [ti, ti+1].
The convex program is then:

min E (1)

Rj ≤
∑
i∈J−1(j)

wi,j j=1, 2, . . . , n (2)

m∑
i=1


∑
Jj∈J(i)

wi,j

ti+1 − ti


α

(ti+1 − ti) ≤ E (3)

wi,j ≥ 0 i=1, 2, . . . , m, Jj ∈ J(i) (4)

It is easy to verify that program is convex. By applying KKT conditions to this program (for more details, please refer to
[7]), we can conclude that a sufficient condition for a primal feasible solution to be optimal is that:

• For each task Jj, the processor runs at the same speed, say sj, in all intervals pi in which task Jj is run.
• The processor runs at speed no less than sj during intervals pi where Jj ∈ J(i) and task Jj is not run.

Algorithm 1 obviously has these properties and hence is optimal.

4. Conclusion

This paper mainly investigates the min-energy scheduling problem of jobs with multiple active intervals. Different from
the previous investigations, in our problem, the partial work done in one interval remains valid and the job only needs to
complete the remaining workload in its subsequent active intervals in order to be completed. We show that this problem
is polynomial time solvable using a similar algorithmic framework proposed by [1] for single interval jobs, while new
techniques need to be used in the major two phases of the algorithm.

Acknowledgements

The first and the second author were supported by a grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China [project No. CityU 117408]. The third author was supported by National Natural Science
Foundation of China (grant no. 60775037) and the National High Technology Research and Development Program of China
(863 Program) (grant no. 2009AA01Z123).

References
[1] F. Yao, A. Demers, S. Shenker, A schedulingmodel for reduced CPU energy, in: Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, FOCS, 1995, pp. 374–382.

[2] M. Li, A.C. Yao, F.F. Yao, Discrete and continuous min-energy schedules for variable voltage processors, in: Proceedings of the National Academy of
Sciences of USA, vol. 103, 2006, pp. 3983–3987.

[3] B. Simons, M. Sipser, On scheduling unit-length jobs with multiple release time/deadline intervals, Operations Research 32 (1) (1984) 80–88.
[4] C.S. Shih, J.W.S. Liu, I.K. Cheong, Scheduling jobswithmultiple feasible intervals, in: Proceedings of IEEE Real-Time and Embedded Computing Systems
and Applications, 2003, pp. 53–71.

[5] J.J. Chen, J. Wu, C.S. Shih, T.W. Kuo, Approximation algorithms for scheduling multiple feasible interval jobs, in: Proceedings of RTCSA’05, 2005, pp.
11–16.

[6] J.J. Chen, J. Wu, C.S. Shih, Approximation algorithms for scheduling real-time jobs with multiple feasible intervals, in: Real-Time Systems, 2006,
pp. 155–172.

[7] N. Bansal, T. Kimbrel, K. Pruhs, Speed scaling to manage energy and temperature, Journal of the ACM 54 (1) (2007) Article No. 3.
[8] G. Quan, X.S. Hu, Energy efficient fixed-priority scheduling for hard read-time systems, in: Proceedings of the 36th Conference on Design Automation,
1999, pp. 134–139.

[9] H.S. Yun, J. Kim, On energy-optimal voltage scheduling for fixed-priority hard real-time systems, ACM Transactions on Embedded Computing Systems
2 (3) (2003) 393–430.

[10] W. Kwon, T. Kim, Optimal voltage allocation techniques for dynamically variable voltage processors, in: Proceedings of the 40th Conference on Design
Automation, 2003, pp. 125–130.

[11] M. Li, F. Yao, An efficient algorithm for computing optimal discrete voltage schedules, SIAM Journal on Computing 35 (3) (2005) 658–671.
[12] H.L. Chan, W.T. Chan, T.W. Lam, L.K. Lee, K.S. Mak, P.W.H.Wong, Energy efficient online deadline scheduling, In: Proceedings of the Eighteenth Annual

ACM–SIAM Symposium on Discrete Algorithms, 2007 pp. 795–804.
[13] N. Bansal, H.L. Chan, T.W. Lam, L.K. Lee, Scheduling for speed bounded processors, in: Proceedings of the 35th International Colloquium on Automata,

Languages and Programming, 2008, pp. 409-420.
[14] N. Bansal, H.L. Chan, K. Pruhs, Speed scaling with an arbitrary power function, in: Proceedings of the Twentieth Annual ACM–SIAM Symposium on

Discrete Algorithms, 2009, pp. 693–701.
[15] G. Gallo, M.D. Grigoriadis, R.E. Tarjan, A fast parametric maximum flow algorithm and applications, SIAM Journal on Computing 18 (1989) 30–55.
[16] R. Sugihara, R.K. Gupta, Scheduling under location and time constraints for data collection in sensor networks, in: 28th IEEE Real-Time Systems

Symposium, RTSS (work-in-progress session), Tucson, Dec. 2007.


