# Discrete and Continuous Min-Energy Schedules for Variable Voltage Processors\*

Minming Li <sup>†</sup> Andrew C. Yao <sup>‡</sup> Frances F. Yao<sup>§</sup>

#### Abstract

Current dynamic voltage scaling techniques allow the speed of processors to be set dynamically in order to save energy consumption, which is a major concern in microprocessor design. A theoretical model for min-energy job scheduling was first proposed a decade ago, and it was shown that for any convex energy function, the min-energy schedule for a set of n jobs has a unique characterization and is computable in  $O(n^3)$  time. This algorithm has remained as the most efficient known despite many investigations of this model. In this paper we give a new algorithm with running time  $O(n^2 \log n)$  for finding the min-energy schedule. In contrast to the previous algorithm which outputs optimal speed levels from high to low iteratively, the new algorithm is based on finding successive approximations to the optimal schedule. At the core of the approximation is an efficient partitioning of the job set into high and low speed subsets by any speed threshold, without computing the exact speed function.

keywords scheduling, energy efficiency, variable voltage processor, dynamic voltage scaling, optimization

## 1 Introduction

Advances in processor, memory, and communication technologies have contributed to the tremendous growth of portable electronic devices. As such devices are typically powered by batteries, energy efficiency has become a critical issue. An important strategy to achieve energy saving is via *dynamic voltage scaling (DVS)* (or *speed scaling)*, which enables a processor to operate at a range of voltages and frequencies. Since energy consumption is at least a quadratic function of the supply voltage (hence CPU frenquency/speed), it saves energy to execute jobs as slowly as possible while still satisfying all timing constraints. The associated scheduling problem is referred to as min-energy DVS scheduling.

<sup>\*</sup>This work is supported in part by Research Grants Council of Hong Kong under grant No. CityU 122105, National Natural Science Foundation of China under Grant No. 60135010, 60321002 and 60553001 and the Chinese National Key Foundation Research & Development Plan (2004CB318108).

<sup>†</sup>State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing, China (liminming98@mails.tsinghua.edu.cn).

<sup>&</sup>lt;sup>‡</sup>Corresponding Author, Center for Advanced Study, Tsinghua University, Beijing, China (andrewcyao@tsinghua.edu.cn).

<sup>§</sup>Department of Computer Science, City University of Hong Kong (csfyao@cityu.edu.hk).

A theoretical study of speed scaling scheduling was initiated by Yao, Demers and Shenker [1]. They formulated the DVS scheduling problem and gave an  $O(n^3)$  algorithm for computing the optimal schedule<sup>1</sup>. No special restriction was put on the power consumption function except convexity. To achieve optimality, it is assumed the processor speed may be set at any real value. This model will be referred to as the *continuous* model.

In practice, variable voltage processors can run at only a finite number of preset speed levels, although such number is increasing fast. (For example, the new *Foxon* technology will soon enable Intel server chips to run at 64 speed grades.) One can capture the discrete nature of the speed scale with a corresponding *discrete* scheduling model. It was observed in [2] that an optimal discrete schedule for a job set can be obtained simply as follows: (1) construct the optimal continuous schedule, and (2) individually adjust the "ideal" speed of each job by mapping it to the nearest higher and lower speed levels. The complexity of such an algorithm is thus the same as the continuous algorithm. Recently it was shown in [3] that the first step could be bypassed in a more efficient  $O(dn \log n)$  algorithm where d is the number of speed levels. The algorithm works by directly partitioning the job set into two subsets (referred to as a bi-partition), those requiring speed  $\geq s$  and < s, respectively, for any specific speed level s.

In this paper we present improved algorithms for both the continuous and the discrete DVS scheduling problems. We first derive a sharper characterization of job set bi-partition than that given in [3], which leads to an effective  $O(n \log n)$  partitioning algorithm. Although the time complexity is the same as that achieved in [3], the new partitioning algorithm is much simpler to implement. We then use it to construct the continuous optimal schedule via successive approximations in an  $O(n^2 \log n)$  algorithm. It is the first improvement over the long-standing  $O(n^3)$  bound for the above problem.

Prior work directly related to the present paper includes those papers cited above and an efficient algorithm for the (continuous) optimal schedule when job sets are structured as trees [4]. On-line algorithms have been studied in [1] [4] [5]. For an up-to-date survey on research in power/temperature management, we refer the readers to a recent article [6].

The remainder of the paper is organized as follows. We give the problem formulation and review some basic properties of the optimal continuous schedule in Section 2. Section 3 describes an  $O(n \log n)$  algorithm for job partitioning by any speed level, which forms the core of the new scheduling algorithm. We then apply the partitioning algorithm to construct optimal schedules in Section 4. Some concluding remarks are given in Section 5.

# 2 Background

Each job  $j_k$  in a job set J over [0,1] is characterized by three parameters: arrival time  $a_k$ , deadline  $b_k$ , and required number of CPU cycles  $R_k$ . We also refer to  $[a_k, b_k] \subseteq [0,1]$  as the interval of  $j_k$ , and assume without loss of generality that  $a_k < b_k$ , and  $\bigcup_k [a_k, b_k] = [0,1]$  (or J spans [0,1]). A schedule S for J is a pair of functions (s(t), job(t)) which defines, respectively, the processor speed and the job being executed at time t. Both functions are assumed to be piecewise continuous with finitely many

<sup>&</sup>lt;sup>1</sup>The complexity of the algorithm was said to be further reducible in [1], but that claim has since been withdrawn.

discontinuities. A feasible schedule must give each job its required number of cycles between arrival time and deadline (with perhaps intermittent execution). We assume that the power P, or energy consumed per unit time, is a convex function of the processor speed. The total energy consumed by a schedule S is  $E(S) = \int_0^1 P(s(t))dt$ . The goal of the min-energy scheduling problem is to find, for any given job set J, a feasible schedule that minimizes E(S). We refer to this problem as the DVS scheduling (or sometimes continuous DVS scheduling to distinguish it from the discrete version below).

In the discrete version of the problem, we assume that the processer can run at d clock speeds  $s_1 > s_2 > ... > s_d$ . The goal is to find a minimum-energy schedule for a job set using only these speeds. We may assume that, in each problem instance, the highest speed  $s_1$  is always fast enough to guarantee a feasible schedule for the given jobs. We refer to this problem as *Discrete DVS* scheduling.

For the continuous DVS scheduling problem, the optimal schedule  $S_{opt}$  can be characterized using the notion of a *critical interval* for J, which is an interval I in which a group of jobs must be scheduled at maximum constant speed g(I) in any optimal schedule for J. The algorithm proceeds by identifying such a critical interval I, scheduling those 'critical' jobs at speed g(I) over I, then constructing a subproblem for the remaining jobs and solving it recursively. The details are given below.

**Definition 1.** For any interval  $I \subseteq [0,1]$ , denote by  $J_I$  the subset of all jobs in J whose intervals are completely contained in I. The intensity of an interval I is defined to be  $g(I) = (\sum_{j_k \in J_I} R_k)/|I|$ .

An interval  $I^*$  achieving maximum g(I) over all possible intervals I defines a critical interval for the current job set. It is not hard to argue that the subset of jobs  $J_{I^*}$  can be feasibly scheduled at speed  $g(I^*)$  over  $I^*$  by the EDF (earliest deadline first) principle. That is, at any time t, a job which is available for execution and having earliest deadline will be executed during  $[t, t + \epsilon]$ . (Among jobs with the same deadline, the tie is broken by some fixed rule, say by the ordering of job indices. We refer to the resulting linear order as EDF order.) The interval  $I^*$  is then removed from [0,1]; all remaining job intervals  $[a_k, b_k]$  are updated to reflect the removal, and the algorithm recurses. The complete algorithm is give in Algorithm 1. We note that the optimal speed function  $s_{opt}$  for a job set is in fact unique.

Let  $CI(i) \subseteq [0,1]$  denote the *i*th critical interval of J, and  $J_{CI(i)}$  the set of jobs executed during CI(i). The following lemma is a direct consequence of the way critical intervals are successively selected.

**Lemma 1.** A job  $j_k \in J$  belongs to  $\bigcup_{i=1}^m J_{CI(i)}$  if and only if its interval satisfies  $[a_k, b_k] \subseteq \bigcup_{i=1}^m CI(i)$ .

A special tool, called s-schedules, was introduced in [3] which can provide useful information regarding the optimal speed function for J without explicitly computing it. The new algorithms will also make use of s-schedules. For easy reference, we give the relevant definitions and properties below.

**Definition 2.** For any constant s, the s-schedule for J is an EDF schedule which uses constant speed s in executing any jobs of J. In general, s-schedules may have idle periods or unfinished jobs.

**Definition 3.** In a schedule S, a maximal subinterval of [0,1] devoted to executing the same job  $j_k$  is called an execution interval for  $j_k$  (with respect to S). Denote by  $I_k(S)$  the union of all execution

### Algorithm 1 Basic Optimal Voltage Schedule (BOVS)

```
Input: job set J

Output: optimal voltage schedule S for J

repeat

Select I^* = [z, z'] with g(I^*) = \max g(I)

Schedule j_i \in J_{I^*} at g(I^*) over I^* by EDF policy

J \leftarrow J - J_{I^*}

for all j_k \in J do

if b_k \in [z, z'] then

b_k \leftarrow z

else if b_k \geq z' then

b_k \leftarrow b_k - (z' - z)

end if

Reset arrival times a_k similarly

end for

until J is empty
```

intervals for  $j_k$  with respect to S. Execution intervals with respect to the s-schedule will be called s-execution intervals.

It is easy to see that the s-schedule for n jobs will contain at most 2n s-execution intervals, since the end of each execution interval (including an idle interval) corresponds to the moment when either a job is finished or a new job arrives. Also, the s-schedule can be computed in  $O(n \log n)$  time by using a priority queue to keep track of all jobs currently available, prioritized by deadlines.

The next lemma says that monotone relations between two speed functions for a job set J can induce certain monotone relations between the corresponding EDF schedules. These monotone properties will be useful when we study partitions of a job set by some speed threshold in Section 3.

**Definition 4.** Let  $S_1$  and  $S_2$  be two EDF schedules for J with speed functions  $s_1(t)$  and  $s_2(t)$ , respectively. We say  $S_1$  dominates  $S_2$  if  $s_1(t) \geq s_2(t)$  for all t whenever  $S_1$  is not idle. We say  $S_1$  strictly dominates  $S_2$  if  $s_1(t) > s_2(t)$  for all t whenever  $S_1$  is not idle.

**Lemma 2.** [3] Let  $J = \{j_1, \ldots, j_n\}$  by EDF ordering. Suppose  $S_1$  and  $S_2$  are two EDF schedules for J such that  $S_1$  dominates  $S_2$ .

- 1) For any t and any job  $j_k$ , the workload of  $j_k$  executed by time t under  $S_1$  is always no less than that under  $S_2$ .
- 2)  $\bigcup_{k=1}^{i} I_k(S_1) \subseteq \bigcup_{k=1}^{i} I_k(S_2)$  for any  $i, 1 \leq i \leq n$ .
- 3) Suppose job  $j_k$  is finished at time  $t_0$  under  $S_2$ . Then under  $S_1$ , job  $j_k$  will be finished no later than  $t_0$  and, if the dominance is strict, be finished strictly earlier than  $t_0$ .
- 4) If  $S_2$  is a feasible schedule for J, then so is  $S_1$ .

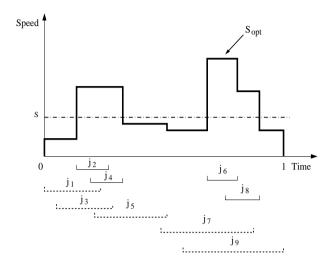


Figure 1: The s-partition for a sample J. The jobs are represented by their intervals only, and sorted according to deadline. Solid intervals represent jobs belonging to  $J^{\geq s}$ , while dashed intervals represent jobs belonging to  $J^{< s}$ .

## 3 Bi-Partition of Jobs by Speed Threshold

We describe a procedure which, for any given speed threshold s, can properly separate J into two subsets: those jobs using speeds higher than s, and those jobs using speeds lower than s, respectively, in the optimal schedule. This procedure forms the core of our new min-energy scheduling algorithms. The basic ideas of such a partition and a corresponding algorithm were give in [3]. Here we will derive stronger characterizations which then lead to a simpler algorithm.

**Definition 5.** Given a job set J and any constant s, let  $J^{\geq s}$  and  $J^{< s}$  denote the subsets of J consisting of jobs whose executing speeds are  $\geq s$  and < s respectively in the (continuous) optimal schedule of J. We refer to the partition  $\langle J^{\geq s}, J^{< s} \rangle$  as the s-partition of J.

Let  $T^{\geq s} \subseteq [0,1]$  be the union of all critical intervals CI(i) with execution speed  $\geq s$ . By Lemma 1, a job  $j_k$  is in  $J^{\geq s}$  if and only if its interval  $[a_k,b_k]\subseteq T^{\geq s}$ . Thus  $J^{\geq s}$  is uniquely determined by  $T^{\geq s}$ . We refer to  $\langle T^{\geq s},T^{< s}\rangle$  where  $T^{< s}=[0,1]-T^{\geq s}$  as the s-partition of J by time.

An example of J with 9 jobs is given in Figure 1, together with its optimal speed function  $S_{opt}(t)$ . The portion of  $S_{opt}(t)$  lying above or exactly on the horizontal line Y = s projects to  $T^{\geq s}$  on the time-axis. In general,  $T^{\geq s}$  may consist of a number of connected components.

We compute the partition  $\langle T^{\geq s}, T^{< s} \rangle$  by finding the individual connected components of  $T^{\geq s}$  and  $T^{< s}$ , respectively. Label the connected components of  $T^{\geq s}$  in right-to-left order as  $\langle T_1^{\geq s}, T_2^{\geq s}, \ldots \rangle$ , and label those of  $T^{< s}$  similarly as  $\langle T_1^{< s}, T_2^{< s}, \ldots \rangle$ . The cardinalities of these two sets differ by at most one. For ease of notation we make their cardinalities equal by creating, if necessary, an empty

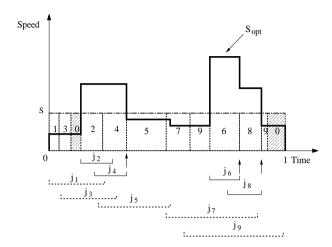


Figure 2: The s-execution intervals for the same J in Fig. 1 are illustrated. Index k indicates that job  $j_k$  is being executed, while index 0 indicates a gap (idle time). Arrows point to tight deadlines.

rightmost component for  $T^{\geq s}$  of the form [1, 1], and/or an empty leftmost component for  $T^{< s}$  of the form [0, 0]. Hence we can represent these connected components with a sequence of 2p+1 numbers of the form  $\langle 0 = B_{p+1} \leq A_p < B_p < \cdots < A_1 \leq B_1 = 1 \rangle$ , such that  $T_i^{\geq s} = [A_i, B_i]$  and  $T_i^{< s} = [B_{i+1}, A_i]$ , for  $1 \leq i \leq p$ .

The following lemma shows some close relationships between the s-schedule for J and the s-partition of J.

**Lemma 3.** In the s-schedule for J,

- (1) all jobs executed during  $T^{< s}$  belong to  $J^{< s}$ ,
- (2) all jobs executed during  $T^{\geq s}$  belong to  $J^{\geq s}$ .

Proof. Statement (1) is obvious since all jobs belonging to  $J^{\geq s}$  have intervals disjoint from  $T^{< s}$ , hence will not be executed during  $T^{< s}$ . To prove (2), we consider any component  $T_i^{\geq s} = [A_i, B_i]$  of  $T^{\geq s}$ . All jobs  $j_k$  of  $J^{< s}$  with deadlines  $b_k \leq B_i$  will have been finished by time  $A_i$  under  $S_{opt}$ ; thus by Lemma 2 they will also have been finished by time  $A_i$  under the s-schedule. (Note that statement (1) allows us to compare the s-schedule with  $S_{opt}$  for the same job set  $J^{< s}$ .) Therefore such jobs will not be executed during  $T_i^{\geq s}$ . The same is also true for jobs of  $J^{< s}$  with deadlines  $> B_i$ . The latter claim can be proved by comparing the s-schedule with  $S_{opt}$  for the job set  $J_i^{\geq s}$  consisting of jobs whose intervals are contained in  $T_i^{\geq s}$ . Note that schedule  $S_{opt}$  executes  $J_i^{\geq s}$  without idle time during  $T_i^{\geq s}$ . It follows from Lemma 2 that, during  $T_i^{\geq s}$  the s-schedule will also execute  $J_i^{\geq s}$  without idle time, and hence will not execute any jobs with deadlines  $> B_i$ . This proves the lemma.

We construct the s-partition by inductively finding the rightmost pair of components  $\{T_1^{\geq s}, T_1^{< s}\}$ ,

remove them from [0,1], and then repeat the process. It identifies  $T_1^{\geq s} = [A_1, B_1]$  and  $T_1^{< s} = [B_2, A_1]$  by locating their boundary points  $B_2$ ,  $A_1$  and  $B_1$  through some special characteristics that we discuss in the following.

**Definition 6.** In the s-schedule for J, we say a job deadline  $b_i$  is tight if job  $j_i$  is either unfinished at time  $b_i$ , or it is finished just on time at  $b_i$ . An idle execution interval in the s-schedule is called a gap. Note that a gap must be of the form [t,a] where t < a and t corresponds to the end of the final execution block of some job, while a corresponds to a job arrival or a = 1. We also include a special execution interval [0,0] at the beginning of the s-schedule and regard it as a gap.

Figure 2 depicts the s-schedule for the sample job set J given in Figure 1. An s-execution interval indexed by k indicates that job  $j_k$  is being executed, except when k=0 which indicates a gap (idle interval). The tight deadlines are marked by arrows. By examining the s-partition of time  $\langle T^{\geq s}, T^{< s} \rangle$  for J, we notice that 1) tight deadlines exist only in  $T^{\geq s}$ , and 2) each connected component of  $T^{\geq s}$  ends with a tight deadline. The following lemma from [3] states that these properties always hold for any job set.

**Lemma 4.** [3] 1) Tight deadlines do not exist in  $T^{\leq s}$ . 2) The right endpoint  $B_i$  of  $T_i^{\geq s} = [A_i, B_i]$  must be a tight deadline for  $2 \leq i \leq p$ .

**Definition 7.** Given a gap [t, a] in an s-schedule, we define the expansion of [t, a] to be the smallest interval  $[b, a] \supseteq [t, a]$  where b is a tight deadline (see Figure 3). To ensure that the expansion of a gap always exists, we adopt the convention that 0 is considered a tight deadline. In particular, the expansion of the special gap [0, 0] is [0, 0] itself.

```
Lemma 5. (1) Gaps do not exist within T_1^{\geq s}.

(2) T_1^{\leq s} = [B_2, A_1] must end with a gap.

(3) T_1^{\leq s} = [B_2, A_1] corresponds to the expansion of the rightmost gap in the s-schedule.
```

Proof. Property (1) was already established in the proof of Lemma 3. For (2), we can compare the s-schedule with  $S_{opt}$  over  $T^{<s}$  by considering only those jobs in  $J^{<s}$ , based on Lemma 3. Since the s-schedule strictly dominates  $S_{opt}$  over  $T^{<s}$ , Lemma 2 implies that the last job executed by the s-schedule within  $T_1^{<s}$  must be finished strictly earlier than by  $S_{opt}$ . Hence there must be a gap at the end of  $T_1^{<s}$ . Property (3) then follows from (2) and the second property of Lemma 4.

Note that Lemma 5 only asserts the existence of gaps in  $T_1^{< s}$ , but not in  $T_i^{< s}$  for  $i \geq 2$ . This is because the s-schedule may keep itself fully occupied during  $T_i^{< s}$  for  $i \geq 2$  by executing jobs of  $J^{< s}$  ahead of the  $S_{opt}$  schedule. Thus in the s-schedule for J, only the rightmost component  $T_1^{< s}$  of  $T^{< s}$  will surely contain gaps.

Lemma 6 below provides the basis for an inductive approach to construct the s-partition, whereby successive pairs of connected components  $\{T_i^{\geq s}, T_i^{< s}\}$  will be found for  $1 \leq i \leq p$ . In the *i*th iteration, certain job subsets (to be defined next) associated with the pair of components just found will be deleted from J. Lemma 7 shows that the required updates to the s-schedule (the main data structure used by the algorithm) in order to reflect the removal of jobs are quite straightforward.

**Definition 8.** Let  $J_i^{\geq s}$  denote the subset of all jobs in J whose intervals are completely contained in  $T_i^{\geq s}$ }. Let  $J_i^{< s}$  denote the subset of all jobs in J whose intervals have nonempty intersections with  $T_i^{< s}$ , but have empty intersections with each of  $\{T_1^{< s}, \ldots, T_{i-1}^{< s}\}$ .

**Lemma 6.** Let  $J' = J - J_1^{\geq s} - J_1^{< s}$ . The s-partition of job set J' is consistent with the s-partition of job set J. That is, a job in J' has speed < s in the optimal schedule for J' if and only it has speed < s in the optimal schedule for J.

Proof. We claim that (1) the optimal speed function of J' coincides with the optimal speed function of J for all jobs in  $J_2^{\geq s}, \ldots, J_{i-1}^{\geq s}$  and (2) all jobs in  $J^{< s} - J_1^{< s}$  have speeds < s in the optimal speed function of J'. Firstly, the deletion from J of all jobs in  $J_1^{\geq s}$  (whose intervals are contained in  $T_1^{\geq s}$ ) will not affect the optimal speed for any job in the remaining  $J_i^{\geq s}$  (whose intervals are contained in  $T_i^{\geq s}$  which is disjoint from  $T_1^{\geq s}$ ), by the way the intensity function g(I) is defined. Secondly, the deletion of jobs in  $J_1^{< s}$  clearly will not change the optimal speed for any job in  $J^{\geq s}$ . Thus (1) is true. To prove (2), consider the speeds  $m_1$  and  $m_2$ , defined as the highest speeds used by any job of  $J^{< s} - J_1^{< s}$  in the optimal schedules for J and for J', respectively. By definition  $m_1 < s$ . Then, by examining the way the highest intensity  $g(I^*)$  is selected for jobs in  $J^{< s} - J_1^{< s}$ , and using similar arguments as for (1), it is easy to see that  $m_2 \leq m_1 < s$ . This proves (2) and hence the lemma.  $\square$ 

**Lemma 7.** Let  $J = \{j_1, \ldots, j_n\}$  by EDF ordering. For any m < n, the s-schedule for the job set  $J' = \{j_1, \ldots, j_m\}$  can be obtained from the s-schedule of J by simply changing the execution intervals of each job in  $\{j_{m+1}, \ldots, j_n\}$  into idle intervals (i.e., gaps).

The above lemma is easy to prove by induction on m. Finally, the s-partition can be obtained by combining the subsets that have been identified.

**Lemma 8.** (1) 
$$J^{\geq s} = \bigcup_{i=1}^{p} J_i^{\geq s}$$
. (2)  $J^{< s} = \bigcup_{i=1}^{p} J_i^{< s}$ .

Proof. By Lemma 1, a job  $j_k \in J^{\geq s}$  if and only if its interval  $[a_k, b_k] \subseteq T^{\geq s}$ , or equivalently, if and only if  $[a_k, b_k] \subseteq T_i^{\geq s}$  for one of the connected components  $T_i^{\geq s}$  of  $T_i^{\geq s}$ . This proves (1). For (2), note that  $j_k \in J^{< s}$  if and only if its interval  $[a_k, b_k] \cap T^{< s} \neq \emptyset$ , hence if and only if  $j_k \in J_i^{< s}$  for some i,  $1 \leq i \leq p$ .

The detailed algorithm for generating the s-partition is given in Algorithm 2 below.

**Theorem 1.** Algorithm 2 finds the s-partition  $\langle J^{\geq s}, J^{< s} \rangle$  for a job set J in  $O(n \log n)$  time.

Proof. The algorithm uses the characterizations given in Lemmas 4 and 5 to locate the boundary points  $B_{i+1}, A_i$ , and  $B_i$  for components  $T_i^{\geq s}$  and  $T_i^{< s}$ . It then identifies the jobs belonging to  $J_i^{\geq s}$  or to  $J_i^{< s}$ , and removes them from J. Lemma 6 guarantees that the above process indeed finds all components  $T_i^{\geq s}$  and  $T_i^{< s}$  correctly. The desired s-partition is obtained by taking unions according to Lemma 8. We now analyze the time complexity of the algorithm. Generating the initial s-schedule takes  $O(n \log n)$  time. The remaining computation can be done in O(n) time with appropriate data structures. One can use a linked list to represent the s-schedule, and linked sublists to represent the

## Algorithm 2 Bi-Partition

```
Input: speed s, and job set J
Output: s-partition \langle J^{\geq s}, J^{< s} \rangle of J
    Sort jobs into j_1, \ldots, j_n by EDF ordering
    Generate the s-schedule for J
    i \leftarrow 0
    M \leftarrow n
   b_0 \leftarrow 0 \\ B_1 \leftarrow 1
    repeat
       i \leftarrow i+1
       take the rightmost gap [t, a] and find the expansion [b, a] of [t, a]
       A_i \leftarrow a (this defines component T_i^{\geq s} = [A_i, B_i])

B_{i+1} \leftarrow b (this defines component T_i^{< s} = [B_{i+1}, A_i])
       while b_M > A_i do
           if a_M \ge A_i then add j_M to J_i^{\ge s}
               add j_M to J_i^{< s}
           end if
           remove j_M from J
           M \leftarrow M-1
       end while
       while b_M > B_{i+1} do
           add j_M to J_i^{< s}
           remove j_M from J
           M \leftarrow M-1
       end while
    \mathbf{until}\ M=0
   J^{\geq s} \leftarrow J_1^{\geq s} \cup \cdots \cup J_i^{\geq s}
J^{< s} \leftarrow J_1^{< s} \cup \cdots \cup J_i^{< s}
Return \langle J^{\geq s}, J^{< s} \rangle
```

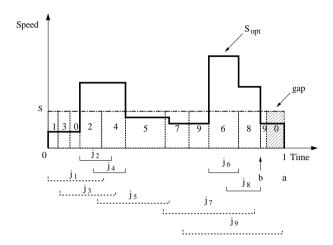


Figure 3: Gap expansion: the indicated gap will be expanded into [b,a], a connected component of  $T^{\leq s}$ .

s-execution intervals for every job. Each execution interval and each job interval are examined only a constant number of times, since all pointers used in the algorithm make a single pass from right to left. Therefore the total running time of the algorithm is  $O(n \log n)$ .

# 4 New Scheduling Algorithms

We now apply Algorithm Bi-Partition to the computation of optimal schedules. We will discuss the continuous case and the discrete case separately in the following two subsections.

## 4.1 Continuous Case

For a job set J, define the support T of J to be the union of all job intervals in J. Define avr(J), the average rate of J to be the total workload of J divided by |T|. We will use avr(J) as the speed threshold to perform a bi-partition on J which, according to the next lemma, produces two nonempty subsets unless  $S_{opt}(t)$  is constant for J.

**Lemma 9.** Let s = avr(J). Then  $T^{\geq s} \neq \emptyset$  if  $J \neq \emptyset$ . Furthermore, the following three conditions are equivalent.

- (1)  $T^{< s} = \emptyset$
- (2)  $T^{\geq s} = T$
- (3)  $S_{opt}(J) = s \text{ over } T.$

Proof. (1) and (2) are obviously equivalent as  $T^{\geq s} \cup T^{< s} = T$ . Since  $\int_T S_{opt} dt = \int_T s dt = \sum R_k$ , we have  $\int_{T^{\geq s}} (S_{opt} - s) dt = \int_{T^{< s}} (s - S_{opt}) dt$ . If (1) is true then  $\int_{T^{< s}} (s - S_{opt}) dt = 0$ , which implies  $\int_{T^{\geq s}} (S_{opt} - s) dt = 0$ , hence  $S_{opt}(J) = s$  over  $T^{\geq s}(=T)$  and (3) is true. Conversely, (3) implies (1) by the definition of  $T^{< s}$ . This proves that (1) and (3) are equivalent.

## Algorithm 3 Partitioned Optimal Voltage Schedule (POVS)

```
Input: job set J
Output: (Continuous) optimal voltage schedule S_{opt} for J

if J = \emptyset then
return
end if
s \leftarrow avr(J)
\langle J^{\geq s}, J^{< s} \rangle \leftarrow Bi\text{-}Partition(J, s)

if T^{< s} = \emptyset then
return the s-schedule over T
else
return the union of schedules POVS(J^{\geq s}, T^{\geq s}) and POVS(J^{< s}, T^{< s})
end if
```

**Theorem 2.** Algorithm 3 computes a (continuous) optimal voltage schedule for a job set J in  $O(n^2 \log n)$  time.

*Proof.* The correctness of Algorithm 3 follows from Theorem 1 and Lemma 9. The process of repeated partitions can be represented by a binary tree where each internal node v corresponds to a bi-partition. After initially sorting the job arrivals and deadlines, the cost of the bi-partition at each node v is  $O(n \log n)$  in the size of the subtree at v by Theorem 1. The sum over all internal nodes is  $O(P \log n)$  where P is the total path lengths of the tree and is at most  $O(n^2)$ . Hence, the time complexity of the algorithm is  $O(n^2 \log n)$ .

## 4.2 Discrete Case

By applying Algorithm 2 repeatedly, one can partition J into d subsets corresponding to d speed levels in time  $O(dn \log n)$ . We can then schedule the jobs in each subset  $J_i$  with speed levels  $s_i$  and  $s_{i+1}$  by applying a two-level scheduling algorithm given in [3]. The latter algorithm, when given a set J of n jobs and two speed levels s > s' that are known to satisfy  $s > s_{opt}(t) \ge s'$  for all t, can compute the optimal schedule for J with discrete speed levels s and s' in  $O(n \log n)$  time. We incorporate these two steps in a single loop as shown in Algorithm 4 below. Algorithm 4 is simpler than the discrete scheduling algorithm given in [3] although the time complexity  $O(dn \log n)$  is the same. We also remark that an  $\Omega(n \log n)$  lower bound in the algebraic decision tree model was proven in [3] for the discrete DVS scheduling problem. Hence Algorithm 4 has optimal complexity if d is considered a fixed constant.

### Algorithm 4 Discrete Optimal Voltage Schedule (DOVS)

```
Input: job set J speed levels: s_1 > s_2 > \ldots > s_d > s_{d+1} = 0 Output: Discrete Optimal Voltage Schedule for J for i=1 to d do Obtain J^{\geq s_{i+1}} from J using Algorithm 2 J_i \leftarrow J^{\geq s_{i+1}} Schedule jobs in J_i using two-level scheduling algorithm given in [3] with speeds s_i and s_{i+1} J \leftarrow J - J_i Update J as in Algorithm 1 end for The union of the schedules gives the optimal Discrete DVS schedule for J
```

## 5 Conclusion

In this paper we considered the problem of job scheduling on a variable voltage processor so as to minimize overall energy consumption. For the continuous case where the processor can run at any speed, we give a min-energy scheduling algorithm with time complexity  $O(n^2 \log n)$ . This improves over the best previous bound of  $O(n^3)$ . For the discrete case with d preset speed levels, we obtain a simpler algorithm than that given in [3], with the same time complexity  $O(dn \log n)$ . The basis of both new algorithms is an efficient method to partition a job set, by any speed level, into high-speed and low-speed subsets. This strategy, quite natural for the discrete problem, turned out to be also effective for the continuous case by enabling successive approximations to the optimum. Our results may provide some new insights into the min-energy scheduling problem. They should also be useful in generating optimal schedules as benchmarks for evaluating heuristic algorithms. We propose as an open problem to investigate whether the  $O(n^2 \log n)$  time complexity could be further improved.

## References

- [1] YAO F., DEMERS A., AND SHENKER S., A Scheduling Model for Reduced CPU Energy, IEEE Proc. FOCS 1995, pp. 374–382.
- [2] KWON W. AND KIM T., Optimal Voltage Allocation Techniques for Dynamically Variable Voltage Processors, ACM Transactions on Embedded Computing Systems, Volume 4, Issue 1, 2005, pp. 211–230.
- [3] LI M., AND YAO F., An Efficient Algorithm for Computing Optimal Discrete Voltage Schedules, SIAM Journal on Computing, Volume 35, 2005, pp. 658-671.
- [4] Li M., Liu J. and Yao F., Min-Energy Voltage Allocation for Tree-Structured Tasks, COCOON 2005, pp. 283–296.

- [5] Bansal N., Kimbrel T., Pruhs K., Dynamic Speed Scaling to Manage Energy and Temperature, IEEE Proc. FOCS 2004, pp. 520–529.
- [6] IRANI S. AND PRUHS K., Online Algorithms: Algorithmic Problems in Power Management, ACM SIGACT News, Volume 36, Issue 2, 2005, pp. 63–76.