H__PAGEZEROx__TEXT __text__TEXTM __symbol_stub1__TEXT_ _ __const__TEXTa a __cstring__TEXTd zd __stub_helper__TEXT  __unwind_info__TEXT` P ` __eh_frame__TEXT H  `(__DATA  __program_vars__DATA ( __nl_symbol_ptr__DATA( 8( G__la_symbol_ptr__DATA` 8` N__const__DATA  __data__DATAh $h __bss__DATA H__LINKEDIT  "0 hh @ @H\ 0 PM /usr/lib/dylde*I.bj=* 8}/usr/lib/libSystem.B.dylibjHHH}HuHHHH9uH8 N UHAWAVAUATSH}HxHpLhL`HcHLeIJ HUHHUHHUHHUHE11}HMlDD9EDžDžDžfW (H?HE0HcHHHHDmD9RHcEHH EHHHHg E9MuHH]HDžPHLPBtHcLADLxLPLAHHPH ؉SHHPH@38ΉLAT=H<LE EtID9[HHD$HH$LMHxHHa1HHH91At HHH9LAyH11fDBHt#HLAtLA4910fDHHHH9HDEuHuLA4HHuLLELMHxHHH[A\A]A^A_H9MDL⋵0ADHDLHAEDm80H@HPADEDHh**f(Xf(Yf(\-7 f(Y%7 YXD0DXD0D DXD YYYXX\77 Y^;7 XXXY7 X((E_EDmDD9+,Dm8AH`DIcH4HHڅ~{LpIA)D,A)DA9OHcHH<tHcLEH 0H1DA9DOAHcEAH`D9<E+8DHDLHAHcHHPHcHHPIcLI DžfW (I?Lu0xDž 95 @1LIcDLAH9H[A\A]A^A_1UHAWAVAUATS}IHLELMMt8HEHHHUILHHuHH1DME-H;UuHcEELnHuE1EEE1HEЋPUA9HcAA9AHIHcHH :A?AAtHEL$A$9~?HcEE9<BHM@EIE9Ic9uA$D;MtHD9{D9HUE AHEID;E$1HE A;L}HcIHcHA9LH9u͋U9U*MXɋE+E*^1M~H1HcHH;UuH}tAHEH*E@*E@H*E@ H*HxJHUB(H[A\A]A^A_E9EAEA }2 XHHHH H*XHcEEEEUHSHHfWf.G f(L5 1ɺH=5 MYwMfWf.f(H=S5 1wt-H=5 1wH=5 1H[wfDH=5 1vh1 Li4 1ɺH=f4 v <1 lH=4 1vnUHHtCHDfDHHHuH$@HH?HGÐUHSH8HL3 1ɺH=5 1vHCEKPMcXeC`EKHMefWf.sy a0 MH=4 1ufWf.tpf.80 "f.20 Tf.0 & H=4 1bu@H8[ff.rXezH=Y4 1 uEfWf.rH=z4 uCfWf.rH=4 tCfWf.rH=4 tC fWf.rH=4 tC(fWf.rH=4 tC0fWf.rH=5 `tC8fWf.rH=:5 @tC@fWf.rH=Z5  tH=5 1tEfWf.rH=\6 sefWf.rf(H=x6 sMfWf.rf(H=6 sEfWf.rH=6 sefWf.rf(H=6 fsChfWf.rH=6 FsefWf.Mf.ef.Mf.UY- f(X - ]YeXeYMMMXMMf(X]X]XUMXXEH=m6 H8[}rfDH=1 1\r7H=1 1BrfDH=h1 1rUHAWAVAUATSHAHIHxLpM1MEt>HI1HI HHuA*AD$I$MtHtDHxtt']CEEHĈ[A\A]A^A_EEtMcJHEBEUdExLHDDKE }uHE}uHEH}HA*f(X + XEȃ}H]HEHEMLxHMLHuDHHHHHH9w61J2H9u}H?H9t H}H}t H}sH}t H}sH}t H}|sH}t H}lsu>EpDzH_*AD$H<tIHjUt"H*HrXEY<* AD$8Ld$HpHD$Lt$$LMLEHxLHuDfH}t H}rH}t H}rH}t H}rH}t H}vrLnrE~*EA$nH}JrDAEEHcHsHEDEEEOEEHcH|sHEH}H*EXE*MXEHEH$LMLEHMLHDHEHEL}IM$EHHHڃH H*XqDUEIM $mfH}t H}@qH}7qH}.q}HI $E$H}q뾐UHSHA9E1fIcIcHDAtMDfAHuIcItIHcA<‰>AIE9uIE9[A\A]A^A_[A\A]A^A_ÐUHH]LeLmLuHHDE~HcƋxtE1~sZA9eIE1AA9}oIcDExHA9}CACHL DAD9ҸDMAA9t8AID҅x9|DfDADH]LeLmLuAA9tAD$A\$IA9kUHHыt3L>H9HCI9‰ЃuLE1LfUHAVAUATSIII1Ht1LLHHL9u[A\A]A^ÐUHH]LeLmLuL}HPAAӅELeHcLiHEHcH]LHHL>IIcLHLHILLH}HHLHHLHuHǺgfffDAD)HcLsU̅u,fDfD1H]LeLmLuL}H=vfDUHHtGHDfDHHHuH$@HHGH?HOUH~9|/~&HA 1f.0xH9uÐUHH]LeLmLuL}H@IHLG+ HH=?+ 1 fH=I+ HDsD{CELc { ?H=6+ 1eA$ v%H]LeLmLuL}H HcHf0l`TH XH=P. D1H]LeLmLuL}4eH=* 1&eULH=* 1eDLH=* 1dDLH=+ 1dH=;+ 1dLH=0+ 1dSLH=\+ 1dSLH=+ 1H]LeLmLuL}dH=+ 0H=+ $DH=+ f.1H]LeLmLuL}DdDH=+ DH=+ DH=", H=L, 1dDDH=M, 1H]LeLmLuL}cDDH=\, ՋME1DH=, 1H]LeLmLuL}cf.H=( 1cfDUHHH=}, fDfDUHHH=d, fDfDUHAWAVAUATSHd`AHXLPLHL}1MWAfDAHHuIG HhAG IWHpAGIOHxAGHXFHPDd`4Lc`LPO$LA$"HPHHfWHHf.A EH]HھLHHھXHHHcdHھHHھ)IIHcHھHHLHHHHHLH‹E̅IcH9HE)D)LcHXN4D`Et{HPAG+AFL1pIvHPL1!HAA+AFHvH=BB BB;`uHIHXHHMGAGDdEt)11HD8D8 H;duۋ`LP1E1һIcLXI IcCM L9nx 9dHhHp1HxdA81HĨ[A\A]A^A_AG AG1AG dA_1LhA$HpHxD21AG 1AG 1AG `A1oAG AG1\H׉dHcHHLhA$LpA4$LxA$A9p tB@p I9v>9dH9~HcHH9p uCL2II;`]HHAA d~(HʹBBBBH;duHh;LPE1D`EtXIcHXH4IcAHHHcH@IƋJ~-D*Ex%؉BHcLXA<I9wM9vHHH_DD9DMDHcHXHHcH H9sHcHHHD8 H9wዕ+Dž~LIc$HXHcHXHHHcHHHH9IEHcH@ALt HcH@AtHcHXH HcBHH9rAL9IcIH@IƋz߉zB rJuHLPA HcHHHHƋF x++)DEF H9oLAIHcH@MAHcHXH4Ic@H)IVHE11HDž9HcHHx D9HPLXEH`D+LUHpU1H[A\A]A^A_AD$ AAD$1AD$ El$1AD$ 1AD$ 1AD$ AD$1AD$ 1뎍GHHHLAѸI H(]H LpJD9tLA9}D9t AH(DH99~_AIDȅD9AHc9|HPHXDL`AH HpHzAE9HHHBD1~HHLYL)+LPAHXDH`JHH^H8IAD$ LU1+H@1L@AAADHBA9}1H@AHA9HhL@B<4DHxHUHHHPEtiE1E1E1CHD9uE1E1E1CHHHpL E9t(I HcDCHcDCAEHC9|AIE9uE1EAD$8H[A\@H= EH‰H=K 1҅tHcIT$`HE@0H[A\fDfDH= EHH= 1dfDfDUHH]LeLmH0IAEMЅ~V;wLQHcIE`H DaAvlH= EHDH= 1IH]LeLmApH= DH‰H= 1fDDH HcHJcEA(A yHtAHH]LeLm1HA(HA yHtAHEA HA(yHtAHHA EA(yHtAHEA EA(AHȃueeEf.EЃAHT@UHH]LeLmH0IAEMЅ~V;wHQHcIEXH Da AvlEH=p [CHDH= 1IH]LeLmA)H=4 CH‰H=K 1fDDH HcHJcEA0A(yHtAHH]LeLm1HA0HA(yHtAHEA(HA0yHtAHHA(EA0yHtAHEA(EA0AHȃueeEf.EЃAHT@UHH]LeHIHGHt ,uHCv!H= AH‰H= 1A\$0H$Ld$H= AHH= 1UHSHH????HH{HtCH{t H54 H= XAH{XCH{`vCH{hHtآH{pHtʢHNCHHt=CHHtH[VfDH[fUHSHHHGHt ,u!HHH[BDfDH=d O@HH=] 1UHAWAVAUATSHHAAHMMƅ}EEEjEkcA[EHEA}IEHE{8EHEE~!HE1f@HD9u}t/1ɐH}HcDHUHH}T0HA9}م~"HE1@H9uEHMAAu@H}:HHE$IcHEȀ8tԻ}1fDfDHA9HMD9DuE9duXH}MHUBAVD991fA9;HuTAt~D9~/ۉHH[A\A]A^A_DfDH~9~Ӿ`H= =H1H= 1M=bH= =H1H= 1z1sAt"HcIcH]HuuAHE9&1H}?H}?H}?XH5 H=) DE5=DEA9|DHcHHuH0IHHA9|D9uD9 tHHA9}纉H5 H= <WZH= z<HH= 1҅d\H=h S<HH= 1EE^H=@ +<HH= 1!UHATSH HCHCHCHC HC(C0E1Lc8C@dCDCLCHCPe'AHCX{DǾAHC`HCpHChCx{@Ǿ@HHǃHǃǃǃLǃǃǃLǃL[A\UHSHHHGHt ,u!HYHH[DfDH= :HH= 1UHAWAVAUATSH8IuHUHMLEHGHtD,EEfHE~[AAIFXJ Hs8Ht1HF HC8I~8ANPHs8HuAIE9nH}A^P?E^LE~&IF`HH@8HA9NL}DUEk}eDMEEE1EEHUB\HMFd~A;^H~$H=D /9HڋuH=@ 1HcIFXL,E~E;fL~%H=  8HDuH== 1IcIF`HI~88HAFPL(HXHMJDHBHBIE8HB HtHPIU8EINjE9E"UA9VPtH5y H= 8AHEEFHEIFXHMHHX8Hu5HC(ID$8HC0HtHX(I\$8H[ HtLcID$8HtHD98uA}~*1 AHD9m|HED9|uHMDA;$u۾H= 7IE$DDDH=# 1AYAAFHHED9"AAIFXN$8It$8HtyH^ fWf.FuTzRHFHHX HtHFHCHV(Ht[HF0HB0HV0HtHF(HB(I~8ANPHHuAIE9nHdAFxH8[A\A]A^A_HVHF0HB8I\$8wH5 H= 6H=l W6H‹uH=* 1H=E 06HH= 1H=! 6H‹uH= 1xfDUHAWAVAUATSH(IuȉHMLEHGHtD,E"DuE~EA;ELvHcUIE`L4Iv8HuCf.HF HB HV HtHFHBI}89AMPIv8HtEHF0IF8HHVHuHF HA8붾SH=2 5H‹uH=  1cJA;]H@eA+EP9dEE1É]I}8"HAEPL LpHMJDHBHBIL$8HJ HB(IF8HB0HtHQHB0HtHP(IV8IT$8EINjE9EHUB\~A;]H~(vH=6 !4IًŰuH= 1AHcIEXL$ID$8H1H@M9"|H= 3IًŰuH= 1AlH= 3HڋuH= 1ѸeA+EP9oH= o3HڋuH= 1хxI^8HLc0fWf.CumzkH{tH5, H=o P3HHC HB8HC HtH@HC(HtQL`0Mt HC(ID$(I}8HAMPLMxA~HuAExH([A\A]A^A_Mf8뭾PH= 2HH=a 1UHAWAVAUATSH(IuAHMLEH_;wHHcUIEXL4Ht,Pf.Iv8Ht[HF IF8H^HV(H~HF0HB0HV0HtHF(HB(I}8AMP{HuAExIv8HuE@E;eL6eA+EPA9[E.EE1ADeDfDEINjE9EHEB\~A;]L~(H=? *1IًŰuH=p 1AHcIE`L$ID$8HtHU9I}8RHAEPL0L`HMJDHBHBIN8HJ HB(ID$8HB0HtHQHB0HtHP(IT$8IV8A|$HfWf.Bz AExEINjE9EI^8HLc fWf.CurzpHCHOL` Mt HCID$H{(t%H5 H= 10HSHC0HB8HC0HtH@(I}8HAMPLMsH([A\A]A^A_þH= /H‹uH= 1DfDHF0HC8}H=g R/HDuH= 1ѸeA+EPA9H=0 /HDuH= 1{fH= .IًŰuH=} 1AMf8HHt*AF;BH5 H=V .fH5 H=$ .H@UHAWAVAUATSHIIHGHt,CI^ HtHi PI~HIF MA?I_ME18DfDHcHޅ DHcHIL$`_UHATSHIE;wHEf. AT$xHcH4IL$XH1Ef.@@zt8HP8Hu-fDHR HtHBxHuAD$x@H1E@@H[A\f+H=4 H‰H= 1Ef.b E?-H= HEH= AT$xHcH4IL$X[DfDUHAVAUATSIMALRAE~#D LnA9}E~+fD` LA9}[A\A]A^ÐUHH]LeLmH IAԅ~P;wLKAD$wlHcIE`HA {{H5 H=fY @mH= ?H‰H= 1AD$vqH= HDH= 1lfDfDCH HcHk~vAtACHtAt tAExDcHH]LeLmCHAAAUHH]LeLmH IAԅ~P;wHKAD$wlHcIEXHA { EH5 H=f @7H=t H‰H= 1AD$v;H=I HDH= 1lfDfDC H HcHk~vAtACHtAt tAExDcHH]LeLmCHAAAUHAUATSHIWH~!@LQA9\$H}AD$L~vAfLIA9\$L|KID$`J(xuH fT  @(fT f.vLVIA9\$L}H[A\A]ÐUHGG"G "HHz>HGHGH|=HO HHW(HHG0G8G<G@GDGHUH勇@UH勇@UHfUHH]LeHIx#AD$HAD$L9øO؉H$Ld$f!H5 H= (fDUHH]LeHHXAăt@.tH5M H= DH$Ld$fHtA~!t˃uAtH5 H=u tAf.UHH]LeHI~;wL~!H= H‰H= 1HcIT$`H@XH$Ld$DUHH]LeHI~;wL~!H=6 H‰H=u 1HcIT$`H@PH$Ld$DUHH]LeHI~;wL~!H= 1H‰H=M 1HcID$`HЋ@HH$Ld$UHH]LeHI~;wH~!H=v H‰H=% 1HcIT$XH@XH$Ld$DUHH]LeHI~;wH~!H= qH‰H= 1HcIT$XH@PH$Ld$DUHH]LeHI~;wH~!~H= H‰H= 1HcID$XHЋ@HH$Ld$UHH]LeLmH HIщtMAD$tqH55 H= E1DH]LeLmDHAŅtE$E~H=o 1(fDLHH]LeLm阅LH腅AŃssxhLHH]LeLm,E $E5H= 1"uA<$H= 1yH5 H=9 UHAWAVAUATSHIIHt?t"oH= (HLH= 1ID$HtD,EMo A}AEȃ]AEt("t#H=` HAuH= 1AE t("t#H=/ HAu H= 1AEfWf.f.Զ ~xAEfWf.7f. )#AE fWf.$f. EM8E8EEEHg>HLLY;HM܅t4Af.HHHb=AċM܉1)D9}܃HLL;HEL<M\MeEXŨ YM f.Es}H5 H= fH0[A\A]A^f[H5T H=] 8|Af.1LH0[A\A]A^HǀǀHǀǀAD+LHAʼnHH;AqtWA;9}DH}ADH;DHAquf.rH5 9} +H5 H= 1A fDfDH= 1rADHĈ[A\A]A^A_D񋕴H= 1:H= 1,H= 1D򋵴 HD8@HHHQ0DȉHD9tH5! H= H;tH5 H= H};tH5 H= D  AE)AA DHDH>DHCH5' H=& DfDHHAB0K6HAH<HHBH<AIAD;E9.DHDH|DH5C.H HcH<2( 1H= H‹sHH1)HHH胾AHHAH5 H=! þHHHE1E1HDž8HHAPB ~9}H5 H=m HADHcHHQhHHWHHz>HGG G$G('HG0HG8G@GDHGHGPGTGXG\G`GdGhGlUH勇@UHfUHH]LeHI~;wL~!H= aH‰H= 1HcIT$`H@pH$Ld$DUHH]LeHI~;wH~!H= H‰H=ս 1HcIT$XH@pH$Ld$DUHH=ݽ 1UHH]LeLmLuH IIt4A A4$~H= 1\DH$Ld$Ll$Lt$A<$aLL"HHAHlEuAtAA<$QADžAuNA<$~H= 1H=u 1A<$DADžYH= 1A u.A<$8H=ս 1%H=: 1sAuA $H=Ƚ 1QA uA<$H=Խ 1-H5Ļ H=q `DfDUHATSI~@;wL;HcID$`HЋXttRiH5n H=/ [A\]H=L H‰H=[ 1fDxufWf.@ uz f.@(uz[A\UHAWAVAUATSHHHH7) HHU1Ht?t&H= HHH= 1HH~tH=y HH= 1H LA:QHBȃHFȃH@fWf.Hf.ۉ :4H@fWf.f. H@ 3HF$OH@(lH~@HxDfWHf.FH_HxPv)H=7 HHqPH=޽ 1H~Tv*H= dHLArTH=׽ 1HxXv)H=ʸ -HHqXH=ѽ 1H~\v*H= HLAr\H=ʽ 1Hx`v)H=] HHq`H=Ľ 1H~dv*H=' HLArdH= 1Hxhv)H= SHHqhH= 1H~lv*H= HLArlH= 1HǀHǀHHHPXfH9HBx u@(H0f.rHD:E/ H=f tH5v% LUL3H[A\A]A^A_þH= FHLABH=7 H= HLABH=ӹ HDyLELi`LfDHA9|HHBxu@ H(f.rLE2E"H= gADAIE9PI]{uDcAt|AtvAD$AuC  ^  f.ztLAf(DH= MfDfDC 8 8f.zdLE*E!f(DH=ɻ _DC((蜃 (f.zLE"Ef(DH= DH8HDPlEHDJ`EIDpH9gIE11HH{ EtH>AD$HLΈEt$E t 5H5ɳ H=i eLH= HHqDH= 1H=v HLAr@H= 1H=G HLArH== 1H= {HHqH=ߵ 1H= MHH0H= 1HHrHHAD$qL Et$LA:AD$1Ls.Et$H8HHOHHAHLAHLA:~H= 1L,H=O 1AD$9H8qH= 1x^ADžAE8AH:LL~ L覄HLW Eone fEofELMH N Eall fEofEH ' LMInone ofL]H LMLA:H=b 1EIELMrc| AD$qLAD$AD$H=A 1>LaÃt22H5 H=c P4HAHL5AHAf]L4LAEMPH H AHHEAMLILEAuHHEH<$H=! 1D3DEAÃ4Eone fEofELMH 3 H 4H^ HEILɋ4H= 1H=Y H=c 1FAD$qL Et$t:ELMH i]Inone ofLEH x LMFD94t@LMEH \ 21L1Ly L떻 + $Eall fEofEH  LMUHH]LeLmH IAӅ~`;wL[IcIE`HЃtiAH= xHDH=ѳ 1IH]LeLmA@1H=ܪ ?HDH=b 1fDfD@H]LeLmDfD@xtC cz fWDLH]LeLmj{f.@fWf.@ uzz f.@(zutUHAWAVAUATSHIAHMLELMGHEWLUAD$?C2LeH5 H=5 6EEfWeH}t EHUH}t UHEH}tHE H}t EHUHĨ[A\A]A^A_þ+H=& yH‰H=] 1҃7DEE AEEfWeAEEIFXJ8AAASpfWf.f(Xf(H[8HuGDAVASfWx YPpfWf.r@XH[ Ht@HCAuSfWlx YPPfWf.sfD\H[ Huf(\fT#x f.Ev DmEX w X^f.vDmf(AID;m &H= HDH= 1HH5l H= `P@0ؽ0@P`SfWSw YP`SPfWf.WfW\fWR<H5ѯ H=J P0M0PS`} AEEfWeAEEAAfSpC wEC0f.v:f(\f.Mv DmMfT)v Xu ^f.vDmf(AID;m\IFXJ8AYSPC mC(f.pf(\f.Mv DmMfTu XH0ǀǀH8xHİ[A\A]A^H@H8wH8}H0;BHtH5} H81xH8}H0;BLtH5} H81xH8w}ÍCH0H8P}ÍCH0H8|H0@HAALDH0蟂H8S|AD$PH8@|AD$XAIH0D9hH|?H0HBXN$0H8|ÍCvH5 H81{wvH0BLAAQfDDH0oH8{AD$PH8{AD$XAIH0D9hL|?H0HB`N$0H8{ÍCvH5~ H81vvH8uH=| 1芆1H5 H81vGH5 H81tvH0ǂǂ9DfDUHSHHf(f.@ f. @ txf(fT@ f.A f(H5 H߸? H5 H? H .H3C fC HH[DzH H;C +InfC fHH[f.HI LG -InfG fHH[fDf(H5 H߸? HH[H5ʁ H? 0H5 H> uH .H KH5 H[> /H -.HUHAWAVAUATSH(H HLHD HHU1Ht?t&H=* HHH=$ 1HvH H@L$  twH LAD$D D AfDA\$~D9~$H= 聄HDH=* 1AIE9u‹uZH H^teH= 1H HMH3  H([A\A]A^A_þH= H‹H=݀ 1|H HH= 1蛂H5 HXIHl Dž,Dž0Dž4Dž(HUHf$ D EE ;,};((Dž,H= fD,E00D,D EtIcHD$(u D; YD; (ID0E? H5Y~ H= 腂IcHHAXHHsHxDs DHir8DHq@D{HCPXA A1 AF_ CX`EHDžPAHMHULMLEDH4Ak A@ A A  $; MP\`E: Ef.hE; f.`wh`f.:  Ef.p: f.`wp`f.: DH5. L1$HxHxH5 L1Hx9 H H At=H{ At0H{ At#H { AtH{ AHz HEH5 L1荌XHHH5 L1eHuPHHH5 L1,8HXHH5 L1EH3HH5 L1ߋEHHH5H L1躋hHHH5 L1蒋ut19 wHjHtHH5 L1ZH5C L1IL  MLLH5]~ L1(`HTHH5 L1@H,HH5f L1؊EHHH5} L1賊EHHH5 L1莊pHHH5 L1fut19 bHiHtHH5 L1.H5B L1H5B L1 0ƺgfff)ʍ)։0,uED+ E~ D;$~H5y H=| ;}IcHHQ`HHsHxDHck8DH|j@C0PD{HCPXCX`HDžHH5P| L1LpL81ۅL&\XY`pHXpu\XY`hHXhH=w {H‹ H=x 1M4DxD4H | HH5y L1"H5@ L1HHN HH\| HDHp H5p L1HB0Hp tHp Hyp HEHHI(Hwp HIIHep H5ip LqH5@ L1`H x Hx HDHx Hx HDH54y Ht$(H51y Ht$ HT$Hx HT$H5!y Ht$H$ILx Hx H5x L1߆Hx HD$(Hx HT$ H x HL$HL$H5x Ht$Hx H$L z MLLH5Xx L1~H5x L1mVHMHUHEHD$HEH$LMLEDH!Ef.[3 HHhh3 f.XwBILh3 Xf.33 wHhEf.ILp3 f.X>pXf.2  HpH=t xH1H=u 1,E( + Hc~+ HcHxH L(y LH5w L1贄PEE 1 1 H=s wH1H=St 1Hx H5Xw L1J]\PYXhHXh61 W@\XHHhK 0 M0 U\PYXpHXpEfW0 H#HHH=| 1uV8\XHHx0P\`E!0 U 0 Hz0- H (w H.{~HHH=z 1tUHWHt 1xDUHATSIwHtOxtF~A;\$L~!H=u uH‰H=u 1HcID$`HЋ@L[A\fDH=Tu _uHH=Uu 1UHATSIDGHEtxtD~A;\$H~!H=t uH‰H=u 1HcID$XHЋ@L[A\@H=t tHH=5u 1UHATSIDWHEt DOxEtB~A;\$H~!qH=kt vtH‰H=u 1HcI$[A\oH=4t ?tHH=u 1UHAWAVAUATSHIIIDgHD9HcIA9|(AFI?M_H[A\A]A^A_D)HIU`HHP81Ht1 - qHADH@@fWYBHBY@@ADHR0HHu@SH54s H== xsDUHAWAVAUATSHIAHUHMDExotH=r rHH=%t 1҃}t(}t"H=r rH‹uH=/t 1xfWf.f., L\EL\Ld\* + MEEEHE+ EE1]txfW + hADdDLqADLpEA,]]HEBDAhAA$AtkH5rq H= PqPfWf.MKMf.MPfT+ EEEEEEINjd9EHEFdE~ D;t~%H=p pHDuH=r 1D9eD+]LXoAʼnLnEAH=p pHDuH=r 1ы]fDfDHEBDfW=* Axf. MYM^MfWf.MMMf.MMf.MfT) f.EH=o oHxH=Oq f.h_OfDf.hvxf.1HEEHĈ[A\A]A^A_( EUHAWAVAUATSHXIuHUHMDEEMLMA$taH=n nHH=dq 1DuEEA;D$LDmE0AfWME1EED@LcID$XJxHt@PHEBYDXEEAID;}HEB\~AT$HAD$L9~)lH=m nHDH=q 1AT$H9r)HIT$`HƒxHoxH=m mHDH=Aq 1A+\$HHcID$`H5fH=sm ~mH‹uH=Qp 1DmEfWEȃ}}H='m 2mH‹uH= q 1EAHMHUuLAƸEMcHEB~AL$HAD$L9~H5l H=p lAL$H9UHcIT$XHLxPHEN,AMfWf.AE\Ef(^f(9HcIT$XHYPXH}tHED0H}tHEL8H}tHEH} t MHE H}(tHE(1H}0t HE01HX[A\A]A^A_þqH=k kHDH=o 1ID$XJZMf.M~HX[A\A]A^A_ûEf.EU)HcIT$`HYPX)HIT$`HLxPH5"k H=[o fkAMAL$H^H=j kHH=[m 1fUHAWAVAUATSHIHUHxDthHgt3H=j jHH=n 1҃tt.tt%6H=fj qjH‹tH=n 1hfWf.f.# L;TEL@TEEHE# EHEEdhfW # XÉT@HEHUDdE~ D;d~%BH=i iHDuH=\n 1D9evDLTADLYEDLXEDLhADLhEAt%UH= i iHDuH=n 1ыtHEHxDAt{AA'AAf.Xvhf.w;HEMf.M@fTX" EEEEEEHEȋT9EEHĘ[A\A]A^A_þ8H=h $hHhH=l fDD+]LRAƉLsVELUELefAʼnLeEfWf.hf..M\M^MDfDfWf.MMMf.MfDfDMf.MfT! f.Eff.XM\M^Mzf.HEHxDfW fuH5f H=l @f@#UHAWAVAUATSHIHDgHLwXL`EGxE1ɺ'HIS^@@SHD9t2IA9}D)HISY@@SHD9uIH1fDIDDY@@DHBA9}H[A\A]A^A_þH=e eHH=j 1#fDfDUHAWAVAUATSHXH}HUHM\wH}KOEH}OOEǾjHEU~1ҐH@H;Uu9]AE1D{BDHcHUL$fWfA.$HUJDI$AIE9HEB\~9]}$PH=ed pdHDH=ij 1fWHUfB.DxrSH=&d 1dHDH=lj 1KVH=c dHDH=j 1CMMniINjE'MMAEEEDfDDH}Å~;E~_H5}c H=D c19]}+]HcHUHID$AID9m}LH}EfH}bt1AFfW fWf.ztEHcEHUHMI9]}]KH=b bH‰H=h 1CH=b bHH=Jh 1eLH} E}hIľ} hHËELmADH}`|AMHLDH}MoNƅM~"11IcDDAYXH9ufWf.zt&EHcŰMAHMHE AID9u_U9U}H5a H=vh aLdHcLcH}cEHX[A\A]A^A_fDfDUHAWAVAUATSH8H}HUHMGHEWLUąt xEE99]H}AAD;e]þ^fIžOfIǾ@fIƋu~L1ҐH@H;UuIcH?ILLH}EEErEU)UMEpH}_tAAL$fW  fWf.zt&EHcEHUHU EI;]9]}uH}]^tLLuH}Kƅ~fWf(11DIcDADAYDXH9u]TH=O_ Z_H‰H=ff 19]:+uH}cAA7\H= _ _H‰H=Yf 1Һ]H5^ H= -_ E9E}{H5^ H=e _L0aL(aL aEH8[A\A]A^A_þQH=^ ^HH=ce 1Tf.UHAWAVAUATSHIHDgHLwXL`EDGxEE11f.IDDY@@DHD9uIHq%DHIS^@@SHA9|@IA9}D)HISY@@SHA9}H[A\A]A^A_þH=U] `]HH=d 1fDUHAWAVAUATSH8H}HUHM,#H}GAAbHEE~$1H@HD9uA9AE1É]B@HcHUL$fWfA.$HUJDI$AID;uHEB\~A9}$H=4\ ?\HDH=Xd 1fWHUfB.DwqH=[ \HDH=[d 1Jf.H=[ [HDH=hd 18HuH}:EE~lLeAEwAIE9tBfWfA.D$ztEHc]DH}HUID$HUHAIE9uH}]EH8[A\A]A^A_þH=Z [H‰H=b 15H=Z ZHH=b 1fDUHAWAVAUATSH(H}AHUHM_HDoLt DWxEEADA9 D9,DH}Z.{_IDž~"1H@H9uD9IcIM LH}E~lMADsAIE9tCfWfA.D$ztEHc]DH}LEAID$HUHAIE9uL[EH([A\A]A^A_þH=KY VYHDH=qb 1D9D)H}WH= Y YHDH=hb 1A)HMHUDH}(EDž11f.HEHcTLEIDIH9uH=X XHH=a 1UHAWAVAUATSHI4H(H LLHEHHUHHt?t"H=X XHLH=a 1E|$HEt$LHI9$tH=W WHH=a 1Et AD$xp D4EsC>94cD;4Lc4ID$XJP @@(`H0hPH@PxfWpt%H=W "WH‹4H=a 1A_\HP{\HEA^g\HXT\HEHHX4LHLzA9qILmȋ4D)HHHEDžDEDAD$0[DDD EHMHXLLÃHH]DtIL]xDžHD1HtMH HtHHHt HDDHPWH}WHXWH}H[A\A]A^A_Wf.H=U UH‹4H=G_ 1D;4x4D)HIT$`H‹P@@ `H(h@0pPHHPxLc4g9L~LcHXBH"9D;H,HcHIT$XH‹XH@XEHEN,L8AEfWf.'MfW ^MpXMMD"DEADA|$0DDEt"tGH5S H=^ SDHMHPHLAD;4ID$XHUH@ H@0H@(3 EHMHPDL"ID$XHUH@P `@(hH0EfWH8f.y D@H(tMH( H tHH HHH5$R H=] hRD;HHD)HIT$`H‹XHHXMD H5Q H= RDDA}ZA9QLcHPB~;~wH5{Q H=\ Q;4A9HcID$XHЃ{Ht{H5F 1HcI$H$Ld$UHSHH,tH=C 4HH=(F 1HHtH[H5C H=F 4HH[UHH]LeLmH IIԅ~ H;pH~(H=aC 3H‰H=E 1IHcH@XHЋBA$BAD$BAD$H]LeLmf.UHH]LeLmH IA~;wP~MIcHH=B 2HDH=xE 1IEXHHtH@hH]LeLmDHcHUHH]LeLmH IA~;wP~MIcHAH=SB u2HDH=@E 1IEXHHt@@H]LeLm@HcHUHH]LeLmH IA~;wP~MIcHH=A 1HDH=xD 1IEXHHtы@H]LeLmfDHcHUHH]LeLmH IA~;wP~]IcHH=SA u1HDH=D 1IEXHHtHP1HtH]LeLmfDfDHcHUHH]LeLmLuH Iu.HWh1HtH$Ld$Ll$Lt$fDfD~.;wP)LcIIFXN, MtEMEu .HH=fC 1HDHH$Ld$ƼfDUHH]LeLmLuL}H`HHuAAEME,tH=@> b.HH=C 1HtZHED$HEHD$L$$EEEDHUHH]LeLmLuL}H5= H=@ .fDUHfDUHFUH}fDUHAWAVAUATSH(IIAԃH=MB h-HH=NB 1AD$LDkALjEL>A9H=A -HH=ZB 1L.c]EoADmfDfDH5A H= ,UfTEfT~MfTfWfUfVEf(vMfTfUfVEf(EDLRa;]AtAAt{AQLWEE1HEfWSL+AʼnL9+EL*Ef(fT @LOELNEf(fTfE1EeEEH54@ H=u +UfTEfT-MfTfWfUfVEf(MfTfUfVEf(EDL"_;]AtAAt{AQLVEE1HEfWSL)AʼnL(EL:(Ef(fT) @LLELgLEf(fTE1L}thtH([A\A]A^A_ðH([A\A]A^A_ËUAD$tH=> )HDH=> 1M1H([A\A]A^A_L9ERlfUHAWAVAUATSHHIHut_H=#> >)HH=> 1H}GLHH}L gE H}%AHEHEHUHUL5xfDsH5= H=. (]UDf(f(ÉDH}DLafWf.A;AD9e~DL裄HDH}HMHUDLAcÍoPIcL(]UL]Uf(fT%f(\fT 1XYf.f(fTwf.f(]]U]U]UDLE`EDLeHEH=< %AD9eLdADžH}rAHEHEHUHUlf.H5t; H=+ &A]Uf(f(ÉDH}AE9.DLHDH}$DLI^A=t"i=^DH}dHMHUDLZ\Ío)H HcHAfWf.EC Uf.v f(M]f(fT%f(\fTXY f.f(fTf.f(]uKA7-fDH5t9 H=# $U 7HEC UȻf(fDA_)IǾ)IƋMLLL]ML‰H}=9]}ֻ9]L;`AA$dwۉLHH}1A@H}=LS\1H}LLL\Aą~11AtADH}HÍCA9}LH%L@%HH[A\A]A^A_UȻf(UHATSHIȃvQH=Z7 u"HH=[8 1LHvƒtDЉ[A\H[A\fUHATSHIȃvBH=6 "HH=8 1LHnÃt5t IH56 H= "[A\Ð[A\H[A\fUHH]LeLmH HIAԋuIDLH苀ÍCvqt\:H506 H= !H]LeLm@3H=6 !HH=e7 1fDfD1fDfDUHH]LeHHAt)H=5 HH=%7 1HDH$Ld$hUHwUHAWAVAUATSHH}HuH=7 19H5 H}.IHHEȋHPH56 L1,AHUȋB~ZAAHUHB J0HX0Ht(HCHH56 L1d,AH[(HuAIHED9x}L*Lw(u,DH=mx 1r1LX)H[A\A]A^A_'HHuH=x 1='HHuH=o 1DUHSHHH(HtFHC(S~2fDHC HH@H9K}H[UHH]LeHIHH(tQHt;u1H$Ld$fDfDHH=wI|$(HHtH뻾H=5 1HH=5 1뎐UHH]LeLmLuH IH(tH$Ld$Ll$Lt$1H=ID$(AL$~AAID$ J(H{tH5|4 H=4 HsHtI|$(%HHCH~AIE9t$}eUHSHHH?H{ H{(HtH[H[fUHSHHHH[aUHH]LeLmH HAAHHCC2CC3/"HC HC(Dc0Dk4H]LeLmfDUHH]LeLmH IAӁwLv!H=3 3H‰H=3 1LDLH]LeLmH=2 HDH=3 1fDfDUHATSIHwH +A;D$ HcID$ H9 ttH5^2 H=^3 HKA;D$HcID$ H9 tvH52 H=g3 {HS0HHC8HB8HS8HtHC0HB0HS HHC(HB(HS(HtHC HB HsHtAT$4I<$@HI<$AL$[A\fDuH5|1 H=2 HK,fDsH5L1 H=%2 H HSHC8HB(HHC(HB0 rH50 H=1 HKUHH]LeLmLuL}H0IAAօc;wZEE;t$A|$e@I<$ HIcL<ID$ J8HIcL,ID$ J(HCAt$4HCHCHC ID$ IH@0HC(HtHX HC0ID$ IDH@(HC8HtHX0ID$ IIDHX(HZ0AD$HH]LeLmLuL}ÐH=/ HDH=21 1A|$eH=k/ HH=:1 1DfDH=I^ME10HcHo D|IHD(H@H@Av0tI>SHID$IcV01놋EAFE)E̋EH[A\A]A^A_úH5y+ H=. H=\+ H‹uH=z. 1AVH=1+ TH‹uH=. 1MUHAWAVAUATSHH HW4w0HH=C. 1HH(HtH0t H(Hĸ[A\A]A^A_H0H(H(AƅWH(ADž&He AHi HEAIDH]v DH=- 1E~DH AE}DfDH(Aą~A9}H5- H(1H(Å~A9}H5- H(1DH AE9}H(H= 1b1IDHk- H=, 1;H5, H(1AH5, H(1'fUHAWAVAUATSHIuHU;wHcUIG L4I~tII~t I(IvI(vIFI^HPHI?pIFH}HE8tHHIE1/fHcHNi DuѺ8I<$!AHE9l$}Et$H[A\A]A^A_þ;H=$ HDDH=^* 1/H=$ H‹uH=) 1)/H=$ H‹uH=) 1UHAWAVAUATSHIAxG09A^EuEHĈ[A\A]A^A_AFEǾIōSUIǾ}HE}HE}HE}sHE}bHE}QHEE~rE11AIF JUATHp0Ht2UHcHFAD‰UHv(HuATE)HUDAHIA9uE;EtH5( H=) ^ HEHD$HUHT$HEH$LMLEHMLLEEHUHHxHExtH5r( H=( EE|Mc9EHH]HU;}HcHU4HcHUH 9 ,}HcIF HHPI8H9uދ}̍GE9E}L L H}w H}n H}e H}\ H}S H}J pHHHxHU;CH5d' H=' &H=G' HDH=E' 1@UHAWAVAUATSH(H}uxG09hHE@EE1uDH([A\A]A^A_AAƾDHþDIľDIŋu~1DDATH9uHcEAIUHUAE1IcH J4!t Hc AD6HEDDAAE1AWUHLHUHB JHx(Hu8mI DDЅtHcЋD1AIcEDH8Ht+HDIcHH4|tI HcҋAHUHB IHx0Hu@jDfDI DDЅtHcЋD1AIcEDH(Ht,HGDIcHH4|tI HcҋAID;M| CDEMxCU~ HpR HEH3uqH[A\A]A^A_DسDL H8HpLXH= H‹0H= 1~UHAWAVAUATSHIH(A׉$D DHQ HHU1Av"2H=9 HDH=w 1ҋ$xH(B09$ xH(B49 xH(B49XExH(B49ELEH(rLH(@AAHc$H?HHCHHEEf(ȺDLɴAIH(D9h|9H(HB J0Eu$yHEHSDLH(r~LE1H(DXEDž<HDž0LuH@HH`HHc HHcHHcUHH(HB H0HHX0H DfDHHCHHE"HHCHHxxf. ztf.M!ЃEDL蟱MHHCHHppDL蜰H[(HOAEHHC;tRdI?LHHChILPLHDLdD EHEH?Hx HDžp!HCHDDH  31L1襭LH! t€DHAHDHL)H2vQH5/ H=. LDLudHcHfWENUHAWAVAUATSHhIuUMxG09DMExAF09EDEExAF09EAFEufWEEHh[A\A]A^A_DmAžD3HED"IǾDHEDHE}~uH]HAHcEHp+H@HpHHfWf.AHE9t/HH+UIF HuyH?H AHE9uAFEEf0þfHEVHEAF0Uą~PHH11IF H0H@H]HDKIF H0HPHEDHHH;}u1LnEf0EąAE1HEU‰|D+AIHED;|tqIF HMHH]JDHBHEB\~;]~H5v H= HcHUHtH5M H= xH}H}HEEFHu1HcFHJ 8HIV HHP(Ht9fW  HHcAH]Xf.vHR8HuH;}uHE11ADHMXD_EEH9uHcEHUL DEIcH<H]H HuHM\ IF H8HP0Hu> HBHcH]\f.vHR(Hu A?f.vAIEhEx6E~/HcuIF HHHPIHH9}}ߋEx?DmE~6HcMAIF H8HHPH]H;HAHD9E}H}L H}H}H= uHDH= ,H= GH‹uH= 1RH= H‹uH=C 1H= H‹uH= 1 H=w HH=p 1nUHAWAVAUATSHH@cf.,f(@D8?@D8f.,HUB2H[(H)AMHA$HCAEA$MII9l: M_H=WH‹pH=/1ҋp9tH= H‹tH=81iH=H‹tH=1 H}?H}6H}-H}$H}t H}H[A\A]A^A_EHE]Hx9YD;EtH5H=ZHuHt$HEHD$HUH$DpDtHMHUu}H`FfWME'11"tHM9\H;UtHM9\uHu*DXM;H=AH‹uH=/1,H=uH‹lH=1ҋEHx@EHxRUþHEHEHEHEHEHu*D\MH`\HxB~vA1ALc\HxHA JHp0Ht5GHH]H f*ELHVHEHHv(HHuAIHxD9V}D}ExVHxDpE~FHcu1ɿHxHB H8H]TUHXHAHHHx9B}1UHH]LeLmH IA̅~9|lH5pH=tSCЉADPIHc҉ȃ)B*H]LeLm@9f.UHAWAVAUATSHhIAHUMxG09MxAF09EAFu%1H}t HEHHh[A\A]A^A_Íx?HEA~Ǿ+HEAFPЉPHHEHc1H+A~VH]HHEAAIcHUDIF JhH@HEHHEMfWf.r}Bf.rof(p)pf.uPzN,*XEEAD$HIIA9F|Exf.ӇH}H}H}/H=GH‹uH=j1H,H= HDH= 1 ADIE9%HMHUHuAfWɅ~ZLeE1A\$~A;^~(dH5H=ppHcHU*XAIE9uH}tHEUxwEAF~.Hc}IF HHHPẺHA9v}EE~.HcM1HEHcTIF HHHPẺHǍGA9}1uA~AAAIF J(HX(HuFH[8Ht&HA9~DHuDEFH[8HuIF J(HX0HuaDfDH[(HIHCA9~DHuDiEFӐUHSHHH=1t H[@H=A1H=1H=1H=1H= 1H=#1H=1H=71H=y1H[lfDfDUHAWAVAUATSH8IAI׃~tAHEHEHXHEfDADžAE9~@IcIH56H-tH5)Hu,ADžAE9EEH8[A\A]A^A_H5HۂuADž|H5H踂tH5H襂uADžFH5H肂uADž#H5H_tH5HLtH5wH9uPAE9IcIH<-A tuAHHIH5HցtH5DHÁAE9tvIcIth<-tdIPu@IP@H=1GEuH=1-E[H=1EAH=1E'H5HQH5HupAE9tNIcIHEHt9<-uSH D=t#H5H跀uMADžXXH={1_EH5HzuEADžHuHHEH0H=>1E5H5GH"uADžH5.HuADž\H5HuADž\}H5HuADžZH5Hu0AE9txIcItj<-tfI`uBI`H5HStH5H@uDADžhH=1EH=]1EH5H~uADžhH5zH~uADžlgH5_H~uADžlDH5FH~u*uH\ƅ8HL111{H=1ϞDžHHHXHHƀH?DhEIgHHƀHNHH1WHhHAąH=1DžLmH4HH=1辝UHw UHHwfDUHAUATSHIIH_Ht$@I|$HLAT$t |H[0HuHH[A\A]fH[(f.UHG UHHGfDUHSHHH?HHH[nUHATSIHH$f{"HsHS0HJ(fz"HHf{ tXHV0CBHrC fB fJ"HZ(HSfC B"fC"HK0HHt HYfA [A\DfDHV(f.HsHK(HQ0fy"Hz(LB0Hf{ }HV(B+ACABB"ffC"1fz"fA"HrC fB fB"HJ(HZ0HSfC LC(HQfA Hy0Ht HOfG HM+IXfA@ [A\DfDHy(LA0H?f{ HN(A)BCA1fy"fC"A"ffB"HqC fA fA"HY(HQ0HKfC H{0HJfB LB(Ht H_fG HMwIPfA@ [A\IT$H5IH=AD ޛHN0@HV0~Htrf{ ueHN(A)CHqC fA fA"HY0HKfC A"fC"HS(HHHZfB IT$IL$HN0IL$fUHATSIHLF(MHv0HH{I|$7H@HHB(HuLJ0HH9HQHf{ lHO(CAHyC fA C"fA"LA(Hq0IHHNHZ(CHSfC 1MfC"E1HC(LK0MIYHsHHt!HHfz uNHFHHuHC LMAH.fHQ0HtHJfB AL$ Hu3RDf~"|-LHfx"x3F HvHt!ftf~"ti~6fF"F HvHuAL$$8HI<$[A\)DHQ(rLHHfx"~fDfDHO0fF"fF"IL$uHf{ twHw0CBHzC fB C"fB"LB(HZ0IPCHSfC dIT$HS0E1qL %01HQHoHw(It$fUHAWAVAUATSHIIH_Hu! DfDHC0Ht#HI}HLAUHC(C1HuAԾ8I}^DIL8@ H@@HXfD` f@"H@(H@0AE fEt_HC0Hf~"Uu[fF"Df HvHt#fEtf~"|2u8fF"Df HvHuAE$LH[A\A]A^A_HC(fF"LD־8H?CIL8@ H@@H@f@ f@"H@(H@0AE IExUHHHOUHH]LeLmH II(|HBHHCLcLkC C$HH]LeLmÐUHSHHHt(uH5H=qC\H[úH5H=OfDUHATSHIHtnAD$CAD$CID$HC AD$C(AD$C,ID$ HC0ID$(HC8AD$0C@ID$8HCHAD$@CPAD$DCT[A\fDqH5H=訕uUHSHHHt*H{HtH{HtSoHH[镗H5H=MDfDUHH]LeLmLuL}H@HAUAMMHIH{HMLDDѫv<H58H=QĔ@C\1H]LeLmLuL}DH HcHf@H{HMMDUDwtZtEtH5H=)d@H5|H=5%H5H=訓H5H=苓fDUHH]LeHHIHt_ t?H{HtLH$Ld$鴥@H{HtKLH$Ld$nDLH5|H=맺KH5bH=d뇺RH5HH=aH$Ld$ʒf.UHH]LeHHIHt_3t?H{HtLH$Ld$ĥ@H{HtKLH$Ld$oD+H5H=H맺*H5H=.뇺1H5H=H$Ld$ f.UHH]LeLmLuL}H@HAHUHMMHDAF=CC:H{Ht ̡HCE1H{ HCH1fL`Et CA$HC I$C(A$C,A$HC0I$ HC8I$(HSHtEt C@BHSHCHHBXHSHtEtCPB(HSCTBxH{HoLHUDhtH5H=芐C\1H]LeLmLuL}DH5H=HE1HCHHCHH5H=H{Ht iHCHCE1HzHCASfH5H=@訏fD H5H=nqHCAH{HMHMHUDnttu*CtSt:H5yH=vH5\H=uYHCH@P@ EHCH@P@ 1 H5H=0裎UH`"@H@H@@I?LP @(@,IV瞯HxH@Pd@T@X@\ÐUHSHHHHtHH[UHH]LeHHAtDE~ HCD; ~OH52H=@~H$Ld$NH5H=HfDUHH]LeHHIuGH5H= H{LH$Ld$UHH]LeHHIu?H5pH=r輌H{L1H$Ld$@UHH]LeLmLuH IIIͅ~YI|$Ht9t6ID$HID$LL1҅A$H$Ld$Ll$Lt$1H5H=fDUH蒏H@ÐUHt=HW%<-t,<[t8<]t:H„t< uB_H„ufDB~f.B(B)@UHSHHHt-Ht H[3H5$H=3H[22H5H=UHHtD,H5H=UHAUATSHIt>I@AD$IĄt(IJBA}>B9t1H[A\A]øH[A\A]DfDUHSHHPHXL`LhHH)H)HE)x)p)h)`)X)P)H)@H󋗴HwH= 1袈H Dž Dž$0HEH(H@H0H覇H[fDfDUHH]LeH HEHcL$HBfB. z&u$EAH]LeH;xtHH56H1HDfDUHH]LeH HEHcL$HfBfB. z&u$EAH]LeH;sHH5H1$HDfDUHATSHHHPHXL`LhHH)H)HE)x)p)h)`)X)P)H)@I􋗴HwH=\1譆H Dž Dž$0HEH(H@H0L豅H H$@UHH]LeLmH I  I|$Å thE1AEHcH Di>kH5TH=hA$DfDI|$u8A$ tH5L1 A$ %HH5jL1qfDfDUHSHHt8Hcȋ HƄHH[fHH5D1fUHSH.=Hu,t@HcH D<t5KHÄtJ@ǀtѾ<uDfD3H==HuH[1H[HcHu D=eDfDUHATSAHH?oHtHHg=HHtDH5PH1'=H[A\DfDUHATSAHӅu?H?mHtHH=H/Ht EuobjH[A\H?ofDDH5H1<H[A\@UHAWAVAUATSHIHHHX HHU1HH=1*HHH=LHH5mHHHIW HHoHDH5lH1jH5 HH1UEgHE\ A_LP AG0 HH5H=讂Dž HHHHH1H;LLH =1L19E_LEv ADžAHHfz+H{8t$AIE9gLrIG`J(fWf.C0tHDH=C0fWf.f.: f.; fWf. HHLAH n1HǸ8HH! t€DHAHDHH+LH! t€DHFHDHL)H1HHv%LH5H1,ƅ HL;8AIE9gLDE LH5bH1̌ AG8fWf.  H5KEH1蕌H5ZH1而EOHEuDžHDžLIGXHL,A} HHmLH v1L17I]8LHDf.8fWf.LAH 01L6LH! t€DHAHDHL)LH! t€DHFHDHL)H1HHv%LH5H1ƅLL6H[ HHCH0HCf.~7LH 1L15FHHLH 1H1m5tAE I}8|H5|H=݌}HH! t€DHAHDHH+LH! t€DHFHDHL)H1HHv%LH5H1RƅHLg4LH5H1HA9GHH5AH1DADžEGHE~vAADAIE9gH|VIGXJ({ u勽C0\C(DH5tH]AAIE9gH}AwLAA|HDH CHH5PH=1d{AIE9gL|4IG`J({ufWf.C f`AIE9gL}̋AGLE1AIfHH;HH5H1#AIA9_LGIG`J @ttH5oH= zEuH5NH1ɆAAnLH & fW3LAH H5mH1aADž-C HH5H&AZHH5+H1A6C HH5HхAEA^H5;H1觅H Hρ&BHHH=1wH虂H HMH3 {H[A\A]A^A_C(HH5KHA<HHLH b1H1/H5H1评ADžK(AHC H5HiAH=1v1AE(AH *1HI/*DH 1H1!/HH! t€DHAHDHH+LH! t€DHFHDHL)H1HHLH5H1UƅAE(AH AE0AH HHLH {H=1.uH5H1ɂH5j;H1贂HHIH 21H1-HL-AE 0H5H1ADž .HHHHIH 1H1-HL-H5u:H1迁A^H5W:H1衁A$H5=H| fW.HHLAH 1HV,]H5|H1Dž H H|HHH=1"so+UHAVAUATSHLJƇLJHLJ to t$\f.HH uH7DAĀu8IcH DA>\A=7DH5H1 D fDDE1ǃ Of.IcH D<uDDH=*Ht/H2DAĀtDs)ErLH5\* LǃD>ǃ Av#,fHDAw IcAD=uDA.eLEHLGD(Aǃ HDtǃ HDVH5LH5LH5LfǃDDfDLH5.H1DHX+tu-tp=wHLAD=u0LLH5?H1u=v!H=HAD=uqHHuSfHcAD=!HvǃHtDA<>A>ǃHGDH5L,H5LlH5L pHX&t}ǃHcƄ HƄH&otH5yH1HoDAĀTIcH DLL t&H52H=F`LfLDžL LLI?LfDfDLhDžafLHDžAfL(LHH=LM$)f*H5$H=8_L t?LBthtcuLDžL uLLHDELX{LHDža<HHH5c1DLEHxL=AWfDf. ЍTHf(f(D`AHxLHD9HEHEf(Of(fTf(fWfUfVf(2f(fTf(%fUfVf.Hf.zLf.!Ѓ5HH51fWLTLrMHDJPH3H] AHHEȃILEHsHHEH $H=Q>1j[HR~1HFAH{AuvH=²1-[DH=P1[H]MHa13LH5L1HHDH=1ZA9?H=}K 1ZH5LH=a 1}ZKHH5ʱ13RcHHH=^ 1AZuH=ܱ1.ZH=1ZH5\LLLM$I𿐋LBB\1ۃ e tH5mL1LLAŅLLuVZLVLB H5QL1 LBJH5;LT[DL.DLLLLLBl CH5L1KH?H tHHL7L H5mLfWf.vH5RL1LHHLtH5_L1LLH5L1lLLB- tWH5OL17rXL:^H)XDLaX.H5L1H5L19H=1VCH?H tLLL XYXDLYXYXLCg)XDLvL9H?H tHHLL H5 LNfWf.vH5L1eH5L1eH5̫LVH5L18|H=>1UUH?H tHHLL t_H5KLytafWf.wkYXH5L6-YXH5LuH5=L1K낐UHH UHSHHHHt#HHWHHuHH[WUHH]LeLmH IIӍC=A$ uA$CڃIƒPIЃBHZw=HcIIUM,A$ A$ uA$H]LeLmfH5<H=TfDH=?TH‰H=14f.H=THH=1"fDfDUHWHfDHHH uHǀǀ@ǀǀ @UHAUATSHIC=CڃIƒPADHAAD$EAIXHcI\HHIDIcԾ?H A A uAHH[A\A]@lH=RH‰H=1Jf.zH5|H=۩RHcI\HbDA=@!AHcIAA1@$VIHIADž뷐UHAWAVAUATSH8H}HUHt?t#OH=lQHHuH=i1҅H}?HuH=1PH5 H}``IHXH}k{EHEpPDHLD@H@0H tH HFHEHiDUEH^HEЉ4$H5TL1]HEHP AHtH5BL1]AHEHP(HtH5)L1{]AHUzHAAPyH5/H=0`PHKHtDH5 L1#]AAIHED9`HHUHBXJ8{ u fWf.C(ztDH5L1\AŋC tGxNC(H5jL\FH51L1u\0HUrLAA{u fWf.C zt_DH5L1)\AŋCH5ʦH=K~OHKHtDH5L1[AAIHED9`LHUHB`J8M̅BHH9CufWf.C uz Ef.K(ztDH5L1P[AŋCH5 H=NCH5L1[ C H5LZHUB8fWf.HEPL~YAIHE9XL|=HUHB`J @0fWf.ztԹH5tL_ZAHUBH~tAAHUHBXJ8HX8HtBHCCADH5LYAH[ HuAIHED9`H}H5L1YL2XLU)AuH=1K1LVH8[A\A]A^A_H5iL1tYIC H5LQYnC(H5L.YC(H5դL Y(C0H5LXK(C H5LXK0C(H5`LXIDTHHuH=1JH5FL1TX)RH=#KH‰H=R1H}UH=rKH1H=V1H5LWASHHuH=1J"UHSHHPHXL`LhHH)H)HE)x)p)h)`)X)P)H)@H󋗨HH=a 1IH Dž Dž$0HEH(H@H0HHH=15IH[DfDUHATSHHHPHXL`LhHH)H)HE)x)p)h)`)X)P)H)@I􋗨HH=1HH Dž Dž$0HEH(H@H0LGH=1PHHUHAWAVAUATSH8IHUxG09HuH=_1HH5kH}WIHIVHHEHDH5;S L1sUANAVH5/L1ZUAE^EHcH]AAAAFHD9|WIF HH@HEHHEEf.ztȹDH5LTAAAFHD9}EA~XIF J8HX0Ht7HCHH5bL1tTAH[(HuEIEA9F}AH5;L1DTLRLtPu,DH=j1oF1LUQH8[A\A]A^A_OHHuH=1:FƾH=2GH‰H=>1AFAiOHHuH=k1Euf.UHAWAVAUATSHHH}uAHMxG09gExHUB4A9(HuH=1uEH5ޱH}5UIHHHEHPHHHDH5P L1RHUJRH5UL1RHUJAAHcEHE'H@HEE̋E̅t;IHE9XHUHB J0UyHx0E̋E̅uʼnH5ԟL19RAEHEUHE9P}rA\$H5L1 RLrPL:NH=-12D1LOHH[A\A]A^A_Ë@~EHEMcHUHB HUHHX0HuM\LHCHHEHCHEAH5zLXQAH[(HEyH?HELHHuH=J1iC/H=^DHDH=1H=7DH‹uH=1r|LHHuH=~1BfDUHAWAVAUATSH8H}AALE;wEnHED;``ExHUB4A9#HuH=l1mBH5֮H}-RIHHEHPHHHDH5M L1OHUJRH5?L1OH59L1ODH5-L1OHUzEAHEMcHUHB HUHHX0HuWLHCHHEHCHEAH5*LOAH[(HtbEyH?Hu뵾7H=6BHDH=1y4H=BH‰H=;11LIHx[A\A]A^A_HUBA~EHEHcEHxHcUHpMcHUHB HUHHX0H5HxHCHHEDMEHpHCHHEELHCHHEHCH$UMAEAH5HLJAH[(HDUEZHEDMEdI?LEEhHEi:MtL1:Ht H:Ht H:Ht H9Ht H9t HyHP HMH3 Hx[A\A]A^A_HHHDžDžDž ƅEEHH=15H5W: HEHHLL I$H5pHLH5HDžLLI$H5HhH5}HQHHHsH H  D E HH9HH  DE HHHH\ N @ ~[HDž ~;fWf(HgƉ9 }ыH Dž/fWf(HOƉ9|YtǺHr;H=k4H‰H=ϑ1HE.HHA Ǿ9INj Hc1HǾ9IƋHc1HǾ[9HǾB9HǾ)9HǾ9HDžILHHHHHHHHHHxf.H5L'yH5 LH57L{H5LH5ŏL1sLLLH5cLfLHL?~; ~H5;H1LH5:LCDžHDž;HDžHcB8`HHcB 8LHLI~;~H5H1tLH5LCDžLsH5LDžHDžHDžHcB0HnHHcB 0LHL x; ~H5H1LfHL19;~H5L1LPHL[t+H$H +HEH5.L1,HcB0t%HHHEH5L1HHcB 0\H5 LDžLCHxLLHLcH5L1JHcB8H5L1'fLH5L_LHHx tH5rL1LHVH5L DžL=HxLL HL]H5L1DH58L1HL ;HcH HH H HHH%H5LL1H5XL1n8H5LLHHz(tH5܍L1+LHH5L1RH5 L1H5TL1IH5ۊL DžH5L1H5ۊLDžH5yLLHLU}~; ~H5QH1LHcHHQXHHxtH5L1LH Z9;tH5NH=ڌ+ LHmÅx;~H5H=*~(HcHHH51LHHHHHs HtH=- 1(HHp(HtH=E1(DHRH* AHHEILE HEH<$H=p 1(HmS~=H]SAHSAH=1<(H=1((H|19H5L1;H5+L1H5L\DžH5kL LHLx>;2LHcHHS`HHxtH5L1LH+H5džH1H5H1\H5KH1 H5ˇLHDžH?HDžDžH5LDžDH=~1Q&A9DH= 1'&H5^H=- 1&H=~ 'H1H=1H5؈L1H5L1:H5~H*Dž=H5^L1dH5L1NgH5Lu8DžH=|19%H5L1H5|LEDž&H=|1$H5ȄL1mH5ÅL1H55|LurDžH=\|1$SH5{L1I H5L13)H=|1;$H5|H5WL1F9H5L1(-HHH==( 1#HWUHAWAVAUATSHHHHq| HHU1҅xG09HS4s0HH=mHHHDžDžDž ƅEEHH='>1"H5S' H2HHLLI$H5hHVLH5H!LHH3HHHHDEL# HdyLEH=HHEH=1!~ H HǾ(IHcHx1HDExsI?LDž ~NHcfHcHHC HHHPHH 9}HLH HLLc ~;~H5H1m HcB<(IHLLFHnDEx'Hc HHA HLHPHHHc B(H'HH5dL&H`HLH5"H1HS4s0H;HHtu*Hx HMH3 H[A\A]A^A_fDH5H1f.H5ɃH1L"DEXAHLL LDfDHHLL ~;~H5܃H1rH LLo~;~H5H14 HLHTAD9|~A~HH5LA3H5H1fDH5AH1Sf.H5тH1H=)11GH=vH‹H=1H5fH14\H5(L1 H5L1H5|L1x&HHH=! 1Hf.UHAWAVAUATSH(HHHu HHU1҅xG09kDExHB49HQ4q0HHR2HHHDžDžDž ƅEEHH=1H5h H+HH)LL-I$H5}zHLH5ŁHLH HH{D EkHHHH+DE ~ HHH Ǿo!IHc Hx1E1LLU~; ~H5vH1]HcB< HcB AHrHH5|LqHLLxH5H1bfHP4p0HE1HHt$MtLEHr HMH3 JH([A\A]A^A_fDH5H1_DHpLu ALHE LED)H4$DH=j13xjDž ~VHcfHcHHA H 1B<"HHQ9 }DžMHLHHLHHLc1DHHL9Q~; ~H5H1HcB< HLL_~; ~H5H1HcB< H0HLHHxLHPHHHn9~HH5LOH5z~H1DfDH5~H1f.H5JH1!f.H5 H1f.H5~H1_f.H5Q~H1?PH= 1F1\H=n>H‹H=|1~H=nH‹H={1kH5|H1H5N|L1H5|L1:H5tL1xHHH= 1vH)@UHAWAVAUATSH(HHHLH3n HHU1҅xG49HP4p0HHHHHDžDžDž ƅEEHH=_}H5 HG$HHLLI$H5(sHwLLH5gHXLHHHH_HHDEH/kH ILEHEH=|1{~ HeHHvE1E1ILH H ~;~H5zH1LH5jL,E~H5;|LD E~E9uH5|L1LLLH5uLLHL_7H50yL16!HP4p0HHHtH,k HMH3 H([A\A]A^A_fDH5_{LjE~H5E{LD EEHt HD0Ht HD:AHLH HLHHLc%HHLa ~;~H5xH1HVLL~;~H5xH1HHLiufWf.sH5zH1BHr HJDExLHPHHH5AD9|A~H{H5L"H5MwH1H5wH1f.H51wH1oH= 1v19H5yL1>H=gXH‹H=w1+H5uL1+H5uH1OH5wL1H5mL1H5xL1H5xL1HHH=' 1HAXUHAWAVAUATSHXHDLH>g HHU1҅xG092DExHC49DExHB49xHA49GHS4s0H1H]HHHDžDžDž ƅEEHH=Ax1* H5 HHHLLxI$H5kHdLQH5`H/L2HHHHHH[HcHQ ILEHEH=Su1 ~ HHǾIHcHx1xrHDžDž ~SHcHcHHC HHHPHH 9}HLH HLLc ~;~H5qH1 HcB<(IHaLLHx'Hc HHA HLHPHHHc B(HHH5lLHHL3H5qH1 DHP4p0HHHtHb HMH3 HX[A\A]A^A_fDH51uH1f.H5pH1oL AHLH HHHHHHHHHLcHcHLcfHhHL! ~;~H5xpH1莿H&HL~;~H5pH1LHHL5ufWf.sH5sH1H>HHLuf.sH5sH1HHHHLH HHxLHQHHxHHQHHxLHQHHHIAD9A~HH5L2H5]nH1ýH5rH1蟽 f.H5AnH1f.H5nH1_H=1f1YH=^^H‹H=q1H=^4H‹H=p1BH=^ H‹H=jp1H=e^H‹H=p1H5XlH1膼LH5lL1pH5pL1ZH5VdL1DHHH= 1BH UHSHHøH;1VNEHHtHHt HHuH{`HtfDHGHC`%H{`HuH{ HH101H[Hx] H H=ypH;苽>f.UHSHHuVؽHúHt?1VNEHx,H50p1袽HCHuHIH[CHC HC(HC0H HC8C@HCHHCPC\CXHC`ClCh1HCxHCpHǃHHuH{蝼GHNo errorH@HǃHǃH1UHSHHt81VNEuH[u4H[ H H=n.H;һ腻H[ H H=nH;襻X@UHgHÐUHH=^ UHH^ ÐUHH]LeHHI%Ht HX L`(H$Ld$fDH@ H@(UHSHHHx0HtֺHC01H[DfDUHH]LeHIHøH{0tH$Ld$H5mL蛺HC0HfUHH]LeLmH %IDhv!pH=_mH‰H=\m1A\$DH]LeLmfUHH]LeLmH IHIċ@uH]LeLmfI|$HLܺID$ HtIt$I|$(ЅuHwY I|$H3边H;膹It$0HtI|$袹I|$0H]LeLm[UHHHXH`HhLpLxHH)H)HE)x)p)h)`)X)P)H)@H0Dž0Dž40HEH8HPH@ÐUHH]LeHHIUHt HXHL`PH$Ld$fDH@HH@PUHH]LeHHAHX8D`@HVH$Ld$DfDUHSHHHHHH=5k1IH[AUHATSHHHHPHXL`LhHH)H)HE)x)p)h)`)X)P)H)@HI@H Dž Dž$0HEH(H@H0HAT$@It$8H=ej1ID$HHtI|$P茶UHH]LeLmLuH HIIIwHHt@hMtBlA$MtHBpIEMtHBxIH$Ld$Ll$Lt$UHH]LeLmH AIEx<rHDgHHLIEXH]LeLmf.H=iHDH=i1fDfDUHAUATSHIIM(I\$A|$1MEMt"H=+iNHLH=i1A}hA|$HI}pkHSHHCHBHSHtHCHBAMh{aHI}pIEpH????????H3H????????HKH????????HSH????????HCHH[A\A]H=LhoHH=h1HSHNHCIE`IH=h6H1H=Bh1UHAVAUATSIąDs It$pI|$XHDYHH~AH=gHH=oh1A|$hMcLKHHL?HG1MEMDsHCID$`HCHtHXI\$`AD$hAD$hA;D$l~AD$lDHI|$pHID$pI|$x]y ID$pID$xHC [A\A]A^f=H=fH‰H=cg1f.CH=fHH=g1FH=hfHH=g1UHH]LeHA~OA9~$sH= f-HDH=g1A܉H$Ld$DqH=eH‰H=Kg1fDoH=eHDH=f1VUHH/^DUHAUATSHH]1HHIŋPlpƋx ÅztII ÿHƉLH H xII A}vHƉLH H II ÿ<OHƉLH H +II A})HƉLH H eII ÿ<HƉLH H II A}ܿHƉLH H II ÿ赿HƉLH H II ËMغMb)ʉ}HƉLH H 蹿HH H H H[A\A]>H5zeH=~eiUHHUHt%"t0,H5H{XC`HH[UHAVAUATSHAIIͅuDcCH{ H{(H{0D;#H{8HtH{@HtH{HHtH{PHtAD$dA|$eHC8;ǾHC@;ǾHCH;ǾHCPH{LLD6&tet^uqCCIcL$H{8HHCHphHL蒢H{@HHCHppHLvC`1҉[A\A]A^fDfDH5/XH=YufDH= X_HDH=X1dfH=W/HDH=jX14{ǾHC(={ǾHC00{ǾjHC UHAWAVAUATSHHXAHPLHGLwIV0HIN8HIv@HIFHHIVPHINXHIv`HIFhHIVpHINxHIHIHIHIHA HG H HW(H(HO0H0Hw8H8HG@H@HWHHHHOPHPGXXDoEtfE~=D;4HXB;BumHXAHĸ[A\A]A^A_þH=U(HDH=V1먾H=UHH=V1vHP1DE~H@H;u.DžlE1ÉD=HHBDfWf.A$lIŋD9lHPB\~;~'H=TAHڋlH=GV1HcHPL$fWfA.$zdH=THڋlH=8V18NH=uTHHHBDlH=:VHHBDHXHCH8HphHCH@HPpH{HP1IHCHHHhHCHHXpHP1HX6EDE~jHPߞJfWf.zt3f(fTf.wEHcEHH HP H9uIcHH`HHhHH`HpLd9HcHHHEhHuHcH4HL,AEȉ`LcHJD9;t1FLcHJ fDIHHIID$D9;u9`OHc`HHHJAMhHEh9dAHpA)8HpHH`3pDžtDUEE1gDfDHHcHDH5BH=CMEH5BH=CLfDUHH==- 1Ht |UHH]LeHIH= - t!H=- LH$Ld$&|fD1H5H=C@1HxHh[A\A]A^A_D*EH~'ttH5k>H=>Md$Le]M~MLAUt tH5+>H=>WM~E1H}cHM11fDfDf<H5:H=(<E뇁AEA9~dI|$A$EH59H=b:"AH59H=:A$~DDDHxH59H=9<۹=A$$A3UHSHH1H{teH5B9H=:nHH[DfDUHAUATSHIHH91=A$I|$tqH58H=:H[HtNE1fIUH[IHt0vHHHCBHBI|$uIT$H[A\A]DUHH]LeHIHH9t%0HsI|$H$Ld$H$Ld$DUHAWAVAUATSHxHxHpHhHD!Eu>Hyt8H57H=e99H=7HH=u91HhD8Eu^Hxt=H57H= 9Hxt1HxHpt1HpHx[A\A]A^A_HhLrMZAt)At#]H57H=g7Eu=H~tH50H=1KLHpHh[A\A]A^A_D"EH~[AtAt+H5/H=0LsEEMeMA]t!tAH5/H= 0贾Me€}tELL HDžxE1MH LDMLDHAA$)ЍfANAL)fNHHuHFHx.IuMvMd$ILL dDHxHx)ƍff.Q)ƍfQHHuHIHu@Hzt H5.H=/HHHpHh[A\A]A^A_D1Hp)HpHxHBHHh[A\A]A^A_ÅRLL HDžxHEE1@MH LDMLDAHA$AADfAAALANDfKAAHHuHCHxtkHUHZMvMd$H]LL ZEff@ f@f@f@f@H@HCDHxHxHzA4EDAEfEfEfEfEfEfEHELurAE=xGfEfEfEfEfEfEHELe]DHDžxػ1G4(tFLH=D 1UHY HMH3 H]LeLmLuL}fDGhHNHXVL5  »AD=pLn~@AD=HVLpLιfDfDHHƃQ;@~YI:@AD=u։HƄpHlL[A}QbPlAGh=CHJ 9,fDAGlHcAD=pHcB4 @AD=CHJ 1LpHHHOZBt z1@AD=uHcƄpHlL}lAGl=HcA<WaAGpBv IHcB AD=pDCIcN, A}@AD=CHJ LpLκHHƃP{@~DI9@AD=uHcƄpIwtLDHL@~DHL@$AGt=AGxA}.tgIcB<")1HX<@Lp`LpmLp>AHHcB AD=pQHcB AD=A@HJ4 A1HHHOABL zAAD=uHcƄpIwxLDH`}DHAxCHI AпUHH]LeLmLuL}HHHhIԉdMH HHU1LCK{pItUSMHhH3H=1跥H HMH3 H]LeLmLuL}CtPSlƒPDdEMeAAHKHXLp#fAID9dAŋSlA9|H9uuE1stHcAHcHXQL]HcCtƄpLsLL{tSMHhH3H=1蠤fD1Z]f.UHAWAVAUATSHIH`HӉ\MHO HHU1HBA|$pIt AD$tP~LAT$IH`I4$H=1H HUH3HĘ[A\A]A^A_AT$lƒPD\E=MuDžlAIL$HPHpHHHH@A9|LwE1At$tHcAHcHPLHQL\IcD$tƄpLr.L<]H)pH@t[CHÄuDHH\HtE+H@\HH{Et{HHH! t€DHAHDHH+HHOv7H5H= 菣H\HPH{H\ELHHylIl9\AAT$ltH5VL\AT$MH`I4$H=11袡-H@[HHJ1yAT$MH`I4$H=1FNZUHAWAVAUATSHL=% IHE1H@HH=H@H5xMZHHHMDžP 该Iĺ 1HZL@LMI$HtI$HtI$HtףI$HtţI$Ht賣I$Ht衣I$Ht菣I$Ht}LuHHE1HRLHUI3uHĸ[A\A]A^A_MnHTI$IEID$IEID$IEID$IE ID$ IE(ID$(IE0ID$0IE8ID$8IE@ID$@AD$HLuLH=1JI\$IHEID$IAD$QH.nHH=`1LEwM$1H5=LOQM$H5L&(M$H5LM$*H5LM$8H5LA$A$A$E$E$H=L7iI\$RTfAD$RAECAD$UAt$RH=WHAt$SH=lWHAt$TH=WWH|M$H5]LM$H59LM$*H5L{}M$8H5LRTA$A$E$E$HH=軜LIT$ZH HTID$ZIEHBAD$jH}kIL$kH(HdID$kIF,HAAD${HOkID$|H0IV4HtID$|HBH0HABAAƄ$H kI$H8IVHHEI$HBH8HABAAƄ$HjL8H0H(H H=1螛A$VLI\$VTfAD$VAECAD$YM$H5LM$H5LtvA$A$HH=rA$xI$A$IH H5\L}A$Ǿ1I$A$IH(H5L8A$QA|$TAA$ǾРI$A$IH0H5LiA$AL$VFAT$TAMEMtiɋPH@H=1裙RIR8SH@HH=y1bh8RA$ǾI$A$IH8H5L}A|$WGA|$XXt%PH= 1HHRA$A$A$ǾUI$A$IH8H5LA$A$A$ǾI$A$IH8H5EL A$Ǿ賞I$A$x葞I$A$IH H5L(A$ǾJI$A$IH(H5SLQA$ǾI$A$A$A$AD$V???ADŽ$ADŽ$%PH@HH=1YUHAWAVAUATSHH HDHHEt D@LEuHH[A\A]A^A_H訬,H膬Ë,‰‰HH=1-,ty諜H 蔜H,],,9MM}ǾSHpHuHcBA H9uH1@H;UuD~%L1HcBHH;DuDDAD9,IcM$"HAID9,A$~9,}H5H=HcHDH9 H5H=赌|OH5H=蘌QH5wH={A`UH5TH=XH wHkLcL[ELE,)}MDuHEHHUHHMHuƉhLHHHܟẼnv|H5H=艋fIADD9A|$t9,}LHHDHpẼnwH= HcHoaS"AD$nEfTDMfT tDf.AD$=AD$/AD$!AD$H跌HcHpHHEHMD1E!D9,IcL$H8LHuD.ERHhLH`LIcՋH0tHcЋHhAEHUHH0Ht HHhD4D2Hm5$AWH IED99,}AWuHϚH`LHcЋH`>H5#H='DH=Y1辇H=踈HU,H=51H5H=ĈUHAWAVAUATSH(IuIqELVDUEE9E1LuLAE1HUHU~D1fAtE11HULj}rtAIc׋EADAHÍCA9}E11HUuL#}rt AIcNjUADH([A\A]A^A_úH5H=s趇D]tE9~H5H= 苇9]|.HUE11ɉL裛E1}rt9]|%A\$AxHỦ+uE11L肚+]1LL辙AFUHOFf.w 1f.fDfDUHAWAVAUATSHIGHtGLuLH[A\A]A^A_鲁H=1TLlplLnphǾʋHplþ诋HP蜋HH艋H0vIƾgINjlLp9l|dLpu؉LuELt V?f) efTf.E6L 9l}DhE  ?f) LL}9h|XLou؉LysELrefT f.EL|9h}Džd 9h|:LEoudHcdHHpH@9h}HcdHuHHHpHEADž` AD9h|DDLnu`Hc`HH]D#DLnrCAD9h}Hc`H}HHHEHEADž\ AD9h|]DLJnu\Hc\HH]D#DLqEDLq]\[AD9h}fWɉL]mfT 8_f(9h}ċd`\EfWf.Y <@LlH5iH=[΂]~OHpAKxsLlY8^@XxCAHD;e~HpHH FHu;d~SHpAAHD;dt4C(f.Cs亚H5H= AHD;duH}HH Hu:`~PH]AAHD;`t4C(f.Cs亜H51H=K薁AHD;`uHc\H}HH P:\~PH]AAHD;\t4C(f.Cs亞H5H=AHD;\uDlEPLgzLPAHHH0ILH9lL|kuHPHH믺LjxLya`Hc`HH]D#DLmfW9CDME3LpLEEHE@ELLLkÅLLfW1fD@fTS9_f(H9ufWf(fTf(8fUfV1f.B^BH9uE1fW11fDATHcLHEEu(ADfT8f.vAf(fDfDH9uf. 9AvAGfTo8Hc 8H0Y 1f.vADfDADfT18IcD 8H0Y Hf.wB9}E1fW11DfDAtHcLPA u)ADfT7f.vAf(fDH9ufWf.HBEHEE9El~PLPl‰I;t&AD$uLwI;uHpHPHHH0LzLH[A\A]A^A_auLuIcHPH0 ƅ11ADfWfA.Dzt HLHAH9uuLtIcLPAH0 …{11ADfWfA.Dzt HLHAH9uH" b5@e58:858%LpLELE5@HEHEDždDž`Dž\EUHATSHAHED;#Cu.H{ tH5.H=YB{CHCHC H{ 4KA9D)A9CHCHC D9t5DCH{ HC H@0HC CD9ufDfDHC H/[A\H5tH=zACH{ t'fDHC H@(HC KD9tACH{ uߺH5#H=a7zD~|3D)ʉD)9sHCHC D9DȉCH{ t,HC H@(HC CD9ȉCH{ uܺH5H=yA9H5}H=yHC HH5XH=lyHC [A\ÍACH{ t+fDHC H@0HC KD9xACH{ uۺH5H==yH5H=#xH5H=xH5H=x@f.UHH@0t!t`H5lH=RIx1HW`HHu#yHt\@@f.B@HGHHuHtGHW`HHu5f.Ht!B@f.@@HGHHuHH1ÐUHSHHHtT1H[DUfWUtHHSXHHf(\@@ "1fTfTX1^H[UHHt\B0t+H5H=8#wfDfDf.0!ЃHf(fT u0X 0YHB0tLt8H5H=vfDfDf.0{X1f.\1f.DUHAVAUATSIIHI^HtfHC0IFL#Mt3L/PI}L @HFHCI} HsHuI}8H I^HuAIFIFAFIF [A\A]A^úH5{H=uDf.UHH]LeHIHHt%HLHH$Ld$xwH5H=(ufDUHAVAUATSI~;wP~H5H=;tHcIUXHL4MAN M9$IVxH<IHIH=HPxIdžIFxAMpIvHt>HFIFI} IvHuIv HtHFIF I}Iv HuI^(HtpL#Mt=L-PI}L$HFHC I}zHs HuHC8IF(I}@HXI^(HuIP@I~htfH5kH=sE&IcHIEXL94tH5?H=SsIEXHIEXAUTTEeTI^I}LAMtHtQS~&CȉCu>IIvhI}mH5H=rCȉCt[A\A]A^úH5H=rM9H5nH=rIVxHIIE`IVxIHIUhH5!H=5rYUHAVAUATSIIHA;]LhHI;E tH5H=qHC0HIE L#MtL*PI~LGHS(HH;Z0tH5hH=|qHS(HC0HB0HS0HH;Z(tH51H=EqHS0HC(HB(HFHCI~HsHuI~8HAM[A\A]A^þH=pH‰H=1H{(AMHC(I;]tfH5H=pHC0IEHS0H I;]tfH5RH=fpHC(IE?H5-H=1Ap(AEIE aUH(sH@H@@H@ DfDUHH]LeLmHHLHLpLrkH9H5fH=L@zoHDžt9}A(A$zDLLpHB0H]LeLmfDH HcHf||lDžA$uH@0tlt{/H5H=nZf.DžpDžpDžpDžpI$HI$HH5H=w<nZDfDUHAWAVAUATSHHELEuLHH}AE8EEEAE1%fEfAHE9|IE`HH0fWf.ztۃxxf(MW%Mf.uuzsf(fT& 8'f.rAIc,HMAHE9}}tbuGAE0t[^H5H=lEHH[A\A]A^A_DYHPXMM EtHuD[>EEf. &zt*MMf(\M^Mf(M!$\/&Mf.of(=$YEXEEREf.%z=*MMf(\M^Mf(M#X%Mf.f(#YEXEEEH5H=kUHAWAVAUATSHhHUHMLAEHEEeLLHH}LhtH5H=kLD9HcIE`H@PEE4HMLLuAEEDeDex$DEHMLDLsÃuBAE0FH5QH=zej}tEEs;EjEA;_ufHPA;BHЉA9}HcL$H5H=iHEB E9]HcIUXH‹XHHXMCEe0A-AyH5eH=yiEe0}'E3!\E^EYEA(AfWf.s(H5H=pip}AXHE}Hh[A\A]A^A_úH5H=Chy+]HcIU`H‹XH@XECH5hH=A|hEe0At_{fWE}EH H5 H=Jh*ufWf.Ef}HEILL$D9H5H=pgp}yAXHEEEH51H=Eg4}HEIL/fWf.H5H=pfpfWMf.XHEILEEHEIL>AAfUHAWAVAUATSHILE~HAFLEI9~t"H5H=8,fAD$D9taA)EA_VkIH¹fAD$BH9uLDLFLgE|$MA9L$t0H5H=eAEDfDIL$(It$ ID$B( DLg!ID$0B(DL^IFXHID$8HHBPIFXHID$@HHBXHIE9}]ąAGLcJAHE@IL$(It$ ID$B( DLID$0B(DL\IF`HMHID$8HHBPIF`HID$@HHBXAHIHHMD9}xAdžAdžID$HII$I$LI|$]I|$3fI|$ )fI|$(fI|$0fI|$8 fI|$@fI|$XeI$HteI$HteI$HteI$HteI$eI$tLI$eI$ueI$HtceI$HtQeI$Ht?eI$Ht-eI$tcH5H=bI$tdH5H=bLdIFH[A\A]A^A_úBH5lH=tbT'H5OH=cbAgIqfDUHAWAVAUATSHxIHHhPHpHLtHHxHHxHzAE|EAU9pRHxHytH5H=aHxHx tH5fH=xzaUtd+EHHHEEAHEHhHAXHMHX P(UP0UD`H9uf.Euzf.Mz tDfI}  D0XE@UPHxHQHPHAcD9t(I} D0D`HxHQ HPHA EIHEHEd9EtzEIB8IHMI IB8cD9}HhHA`HMHXP UP(UD`HHxHz(tH5H=_M9pE9ptTp)ÅE{dIH‹E1fBH9uLHhp@LxaHhDbHD;etH5 H=E_E~_DH III HhIHh>XHA9}DtE~{AD$LcJA@IIIA DHhIADHhBVAHID9t}IDžHx[A\A]A^A_ËtþQcHEAcHEHcpHHEpEHhHBXHML<I}@ IċuHhBIHHHpI} HI$H_AGAD$AGAD$ AG AD$ IG(ID$IG0ID$ID$ HMHUuHhIAƅ~K1DfDI}2 HMTHMHTHPIT$ HPID$ HÍCA9}IG@ID$(AGHAD$0HxHB(ID$8Lb(MHmM9MH}^H}^I$H5HH=:\\:thH5&H=:\E}|EItjH5H= \ItkH5H=[ItlH5H=w[ItmH5H=k[pAM|DtAA\$`I`I`I`IE+pHLE1ɿ^HhHBXH 8IA 2IHA(H:IHA0H:IAH2AHHIE99p}HhHA`J IA2IHA H:IHA(H:IAH2똺dH58H=LZRH5H=M/Z{r_IiH5H=rZfDUHAWAVAUATSH(H}HHE~;wP~H5H=YHcHMHQXHHH+CHEHtH5LH=`YHUHHBXL`ML9HMAHHU;B|tH5H=eYHCp HXpHHt/HCHuL9t!H5H=@XH[HuM.LeHMDaHDiLHEHxp,HMHYHu"JSKCH}H[Ht*3A9}SD)KCH}H[HuHEHX Hu6SH}QH[Ht 3A9}SD)H}PH[HuHUHz(MA]9]Iƾ*]IHMLa(M H}*AI$H}6IcHEHPXHڋ@HHMȋABHUHBXHAD$BHMHAXHAD$ BAT$ AL$AD$DHEIL$ 1Ht(1VADHAIDHIHHuMLDH}?$AD$(DH}LAT$0DH}JPMd$8MLXLXHEH@pHEHHULIt$HtJHFID$HMHy It$HuIt$ Ht%HFID$ HEHxIt$ HuI\$(HtvHC8ID$(H;t?BH5H=U%DfDHFHC HUHzvHs HuHMHy@HXI\$(HuH([A\A]A^A_úH5sH=UHMHQXHUDC\%9DsdHHtyWHMHHtdWHEHHtOWHUHHt:WHMDe@ZHUH)ZHMHZHUHYHMHE~pE1HUHBXH 0HEHA :HEHHA(H2HEHHA0H2HEHAH:AHHE9uE|AEMHUHB`J4BHHHUHVHMAHHHUHHV HHMAHHHUHHV(HHMAHHHUHVHID9uH5WH=kSH5:H=NSH5H=v1SfDfDUHAWAVAUATSHHIGTDgPLoXEGP{PǾ'XHCXMtHxIcHIu@ LTsPA9}/HcHHCXHHSXCTD sTHA9|D{TMcIHSXBD*CTI|t<H50H=DRHSXADH{YIHCXMdE<$Mt$MhAFAD$AD$ID$ID$ ID$(AD$0IF8ID$8IF@ID$@AD$\1ID$`AD$HID$PAD$XHp@ID$hID$pHChID$xIDŽ$H{`HChLLchCpCtCxMttAFLH[A\A]A^A_C$GPA9-+H5H=PH{HID$hHHcP@1e OLc`zAtvH5H=wPnAD$AD$ID$ID$ ID$(AD$0Hx0t+HID$8Hx0tHoHHTf.UHAWAVAUATSHIAIυ;wPHcIUXHL$M&AD$M9)IT$xHI$HI$HHPxIDŽ$ID$xAMp1EDfDLL%ADHÍCA9}H[A\A]A^A_úH5H=X O$H5H=\N,IUhbI$IE`IT$x7H5H=H[A\A]A^A_NH5yH=NH5\H=pNDfDUHAWAVAUATSHIHuDwHDLHt8H5 H=!NPQIIEID$E|$Et$C\7;SID$*SID$ SID$(SID$0RID$8RID$@E~}E1IEXH 0IT$A :IT$ HA(H2IT$(HA0H2IT$0AH:IT$8HAPH2IT$@HAXH2AHHE9uE~AFHcH4E1AfIE`J IT$A:IT$ HA H2IT$(HA(H2IT$0AH:IT$8HAPH2IT$@HAXH2AIHHE9uIID$HAD$PAD$TID$XID$hID$`AD$xAD$tAD$pAD$|IDŽ$IDŽ$IDŽ$IDŽ$IDŽ$M$A_*QI$IcHx1VADŽ$ADŽ$IDŽ$IDŽ$IDŽ$IDŽ$LTI$IDŽ$IDŽ$IDŽ$PI$xPI$HEI$OQI$1@I$ ADŽ$(ADŽ$,ADŽ$8ADŽ$<ADŽ$@ADŽ$DADŽ$HADŽ$4ADŽ$01LbLH[A\A]A^A_UHAWAVAUATSH8IHuHUMDEDMEHI8]IH}HE8HHIE11@HcH DLHcLH8D$AEDH[0HSIHEAF;EXHXE9fWf.wH5H=g9#H Lf. -@:DuEEE.DfDMf(fmMfWf.yILpmf.-zt ^pILhEf.oz?^h.Uf.QuMFfWf.H BDf.YU\x\]Uf.u-DEE CLfWf.Ef.YU\]\]H5AH=7f(f(\h-f.Sh9f(p\gf. pAFHHU9Emx\EEVAF9E m\mmCL>XYJ%f.}umzkf(fT}X \Y!Bf.CfWf.wpgH5H=H6f(\X%sf(\Xp1f(hWf(ILp]f.zt ^pILhmf.-zL^h;H@7H87H07H(7L7H 7H7H7H7H7H7Hz7H[A\A]A^A_4H5zH=ϴ5CLHBDtGH5BH=4HU H BDAfWf.OH5H=O4HEfWf.w><H5ҳH= p4CLZEHHE Ef. 8H5{H=4CLH BDHBDf.q_YKH5'H=|3HU HBD&HA0tJH5ܲH=z3HHHHILH\B8HHIL HILH\F8H{(f.f.LYH V21LfDfDKx{pH6EH2HDH+KtL$|$L,$LLLH=1*U2H HEI3zH[A\A]A^A_HPHLdRH5H=+LH B21L1fDHPHL6fDLuH 21L@H«H/fDHPHH b21HǸafLL+H 21L145DLH JfUHAWAVAUATSHIHHH EUDž,HMHHEHHUHHDHItH5ܩH=)I}`"E4E@IHx0t?A,@ADž,Hp8LP0ADž,E0EE4Eu!A}pAHA4A4L\ADžHADž4IHBHt,9D,$IH8HDž$UI8 I[IIHHB8IL肺f(I@0 I@@f.vH@I8$LA8Z A<r IHx0A,n ADž,Hp8LP0ADž,A0A8nADž<ADž8IH;~V@$*-HI x-Y f.r 1L\IH@Hf.v!L IHHHf.X t7'-HI,C*Yf.=IHHx0tGE,EADž,Hp8LP0ADž,E0EIADt@ IxZ L# DfD$LI8+L…tt I@ǃ@@t H5iH=}%H5QH=e%IH5+H=/?%A<t3ADž<ItH5H=$ME10AD$LCHA9D$LID$`HIzuՃzHuϋJZ b(RPTKBIHAw*f(\f.rf(Xf.nf.d\Xf(\f.rXf.If(f(\8f(l\E8f.Mf.8E8fT8MfU8fVAX00CHA9D$LVDI IDpHI0@PI8~/EN A0DH=BH!I@H:IIHHx0t]E,EVADž,Hp8LP0ADž,E0EX $LIzhtCA, ADž,LkADž,$LR4IHgIHx0t>A,ADž,Hp8LP0ADž,A0 I@t ,u[A, ADž,MEQPAAyTAyXAy\ADž,ID>E~5E,EADž,L_ADž,IL5E8EADž8I@XEEADNAMI~H95HcHHVX1fHxH9~A9"AyT A AyX Ay\IHIx8xX1LqyfDfDH5tH=I8-f(H=%HNjUH HH ЋUHH!H HH0%f.x?IHDH5ǞH=1I1H=t1qH5H=A<H5iH=v}qH5LH=`InIf.@@[H5H=l%IHf(\f.rf(Xf.4f.*IEeAIwHD9IcHE1E1f.AċwHHD9|LHGXH yuIA;BuԃyHuMAIcE$IAċwHHD9}E~'LDUL]II8~IXItL E@EEDEhIHx0teE,EE@EADADž,IHp8LP0ADž,A0E@EI(EDMAVHUE~E;fL~rH5H=,IcIV`HC xK(pCPh`hXC EOEETIxLdLO7I:L$LIDž,H=g1;H5ϚH=9IHH9tH5H=@E1DSLE~wAAfAID9cL|ZHC`J0xuP X(PHHXC0 =H5H=m&AID9cL}I8~ EtA`DH=d1HH9dKH5H=˟GH5H=H5pH=ښI _f(@\f(f.f(f(  ]f(@\f.kf,H5H=1H11H}HI YH=՚HH UERf H5H=E*HHDL葬ELPELHPLwHLe…/I8ADžDADž@H-fDH=1H51H=ERA(IHЃ:~L=IHHz0A,ADž,Hp8LP0ADž,E0ErI ~ 1LIHt IDžIHtmIDžH[A\A]A^A_úAH55H=gI{@H5H=;,N$H5H=eFH5ޕH=aEH5H=5DH5H=HLTAA@OH5iH=Ė}H5LH=`IH=Ŗ1IP$H=1IH$xTuxPxXHDžx\^ItH5H=I9 L|IIHHDžvH5_H=zsUH5BH=xVI IL0MAyX3L TMIxXLEMEQPp\ f.`pf.XXf.p!EEZ,I8`xUDLIHEHB8AF0 I@@f.PvP@@IADžDADž@@X@0DI8~pXUDLIHEHB8AF0I@@f.HjH@@IQI8 I ID`\IhH`LɯHLI8 HcEIUXHHHW H{/ H{tH5H=I} ½HCDeD HCUPHCx@HC`HHCH@HEHC8AF0*  C@f.Pv PK@HcEIUXHHH H{ H{tH5H=I} HCD HCUPHCX@HCpHHCH@HEHC8AF0  C@f.Hv HK@AH E ADžHADžDADž@(,0H=A:H5H=`f.xxf.`!EXxEXf.+H5)H==E`f.x Kp\f.`xf.`!EXXf.r4pf.r&Xf.p!EhH5fH='z H5DH=ݕPJH5H=+IuH5H=IH5ύH= I]f(X@f.-f(f(²DHA_f(X@f.L `H=M1 H=\1 oIPf.H@H@I IHf.H@H@IIE`HtH5H= IE`A4LL88H=r13 IHe8ItH55H=_I LaDIIHxX+8"H=:1 IHI]`E1Hu 1fMt*LL3Lgu3L詖AMuI8ADH=1@ Dž,oH=k% I:$H=,1 fH5 H=$4 XI8H=Џ1 I:H=~1 IH5H= H5H= H5sH=ő I H=,1 IIH=E1I`IVH=1I.tH5H= I8qH=1ZINH=׏1@xXI8H=1IIMADŽ$I$I$E|$HE~(ID$XHHBPHBpHA9t$H}Et$LEAA/tEH5H=pZAIE9|$LQID$`J0CuHCPHCpXCPrCpI8H=1INH5H=H=ߏ1IaH=@15H=1kI8~H=҈1lI}I1~ I!I8/H=1 H57H=KIFLH= 1IH=1Dž,H5͆H= I1H5H=ΎkAAEAHaH5[H=oVHf.C@C@hDH=sH5H=ҎPf.C@C@UuH=M1 H5H=EAHH5H=^H5dH=!xH5GH=[H5*H=>IH5 H=!!UHG~3DfDHGHcHGH9w}GfUHE1ҋWAfW7UDfTf.w\AHGHc0HGDHWIcʋ2HWJHAHD9O|CfDL6HGB f.zuHGHc0HGAHD9O}DW@UHSHHHH{H{ HH[DfDUHATSHHAE;7zIcH4HHCEf.uwzutCC9}3HcHCHcHC HSHcHcCHSHcCHHKH[A\DH5KH=OiHcхtHCEH[A\fCCHSHcHCD$@UHATSI~`;7\HcID$x-A;\$&fWt HcID$[A\fDfDqH5H=XfDoH5{H=8fDUHAWAVAUATSHIEIH9AA;Et H5-H=bAM~NAAfDIEB LIEMBY `XLAIE9u}H[A\A]A^A_ú H5H=ފm]UHAWAVAUATSHID'EE1E~wIcL,fDIFB(xA;^~TH59H=Qt(HcIFD9$tVH5H=\AIAuE9~t&ZH5H=AH[A\A]A^A_H[A\A]A^A_úPH5H=nE&&fDUHH]LeLmH Axu HD(@EeDmHCIcHHx1虸DJHCD9HCHH]LeLm@0H5H=nUHATSHIH9A;$tH5H=zHbIcT$SH{HHIt$HַH{HHcSHIt$H踷s~%HCHcHC H9K}[A\úH5,H=ZJUHOFf.w 1f.fDfDUHAWAVAUATSHH0LEfHA^LD{DH@DHEDHEB|#HEDžPAAD AIA9tzIF`J xuxtxHu@P88\f. Br@f.rPHcPHH@D(HHcPH@HH H0TPH@HEDžLH0+T1pHUHcZH0HHMDiHALEAtHMHUH};EHUHB`H@PhD}EE~&HE1fDH@HD9uh莴h\MU̅ \^MUXE1׵f) f.HcHMHAXH@(EH0xD`HEAFHEBLf(fTnf.Nf.A*>AH5/H=y|} f}H5H=sNA!AH5ՄH="fIAF9E*HEB\~D9~TH5H=iA9D)HHMHQ`H‹PU@ EH(xD`HAhH5:H=>fW *p}p`fWf.f(fW UY`AHc`HUYEXXXIAF9EXUEE1HEfT  f.waHUHBXL$A|$ IT$8Ht?HBAD HHMH YBXHR HuAHE9pE1EAEHH]H þDMA'AIcHE4HH]HHHD9tR f(fT f.wHUHB`H8xuYH E\EHHD9uEfT MfTfWfUfVEE~cHE@fT  "f.wrf.v.a@fT f.wCHf.ɱw5D9~D$HEH$ELM1ɺ1H0LHEP9LuH@H}H}H}H[A\A]A^A_fDAtA+XpDp\f(fTff.p p\`Uf. \MY`lHc`fWWHU`YxX\XUH5H=#]f) jH@HH Q1ծH0oUHOFf.w 1f.fDfDUHSHHHH{H{H{ H{(H{0H{8H{HH{PH{`H{hqH{xhHH[f.UHAWAVAUATSHHAHUIMMLMf(ȅ~T11ŮDD^EADB|8tfWADDHMYD\HD9u^MMf(XM\f(fT=f.ȮzsHH[A\A]A^A_E聬EU\ELE1\]^EXCAHE9t@CU%f(C\U\fWf.rKAHE9uEHE \^HE11 ]fDB|8t(ADfWADHMYDHMXHD9uHE-EHE f(\^f(HE^EHM1HH[A\A]A^A_ÐUHAWAVAUATSHI$W(HwhHx+IEpII}xI}xD_EAAD(D$@HGB ~D9~yH5K|H=gI}xHcIE<uK$HGfWf.vI}xAID9w}fWbI}xDWEADž,AD(D$fDHGB ~D9~H5{H=:I}xHcIE<tq,Hc,HG4HG,IE`oH=oZIE(B H5oH=Ao3lH5nH=OoIEEHM`H5nH=mo?LHhHE LHh0H5`nH= o|HhHH U1 xH5 nH=n<UHAWAVAUATSHHIHDf;CHRD9cLt*H5mH=HLA}EE~%1IU8IAXHH@PH H9uwAD93HcH IU8IA`H8H@PH HHD9~DDIcI}`HǾ?˛DEEHE]IEHM<HLEeA9HUAE@IEHXI}PI}PIFXHMHHX8Ht*fCfWCHCD0I}PH[ HuIEXAUAEI}PDGEAAD<HGB ~D9~H5kH=I}PHcIE 4uUIE0 uJIE IE(f. u6z4K$HGY AEX\AEXHGHI}PAID9w_כA]AEIuPVqDžHE؉N$IEB HHf.ztIE8A \IE0AIE(IU8B B\"f.uzf.IU`A<?tH5]jH=kyIU`f. LAIuPHE9F)HFHU~;~H5iH= IULcB<2uN<IE B8~;~H5iH=jIUHcۀ<#N$IEB f.(IE8YA \HHIE0Ak~;~H5iH=j3HcIE<IE(B f.IE8YB\  BfTf.y IHA9 AE@~~AAfDfDIEHA~;~}H5XhH=uWtHcIE<t~H53hH={jOIEAIE9u@}EHE9E HĈ[A\A]A^A_AUAMI}hEIEXIEpI}hDwE5IcL<L$IE`fA.zau_HUHBXHHP8Ht+HBDRHR HtHBZHz AHIE9tDIL$9f.tf.uzIt$( >f.u{fDLH([A\A]A^A_HEHE $E~E1A {{f(f()z4ID$(fB.$u'z%ID$AIHE9tMT$fC. tHGXJHp8HtE1HFAHcH A f.uzID$(f.ID$<tf.ztnID$(f.t`ID$ DH5-)H=tiUH$Ld$fDo~rʼnLH$Ld$rfUHH]LeHIƮHv.RH5(H=wtvTH$Ld$HtLH$Ld$@tf.UHH]LeHIFn}1fH5=(H=syTH$Ld$fDo~rʼnLH$Ld$钭fUHAWAVAUATSHIAII̅fWM1@LHf.SAYDXEEHÍCA9|CAtADfWf.wfWf.w7H5Z'H=(HÍCA9}EH[A\A]A^A_L?f.wSwq[SE\HHufWEDfDUHAWAVAUATSHIAII̅fWM1@Lf.RAYDXEEHÍCA9|CAtADfWf.wfWf.w7H5:&H=&HÍCA9}EH[A\A]A^A_Lf.ORwqCRE\HH}fWEDfDUHH]LeHI趟=t1H$Ld$fLvquL7f.Quz̉Lf.QQ ЃfUHAWAVAUATSHLMH=%1~L覬EL苬EþHhDeE~1fD@H;UuœHE貜Hp蟜H@]YDž|DžxHpHH0Dxx9EGxLM`xLX`f.OPuzXf.3PztH@HpxL+A=mH@HpLPH@HpDLHL0EEDEȉEAwLDeE9LfAHE93LVtE1ɋUHPX`H@DAWHcHhHDEu||HcHMHcHhHDEU||HcHMAHE9=EID;mEIEUHPX`H@D!D|E|(*HEU|H@HhHPHMHH|ҍBPHٗHHEHx Hc1LD|E~%1HUtH}HÍC9|}EHpHH8EU9UuLEȋuLEEf.,MuzEf.MztH@HpuLA=H@HpLEH@HpDLnEL8EE:EȉEAwL~kDeE9L@AHE93LFtE1ɋU]UMEH@D1t!H5H=jkifEU]UMEH@Db8H5DH=kAHE9 EIH=1膐HhH}HEHpݓH@ѓHEHĨ[A\A]A^A_D;mEIcAwH}BAwދH},AwH}QAwH}=HMQqH=\1赏G]H5,H=UHH]LeLmLuH0ILMfI$HrHPHZ\A;\$I$HcL,HA`J(HP\J`fWf.\B8^fTIfWf.HIFLIFXH]LeLmLuH5lH=؏I$HPFlH56H=`M蝏I$I$HPM1HILIFXEH5H=7}H5H=]I$ifDUHAUATSHI`辋tH5UH=dI1LH\t`f(LHHpHRDžpDžDžDžtHL诏t;t6fWhLRMhHĈ[A\A]fDfDLXLWuAE0H5XH=čAfTSGYGXFY{Ghf(hfTfWfVh/f FhAf(A\$hlAA$\hHUHH]LeLmLuL}H`HAALME~VD;kPAthABH5,H=蘌EH]LeLmLuL}fD"H5H=DXAuIcL$IB HIF* ^MfDfDIcL$IFB t)HIF* ^MBf.HL<HC`J8@PE|Cf(DHUf(EEUf.zIFALIF\U^B 8IFAP!H5H=-]HL<HC`J8@PECEDHf(nDEf.z=IALIFE\E^B 8IAoUHAWAVAUATSH(IIE1GCEȻCHA9D$I$<tI$2f(]2B%\CX]f(\fTCEf.vAf(f(fTfUfVEE1f.AAōCHA9D$iE/DH([A\A]A^A_UHH]LeHIHHtQH;詋H{蠋H{藋H{莋H膋IDŽ$H$Ld$H5H=fDUHAUATSHDo 蕌IA]2I$"ID$ID$ID$E~Z1HI$ID$0H6HIL$ID$HHHD9uLH[A\A]UHAWAVAUATSHxHHuSII AHEDCE(A)AEHEf.AHED9sDHRtHH@`HUH@PEDHrEf.@DHOEf.@E@?M\YMEp>\EYEpf(_f.Uvf.ЃEDuUH8 HLH AI DHI!L IH赌f.?HHEE1E1ɋs~lAADHDhD`gQDhD`t%AHUHB (~HBB(AAID9c}DDH=1蟄*II AAHED9s Ef.1?tEHUEHx[A\A]A^A_zHuHE,EDuH0LsHs+AY+AYXAF0t~tRH5H=jpH HH!)wBH8H(wHfWf(A\F8I,UH(sHf(A\N8fWH,+INH=1n9I(H=1snUHOfWf.uDzBFf.tf.w*1f.zOFf.vfDFfUHAWAVAUATSHIH8IHEHAHU:YHM9Ǿ GtHEAǾ3tHEAǾtHEAǾ tIAw~1IDBHA9G}H}HW1HtHEHP @(HR0H HuHE9thH5H=OnHU HMHMEH}HxHEHpHULr I^1H,HEE1f.~A;G~qH58H=`mAt$HMBDHCH}JDCYXEEH[IHu (f.IHMHUAF EFIHxHD$ HpHT$HD$HD$H$E1 &HMHU>HMH?HQ0HHA8EHEHE ;MHcH}H H O%IxP HM9O…kH]El&f.C8v &f.K0 H}A}(LO LC IpHfWf(Ht0f.HcHAIDAYXHIHuIpIQf(f(Ht1fBHcf(AYLXYXHRHuHHtHcIDHRHuQQYf( j&fT%fUfV^f.&AH D;ULs C(I>EIHtIuXILceIHBXJxtH53H=|jIHBXJAFBIN1Ht(1VH}DHAH}HDHIHHuILEHMu7AF<vH5H=BjAF AVIf(ȋu4&EH l9EH}5lH},lH}#lLlHĨ[A\A]A^A_HDHX2DH`&DHhDH}DH}DH}CHLJDE~J1HHGXHHP(HP`H0YY@@@hH;uHHA8HDE~y1ɺHHF`HH(:Y@@@`H8Y2^@@@h@0Y@`HXH;uHBHBHBHBH BH(BH0BH8BH[A\A]A^A_vc Hǂ` H5H=ʉ?H=o1>HBtH=X1Y>HHBtH=11>HtH=(1 >w:HHH8H==b:HHHIxHǀH H5>H=}>DE H5H=*w>:hHHHmH=I1<HCHC I& .>LK(C0ILC8HH{@CHADŽ$HHsPCX1HS`ChClHh㈵>HKpHCxǃǃǃǃǃǃǃǃǃǃH[A\H5<H=UHSHHHGHt H[@fHCHZHCH[UHSHHvBH=1H‰H=51fWfDH[fH HcHf}p_AUAKA AA(7A8-A@#APA`ApAxDfDUHH]LeH E4Ičv6QH=BH‰H=Q1IH]LeAH HcHfHpEf.EA$f.H]LeEf.f.CEAD$Ef.$f.EAD$Ef.f.EAD$ TEf.]f.QOIEAD$(EAD$P EAD$`EAD$8EAD$@Ef.;9f.+%EAD$pEf.f.EAD$xh!H=ĥG HEH=H= HEH=TAH=l HEH=XJ.H=@ HEH=FH= HEH=@H=k HEH=dALH=9 HEH=UHSHHOHH[UHSHv-8H5IH= H[fDfDH HcHf*8FTbH[ûH[ûH[ûH[ûH[ûH[fDfDUHH]LeHHARHA$vBH=^ HDH=11H]LefDH HcHfzrjbWOG?4)|HpH1t=2H5VH= 1 AlAhAXzAHrA0jA bAZARKD@UHH]LeLmLuHIA(IƍvJH=6H‰H=E1fH]LeLmLuH HcHfp]Pyc/+_|H`HLA#A AH=,HDH= 1HL蓿AEAv"H=۟^HDH=!1EAv"H=*HDH=1EmAv"H=sHDH=1E9Av"~H=?HDH=%1EAv"xH= HDH=1EAv"rH=מZHDH=]1EAv"lH=&HDH=1EiAFESAv"`H=YHDH=O1EA#Enl A^EnhEEnXAv"<H=pHDH=1En EnHAv"BH=6HDH=1En0|E$oAEn\AE.JAv"6H=PHDH=&1EnfH=%HDH=K1ZH=HDH=Ġ1H=לZHDH=}1TH=3HDH=F1{0H= HDH=/1*H=bHDH=؞1Džd"DždDždNH=HDH=t1DfDUHH]LeLmLuL}HpIHLuL}HEHELmL,$MMHAHEHẺCMKEȉCf. wwzuCHL,$MMHMLNAHEHC ẺC(MK0EȉC8f.rBCH?H9Hf.zr9Hf.PrDžKH[IHIHkIHPIH:DHHDLH)ÃvBH5~H=ǚ:Hh[A\A]f.DžH HcHf9$$DžADž1Dž!DžqDžDžDžDž1Hh[A\A]ûHh[A\A]ûHh[A\A]ûHh[A\A]ûHh[A\A]ûHh[A\A]ûHh[A\A]9HY[,tfDfDDžffDžyfDž fUHUH1t@UH"fDUHv"fDUHg"efDUHW&UHp6UHvfDUHfDUHfDUHffDUH&fDUHSHt-t8H5DH=H[H[fH[fUHSH1@Ãv) H5H=.H[H HcHfVdrHH[ûH[ûH[ûH[ûH[ûH[UHH]LeLmH AIQÅx+A9|&1tHcADH]LeLmf.H5H=xfDUHH]LeLmH AI!Åx+A9|&1tHcADH]LeLmf.H5LH=fDUHvfDUH6fDUH֚fDUH&fDUHSH袳ÅtJtIt2t-H5ɎH=H[fDfDH[óٳf.UHfDUHfDUH&fDUHwUHH]LeLmLuL}H0IIIMHt AEMtLAMtLuAH]LeLmLuL}f.UHFfDUHfDUHUHH]LeLmLuL}H0IIIMHt AEMtLAMtLuAH]LeLmLuL}f.UHFfDUH'UHUHATSHHIHg,H*H5H=RQ.HAD$/HmAD$0Hg"fWf.EJAT$ 1H=AD$2H)AD$3HAD$ 5HAD$(6HAD$07HQ7HAD$89HfWf.49H MY,AD$<:HAD$@;H^YE,AD$DGHAD$HH[A\fA$cH5ԊH=wDfDH5H=a`)DfDt|H5xH=5H[A\,fDfDAD$8fAD$<ϪEDAD$fAD$"fAD$HH[A\A$SA$CA$+DfDUHH]LeHIHHHLà v))H5eH=!H]Le@H HcHf=6666/(뭻릻럻UHH]LeHIHHHLà v)H5H=aH]Le@H HcHf7>>>>ELSZdn0륻랻뗻됻뉻낻xnd@UHgfDUH1tV@UHfDUHUHUHfDUHSHH-te~st.tIH5eH="H[DfDHH[=fDffuHH[.UHfDUHVfDUHfDUHVfDUHffDUHfDUH6fDUH6fDUHf( fTfWfVf(UHGf( zfTfWfVf(UHGmfUHH]LeLmLuL}H0IIIMHt AEMtLyAMtL5AH]LeLmLuL}f.UHwf( fTfWfVf(UHf( fTfWfVf(UHmfUHH]LeLmLuL}H0IIIMHt AEMtLyAMtL5AH]LeLmLuL}f.UHfDUHfDUHfDUHfDUHwfUHfDUHfDUHfDUHH]LeHHIH1HuLH$Ld$LE1fUHH]LeHHhIH1ҾH賸uLH$Ld$LYE1@UHH]LeHHIH1ҾHcuLH$Ld$L E1@UH&fDUHfDUHfDUHvfDUHfDUHfDUHmӣUHmsUHfDUHfDUH馿fDUHfDUHwӦUHfDUHFUHAWAVAUATSHIHIMLMȅtGxHtBnAMtA$BzAMt IIAUHLeAAtt@t;H=ćHAT$DH=-1AT$SHH}t HUIHCPH}t HUIHCXAIIE9}H|XIEXJ0H}tAT$tC El떃aXfDGnAELLe AAtt@t;H=HAT$DH=U1AT$SHH}(t HU(IHCPH}0t HU0IHCXAIIE9}L|XIE`J0H} tAT$tCEl떃aXfDGnH[A\A]A^A_þH=H‹3H=1ҋjH=HA4$H=1A$ZUHAWAVAUATSHIII΁H=JUH‰H=11MtÐUHSHHHHtH{HtH{ HtzH{(HtlH{0Ht^H{8HtPH{@HtBH{HHt4H{PHt&H{XHtH{`Ht H{hHtH{pHtH{xHtHHtHHtHHtHHtHHtHHtzHHtiHHtXHHtGHHt6HHt%HHtHHtHHtHH[@UHAWAVAUATSHHuIDgHG0HEHW8HUHOHHMLWPLUL_XL]LhLHHEHHUHWE~"11ҐIDHDIDHD9uEEIcHN8M EfWfA IcH f.ztnHcf(HM^ATL]AHM  x9>HcL]I4L]I fHcHf(Y \HH9}IIAfHH[A\A]A^A_E~E1E1fWCTKcD f.ztrHcf(HU^ATHMLUEBx9AHcL]I4LUI DHcHf(Y \HH9}AIE9hHH[A\A]A^A_þH=Հ(HH=ր1DUHAWAVAUATSH8AHDgHGHEHOHMLW LUL(LwhHHEHHMȋOEEEME1fWIc@f.ztXLUAA  x9BHcLUI4LUI fDHcHf(Y \HH9}AIE9uH8[A\A]A^A_E~IcM EfWfIcf.ztYHMLUEBx9?HcHMH4LUI HcHf(Y \HH9}IAuH8[A\A]A^A_þ{H= ^HH=<1DfDUHH]LeLmH HAIԋwt\Eu'L1HL1HH]LeLmLHpLHH]LeLmH=\~HH=~1UHXb@@H@H@H@(H@ H@@H@8H@0H@HH@`H@XH@PH@pH@hHǀH@xǀǀǀHǀHǀǀǀHǀHǀHǀHǀHǀHǀHǀHǀHǀHǀHǀǀI?LǀǀIV瞯AA)A9~&LAA)ȺA9AEIH]Ic$HHc3HEH4HcH<Ic$HHc3HMH4IcH<AE>EuuHcHH]H<t|9EH]HMHMHHcH]udAA|AA1҉HX[A\A]A^A_DfDHMHыAtHcЋH]fDfD0H5wH=]x^HHU4}f1H5wH=RxHK+EH]HMfDfDUHH]LeLmLuL}HĀIuUGEH_0Lg8HW@HUHO`HMHHEHHUHHMHHEU9~HcEL4HMM<EA9AA)9E~&LAA)Ⱥ9EAUMLIc$HHc3HEH4HcH<褍Ic$HHc3HMH4IcH<聍A]AAHuL~9EHMHU HMLHcH]ufAA~EA]A1҉H]LeLmLuL}HMLAtHcЋH]fDfDH5|uH="veHMHU {H5 H@H`HH`HcH0tHcЋH8HHXHhpAAHMD)HcH]HL8QDHH~uIHhpʉtHM ʉtHpxHuȉ|HĨ[A\A]A^A_H@H`HcЋH@H(HXHcЋH(HHXHE1H5@hH==H5#hH=hHHH+4Hh6pΉtHEƉtHp xH]ȉ|H5gH=h$3H5{gH=ThJHMDEHH`3DHHHH4MHHHHHHHHHHXp9tHcHLYH8H90H@HcH0t HH84HcH04I9t|eA0HcHHHHPHHHу9iH8HH@lH@;2]11HcЋHHHHcҋHH5eH=f3<UHAWAVAUATSHHHH(s9LAFAAV9/I~HtHHyHtHH{ HtLI~(HtHHx0HtsHHz8Ht^HHy@HtIHH{HHt4LI~PHtHHxXHt HHz`HtHHyhHtHH{pHtLI~xHtHHHtHHHtHHHtnHHHtVLIHt>HHHt&HHHtHHHtHHHtLIHtHHHtHHHtDAdHD!eLIFuIFeIF UIF(EIF05IF8%IF@IFHIFPIFXIF`IFhIFpIFxIGd$DIDxIeIRI?I,IIIIIIHH@hHHHRpHHHIxHHHHLEEALIHtHHHtHǾHHǾHHǃLEvDHHP Hp(HH0HHX8HLp@LH@PHHHIXHHH[`HLMvhLHH@pHHHIxHxHHHpLMLhHHH`HHHXHHHPLMLHHHH@HHH8HHH0LML(HHH HHHHHHLMLHDE11\DHDDuD9u11HDLADHDH9uDž DžEHDžHEHH Hx9}+H=!]tH H=v^1ы+E9uULuHBTHB\HB\HcHhL4H`L,DžtHEfDEfWf.-AUAUf(fW tf(fWfTfUfV_AHB tHEII9tHEH\HDEȅ~;~'H=[H H=D]1HcL$HM<A?H=k[边H H=4]1EfWf.DH=&[yH H=/]1tMH1fDfDHcBHH;tu HED D9JHP+E9 "HHH+E9 ELAЉE9}AE1HFDDHBDDHE9aIcHhHIcItHcHpL$I6I<$.I<$HEJ8HHUHHtfDHsI$H}HcI|HUHH[(HuHmHmMR1fDI|HÍC9|}H}oLHh[A\A]A^A_IHE|LcJHpL4 I7I>@I>HEHHHUJHt0HsIH}HcCI|HUHH[HufHEȋE9|HMHE\HUHcDM|I?tOUHAWAVAUATSH8IՋEHWHUHGHEH8H}IąE1}~jHUJc\MtI>tAHEHHt4fHsILHcI|LHH[(HuIAG9E}LH8[A\A]A^A_u~HcEHUHHED}HEHcMtI>|tDHUHHt7DfDHsIL!HcCI|LH]H[HuHmAu\DUHH]LeLmH HAIԋGX;|\Eu'L1HjL1HH]LeLmLHpLHH]LeLm#H=CHH=C1UHAWAVAUATSHHhH`HXHW(HHO0HH_8HHw@HHHHLhM@PL@\HtHHtѣHHAt趣HHCt蛣HCt臣HC tsHC(t_HC0tKHxHC8Hh6lHhHH`LhI@MxMh IP(HXIH0HPIX8HHIp@H@IxHH8M@PL0HHH(HHIH HH[HHHvHHH HLM@(LHHR0HIE1l3]HCID$H{0HH`ZGI\$HuAID;luL1H@HD9u1I|1HÍC9l}LXE11DfDHCID$H{~0HH`FI\$HuAIE9uHPHMH1H@HA9u틝lþ-HEH1HHDHÍC9l}AHHUDHX`x9l}(H=?!HDH=?1ыeEE10H`LGHD DxHHCHJtUHCIUHSHC HMHAHC(HtHZHC(HtHX HuH^I]EIƋ9}H}FdE~ D;l~%H=>2HDDH=?1IcLXM,IEHtD9xtCHJ|`H=L>יHDDH=/?1H=">譙HDDH=>1AHED9l#H}1LI|HÍC9l}H輛1H0DH8DH@DHHDH9l}Hh@X1LXID1Ht H@HuH(THA9l}1H H9l}烽lG1ɋlH(HcDLADH HLADt HH42H9u11HPHD1Ht H@(HuLATH;lu1HH9l}狅l~_1ɋlHHcDLADHHLxADt HH42H9utHtH1HDMHHDHÍC9}EHELhEDHhH@(HHhHR0HHL)HYHHqHHy HLA(LHA8HA@ Hc؃<tH5:H=<衖HL$MtI|$(t!H5:H=;qM E<$AD$IcHL4AHcHHHD(9];D9m D;~H54:H=9HuHHcDHcӉLAD|EAHHcDIcHHD,|ELAHhHRH8HhHIH0HhH[H(HhLn H~(H LF0LHHHHHRHHHIHHH[HHHv HHH(HLM@0LHH@8HHA$ED$LcJ HH< HHHHHcHtHcЋHMcJ LJ<X HHHEHHHcHtHcЋHN4O,.LHIt$I}IT$H ID$HBH LHXIT$Ht ID$HB IT$ H ID$(HB(IT$(Ht ID$ HB HEI|$0LH8=HXHHusHLHLHcLAtHcЋHHS HHC(HB(HS(HtHC HB H[HHcCL$HB!L,HsLK<(HLGHLHcЋHHLCHC(LKDXHNID$H-ID$PU̅AAADfDLIT$ID$J(HLI\$ gHID$ J<( LIT$(ID$0J(HLIT$8ID$@F48D2LIT$HID$PF48D2AIID9ucEAD$XLH[A\A]A^A_þ4H=)訄H‹uH=*1>UHAWAVAUATSAHUILLeLu~LE1@AHA9uE~8HM1DQQA9}IcMIcAAIA9uHD9uA~LE1D@D@AHA9uHcEDE~gIcHULDAAH9}FHcMLÉDfDIcIʉHcADu!,&+|u .7,:;()b[C]${}~ÀHcHէD<FED$dEAD$=HcHD<uAt$H=HLA|$ǀtAD$L2t)9uLA;\$LAD$ uL:H5L1YAD$AD$:HcHD<u El$A_u+LA\$ÀtžGI\$H5bHugAD$&AD$LXAD$AD$L7A|$&AD$LDH5HuAD$H5HAD$LAL$IT$H5 L1.AD$LAD$=>tK-2AD$LdAD$L?A|$=AD$L"fDAD$LAD$=/>AD$zf.AD$LA|$=pNIt$I|$Q#'H5HuAD$H5uHguAD$H5HFuA.t!H5XH-uUAD$AD$LA|$ttLH5L13LA|$.u^H5HuAD$ZH5HuAD$9H5H"AD$UHSHHD_dEuKH5uKH5H1蚉{t\H5 H1H[zf.H5e$tH{t/H5HH1>{uH[HxyUHSHHH5htTuzǃH8{tH5H1螊H1H[fDH5dH=I8EtH5AH1?pf.UHATSH It1H5H=FDI|$pI|$hHHEIt$HUE1|.LHL5HH [A\fUHH]LeH0It H5hH=HË@ E1vL<LIŋ@ ^E1vHھ<LHË@ E1vL<LIŋ@ LH[A\A]E1vHھ<LHË@ NE1vL<LIŋ@ E1vHھ<L^HË@ E1vL<L;Iŋ@ =E1AvufUHAUATSHIIAD$==%=AE | vtH5LILQLHË@ |vtH5]LE1AvHLTLIAD$=gAE |LvtntH5mLLLHË@ |vtntH55LiAE vnE1AHLRLIfAE |vtntH5L*L2LzHË@ |vtntH5LAE vnE1AHLSLI+{ v>E1nHھ@L HAE { nE1nL@LIŋ@ E1vHھ<LHË@ E1vL<LIŋ@ { v4E1nHھ@LhHAE { nE1nL@L:Iŋ@ LH[A\A]E1vHھ<L HË@ E1vL<LIŋ@ E1vHھ<LHË@ =E1vL<LIŋ@ DUHAUATSHI[IA|$tz|tH5LLLHË@ vtq|tH5LE1A|HL_LQIA|$uVAE vuE1|L=LIŋ@ gE1|Hھ=LHË@ lLH[A\A]UHH]LeLmLuH0HIā{t$LH]LeLmLu@ |t~vtH5HHHtIŋ@ |vtH5XHQE1{tN$AjMLLtHBIVE1vL<HIċ@ _HHIƋ@ |t9vtH5HE1vL<H>Iŋ@ >E1vL<HIƋ@ UHAUATSHI{IA|$uzfDA} jtH5xLZLbL:HÃx jtH5PLEM$DK$AjHLlLIA|$tLH[A\A]DUHAUATSHH;IŁ{DfDA} jtH5HHHIăx jtH5HbAU$AL$$9tH5H&AU$AAjLLkHIŁ{vLH[A\A]UHAUATSHHIC=='=A} jtH57HHHIăx jtH5H~AU$AL$$9tH5HBAU$AAjLLjH"IŋC=_A} jtH5H;HCH;Iăx jtH5HAU$AL$$9tH5uHAU$AAjLLhHIA} jtH5HHHIăx jtH5HbAU$AL$$9tH5H&AU$AAjLLiHI>LH[A\A]UHH]LeLmLuL}H`HL=*IHE1IEC-H HcHf^8K%#@H`T?8AE vt|t HuH2H:HIċ@ vt|t HuHAE v|iE1ArLLDHILHUI3H]LeLmLuL}AeHEHEHsH}tHMH! t€DHAHDHH+MHv H5H=+A H5H=\+$AmHUHUTAaHEHEAAbHUHU.AcHEHEAdHUHUAoHEHEA`HUHUHsHUHUH}TH`CAn=t%Ap=tHUH5 H1oAH5LH}qAE v|~t HuHHHIăx jt HuHAU$AL$$9HuHWfA} juA|$ vE1|L=HIkA|$ |_E1|L=HIŋ@ 3A~L?HIŋ@ E1|L=H^Iŋ@ UHH]LeLmLuH0HL5΀IHE1t,gHUI3H]LeLmLuHwLmкLWLH! t€DHAHDHL)Hv H5H=c(H HIċ@ |t2vtMrt LHE1rLCH+E1vL<HIċ@ E1rL>HIċ@ aUHAWAVAUATSHIL=uIHE1wIA|$LufDfDvrt LLLL'HË@ |v?rt LLE1ArHLfLsIA|$$It$LLH! t€DHAHDHL)Hv7 H5H=&AE | E1vL<LIŋ@ vE1rL>LXIŋ@ fDE1vHھ<L(HË@ vfE1rHھ>LHË@ LHUI3uH[A\A]A^A_MfDUHAWAVAUATSHIL=U}IHE1IA|$LufDfDvrt LLLLgHË@ |v?rt LLE1ArHLgLSIA|$$It$LkLH! t€DHAHDHL)Hv^ H5H=w$AE | E1vL<LbIŋ@ vE1rL>L8Iŋ@ fDE1vHھ<LHË@ vfE1rHھ>LHË@ LHUI3uH[A\A]A^A_-fDUHAVAUATSHHt6H5H=]#HHIŋ@ |vErtH5H1OhAM${tH5H1)hHHiIċ@ vt.|t)jt$ntH5H1g{A|$ jt[E1AT$$EL$ $MLLuHH[A\A]A^BH5tH=&H"0H5yH1_gfDE1vL<HIŋ@ vfE1rL>HIŋ@ fDHhH0IƋP vt%|t jtntH5H1fAV AD$ ntjntO||tn9tH5H1|fAT$$AN$9H5 H1ZfAT$$|vAV |tGvAD$ 넃vu)E1|L=HIAV vt,AL$ ]E1vL<HIƋP E1|L=HIAD$ AV E1nL@HmIAD$ AV E1nL@HBIE1vL<H"Iċ@ UHH]LeLmH IIaHÃx jtLH5L1ds$~HH]LeLmfDfDjH5H=fDUHAWAVAUATSH8IHHL踶HEAL=uL5 DfD|~tH5{L1AdHuHtEHH${$9t8LIEǃMMEAUHD$<$EH5YL1cHuHL蘹HEAT$H5XL1cLHAŋC vL4HË@ |fUHAVAUATSIH5趴rI|$h(IHH@H@LmAD$==LIEx vIEx |tH5L1]E1OfDfDIFLH@ vt)|t$rtH5L1^]IA|$u6LI|$h+HHH@I}uIEIuHtL˳IEAE AD$=tP=tI=tH5bL1\L8L[A\A]A^úPH5H=dq=AE LLIEx vtoIEx |tH5L1K\AD$iLYIEAD$=SLFE1|H¾=LIE;E1|H¾=L迾IEpfDUHAWAVAUATSHIH5n@!I|$hIHH@LAD$==qE1L=V5lLbHCAD$=LII|$hHH@I~IEA|$uLaEl$LAt AnIt$I|$pvIHLvLvgvy"H5mH=AfDfDIFcI6Ht LAD$=tH5L1*ZLLH[A\A]A^A_ÉIcL{{{{{{{d{{{{{{{{d{d{{{{LuHCL IH5kH=5?LuHCE$EuHH5'L1=YLuHCE$EuHx gH+H/HEH52L1X_LkLIAD$bIT$H5L1XfDUHATSHH51*H{h脿IHH@HC==HiID$x rtH5H1-XID$@$uaI4$HtH{tH5H1WHnL[A\fDH5ĹH=e1H5H=zxfDHBHI$C fDfDUHAWAVAUATSHIHiHHU1H5Jͭ L譽A|$t&LzIT$H5L1VIt$I|$prHtIT$H5)L1VI|$h8ýHPI|$zpI|$h襽HHPHIt$JLA|$ HPHBA|$T HPApH5L̬L謼HPH@E1gLXHx vHx |tH5L1UHCMtdI]AT$tsII|$h袼HAD$-wH5AL1Ujf.HPHZAT$uLȻfDE1|H¾=LH%HPHy IH5L1THPBpt!wH5H=A|$L J HPHA HPH@(A|$H5L1dTE1E1fIT$H5L1:Tf.I|$pI|$hHHIt$L聺HCMI]AAD$==H5L1SII|$h諺HA|$iL9H5RL1xSCH5L1bSaH5LNSfHPHZ(AAD$=IL蚹XHPHA Ht1P D9t)H HcHEEH5L1RLLHPH@0HDžXH`HHI]H;LHdZLHeH3LLH! t€DHAHDHL)qI|$hHIELIEHXHXLjLXAD$=LMI|$h辸IA|$t0L`IT$H5LL1Qf.It$I|$pamHHHmxtIT$H5LL1BQHmIE@D9t2AIT$AL H bLEDH5fL1PIEHx8tIT$H58L1PLSA|$4LLHPHB @ L蠲A|$H5L1LhH5ĽL1KL]tcH5H=UI\$wRH5H=3nI\$I|$RpI|$h}HHPHxIt$!LݱIT$H5L1BKH5!H=7AT$ IT$H5sL1KLx`NIT$H5L1JBUHAUATSHIH5D<tA$LA|$t4LܛIT$H5 L1^JIt$I|$p1fHtIT$H5}L1&JI|$hHII|$ҽpI|$hHIEIt$訽IEAEIEA] IE(IE0IE8IE@L(AD$==I|$pIukHþgH?eLHDeA|$tH5pL1HILLIE(x |IE(H vntH5ζL1IIE(@$IuHtL负A|$tH5L1HL@LH[A\A]fH5ѸL1HJf.H5L1Hf.H52ULsCH5$H=ƻ.E1nH¾@LIE(H I|$讻pI|$hٮHIEIt$脻L@AD$=#LHIELAEE1vH¾<LXIE(E H5SH=Z'fUHAWAVAUATSH(IHYHHU1ҋH5SL蟝GLH5L耝8L`AD$=t4L,4IT$H5pL1FIt$I|$pbHtIT$H5ͶL1vFI|$hHgII|$"pI|$hMHIEIt$IEAEIEAE gIE(IE0IE8IE@LtAD$==I|$pIugHþgHaLHaA|$tH5L1EL LIƋ@ |%vtntH5$L1ZEAV$NA\$m w2H1H5vL1EH5L1EH5L1DLgLH mWHUH3%H([A\A]A^A_ÐH5LAAD$=@H5L1Df.V_It$HMHMH豶HMH! t€DHAHDHH+MHvH5H=LcL+INj@ |vtntHUH5gL1CAG$AT$aHEt9tH5VL1\CA~ nLɩLHE@ |vtntH5L1CHE@$HUz nSIuHtL踙A~ ntE1nL@L詥IA ntE1nL@L臥IH}E1nHU@L`H+H5CH=\A|$1=fDfDH51BfDxH5H=8A\$LHA\$H5LAfDfDLH5L H5LbAufDE1vL<LIƋ@ fDI|$޴pI|$h HIEIt$贴LpAD$=LHIEL)AEt:H5H=XCH5gH=I;Mu(IE0M}8M}(IE0Mu8M}(Mu0IE8L触AT$E1vL<L٢INj@ "H5ҡH=Mu(M}0IE8|Mu(M}0M}8kH5oL1?E1vL<LXHE@ ;H5L1[?fDUHAWAVAUATSH(IL=QIHE1H5j谕E$ELA|$t&LLIT$H5L1>It$I|$pZHtIT$H5L1>I|$h@蕥II|$PpI|$h{HIEIt$&IEAEIEAE vIE(IE0IE8L誤AD$==8I|$pIu1`HþHYLHY1E1HUHUfAD$=tJ=H5BL:t6urA} etAE qL AD$=uLH5LEAE eLAeDH5L1=xIuHt+LٓA|$tH5H=ƵL^LHUI3H([A\A]A^A_H5L@E$E>H5pL1:ADŽ$E!H5%L1`< H5|L1J<wH5L14<( H5H=eH5L蓒DAD$=tM=Y==-="=H5iL1;IE(HtI;E0xH5L1~;LLIE(x |}IE(x vtH5ϲL1E;IE(D@$Ed H5H=ʲGI|$ծpI|$hHIEIt$諮LgAD$=LHIEL AEH5L1:H57L1:IE0HtI;E(H5aL1g:LߠLIE0x |IE0x vtH5HL1.:IE0x$O H5H=E2IE(H3I;E0H5TL19It$H}3HMH! t€DHAHDHH+MHv H5iH=h=LLIE(x |IE(x vtHUH5L109IE(p$u$IE0LwH5@L19H5H=IE(E1vH¾<L諛IE(bI}0H5L18E1vH¾<LiIE07H59L1o8E1vH¾<L2IE(H5L188YUHAWAVAUATSH(IHJHHU1H5*萎iLpA|$t&L=0IT$H5L17It$I|$pSHtIT$H5L17I|$h`膞II|$ApI|$hlHIEIt$IEAEIEAE vIE(IE0IE8IE@AEHIEPIEXL{AD$=[=I|$pIuYHþxHRLHRE1EEHMHMAD$=t[=H5LtVEAE |etAE qL軜AAD$=uL衜H5L葌EA} |(AE eLSE7H5QL15AE |RH5L15AE 8IuHt+LGA|$te H5PH=4$L̛LH GHUH3H([A\A]A^A_H5L觋A$H5ثL13ADŽ$EH5L14A} |H5$L14H5ƤL14 H5sH=GzH5pLt[EHA} vtH5L1<4I}(H5L1 4AE |L萚EtAT$pt.tiE$EuH5L11ADŽ$L)I|$h蚚HHH@IU0H~IE0H5L"I}8PH5=L133L諙LsIE8@ vt|tH53L13IU8Z$zA} |t1z |QE1v<L謕HIE8A} |*z | E1|=L{IE8fI|$NpI|$hyHIEIt$$LAD$=pLhHIEL虄AEPI}0I}8I}@f.HHBHuHZL8Hx jtH5PL11HP$'H5hL11I}8RI}@GSfDI|$hqIAD$-e H5?H=mH]HًH! t€DHAHDHH)Hv H5H=IGIGIU(HufHHBHuLzL(LIG@ vt|tHH55L1{0IWB$A} |t1z |E1v<L&HIGA} |z |E1|=LIG|H5L1/H HcH^ULC:AeIt$H]HkAdAcAbAaA`ء? H5\H=0IU8e H5;H=IWM}(}H5֪L1// H5H=HP$4I}@LaL)IE@@ vt|tH5)L1.IU@DZ$EtT H5H=-bIU@A} |t1z |E1v<LHHIE@A} |z |E1|=LIE@UHAWAVAUATSHIH5֩荄LmA|$t&L:IT$H5~L1-It$I|$pIHtIT$H5L1-I|$hX胔II|$>pI|$hiHIEIt$IEAEIEAE IE(IE0IE8IE@AEHIEPL耓AD$==I|$pIuOHþzHHLHHE1HEH`HpHXAD$==H5mLAD$==tE$EAL踒I|$h)HHH@IU(HufHHBHuHZL8Hx jtH5L1+Hx$AU u P$AU HH$9H5L1+AD$=L=)I}0H5L1N+LƑL莶IE0x jtH5UL1#+IE0p$lAU uP$AU H$9ZH5sL1*D@LXA|$u-AL$f. ƞrf.gf.H5L1*AL$X ,E4AM ~H5L1X*A] L̐AH5L€ I}0I}8L茐LTIE8x jtH5[L1)IE8H$AU uP$AU H$9 H5L1) f.IuHtL_AE uAE A|$ta H5XH=<,LԏLHĘ[A\A]A^A_H5`L1.)IE(0H58LI}0I}@LkI|$hX܏IIE@A|$t&L"zIT$H5fL1(It$I|$pDHHHDztIT$H5L1f(HDIPuI9RIAE;A }#AE uA A+EAE IAE;A wIT$H5L1(IH5L1&ADŽ$H5L1' H5H=H H5H=`IE0sI}8I}@fDfD H5DH=%Nf(@@f.uH5զL1'_LHIELHyAEI|$蝚pI|$hȍHIEIt$sL/AD$LA|$H59L1w&IH ~HX1H9uHDžhA|$tH5L1-&I|$H`茶U̅I;Q Hc‹ltH5(L1%UHhAThHcEDŽlI9X }J H5H=hLAD$= =H5L1d%HhIQ H5SL1A%(fDfD H5H=ߢIE85H50L1$UH5RL1$IT$H5L1$?L@DIT$H5ML1$IP 9}H5%L1$LLfUHH]LeLmLuH HAHh4IċA$ID$H5Hzt_Eu:AD$zHID$LH$Ld$Ll$Lt$fDfDH5H1#fDH5ΜH1zt0EuAD$xHWID$H5H1o#H5Hyt3EuAD$HID$FH5cH1)#H5/Hyt EunAD$gHID$H5HuyuDsAtH5%HUytIEu1AD$gHID$H5H1"|H5H1z"H5:/HxuH5fHxt$EAD$}HID$:H5Hxt1EtH5ߢH1"AD${HID$H5uHkxt1AD$fHID$H5]H1!]H5XH'xtAD$hHID$H5]HwtAD$yHID$VH54Hwu3AHrt5HSH5ˊH1 !AD$mHID$H5סH1 UHATSHHxt[H5H=wE1 fID$Iā{t;H5Hwu(H5Hvu1HMuHCx[A\UHAUATSHHH5vH{hIHH@Ht{tH5$H1HIEC==tVHLIEI}IuHavLH[A\A]H5dH=8GHۅE1fDID$Iā{tHMuIEH蟅I}wH5H=lZHoC'UHATSH It H5H=jL)A|$tnL膄L讻HHEHELGuHuLpHUAjLrvHHpHH [A\DfDHEHUAj6L,vHL聄HH [A\DUHH]LeLmH II!HË@ vtV|tLH5L1DK$Et_H5H=:\HH]LeLmDfDE1|Hھ=L8HË@ UHH]LeLmH II聤HË@ |tVvtLH5L1 DS$EtQH5~H=HH]LeLmDfDE1vHھ<LHË@ UHAWAVAUATSHHIH%/HHU1ҁtfH5h~H=HLLpgIAD$=tq=twH5#L1H5tsH=&|HfDE1|Hھ=L8tHË@ `fDLw3LH[A\A]DUHH]LeLmLuL}HĀHtH5rH=dHsH{p,IH!L-gCH5rH=kDfDHw{EHbIƋA{&L,gvF:H5rH=HH]LeLmLuL}H HcHf=vH HcHf!LH5H1eL+E1cdEHuHwIHH`D9t;LH`AAHsLLEDLH5H1I{tH5$pH=͑HtDEu?AEw6HEHH}x gH}HEH5jH1 HUHULuDmHUE1v4HeHHEHEH@HEHUE1|/HeHHEHXVHUHULuHUHED@ j2H\eH$DEu AEAɃvHUHULuDmHUE13H eHHUHULuz |ZHUE1v0HdHL)HEL8DhL(HEL8E1L(HEL8DhL(HEL8DhP @ L(HEL8DhHr{tH5؏H1 LF(t!L9(gtLH5H1 L{H5ÏLsugAH+r`HSH5ptH1 LH5`H1x HUE1|1HzcHBH5LL~u%AHEHH5QH1 H5L~u AIH5L~u A+H5L~u A LH5ʎH1 UHAWAVAUATSH8IL=IHE1tH5WlH=ߋ+I\$H5/H}oAyLmHL|LH! t€DHAHDHL)HLYpA|$tH5kH=ovLΦHEAv^H5kH=mVfDHuLD`H \HHUI3H8[A\A]A^A_fDH HcHf    <H5jH=rL8HEx vHEH |~LH5ύL1HEx$H HUE1DL`HLxHEx |HEH vrup$HUE1rDLS`HDfDLHEx |3HEP vQAy,n#6H5Hw{u^AzyH$pHUHED@$jDL_HH5diH=8HEH5H{A{E1rH¾>LjHEH E1|H¾=LiHE!A~H¾?LiHEH E1vH¾<LiHEE1vH¾<L~iHE+H5hHH5[hH=/xH57Hyu(A}H5hH=~sH5Hyu A~H5Hyu AHH5ъL1I\$UH1UH1HtDHvHuUH1HtDH>HvHuUH1UHG-fUHH]LeLmH IHIHtQMtfH{@tHH5L1H{PtH5;H=菿LcPH]LeLmúH5H=e땺H5H=KfUHSHHuH5H=,CEHjEH[DUHH]LeLmH IIHI}pLHHt H1 xtLH5҉L1H HHx8tLH5tL1CHtLH5L1CHHH]LeLmúH5ӈH=O'UfUHH]LeLmH IIHI}pLHHt HaztLH5HtL1HPHHx0t6LH5/tL1CHHH]LeLmf.Hx@uպ,H5 H=_]f.UHATSH1tMHt!CHd7IHhL[A\ÐHsHDRHH6I@H5H=DؼfDUHAUATSHHIIHHIt$XLHFHt(L[HbHI$H5H1It$XLHTCIAD$ qtW5etPH5ԆH=(LH[A\A]f.vt|uHIEHt1HAE@H5dH=$踻I$H5ڞH뺺H52H=6膻UHAWAVAUATSHIIIHA_LL9tH5ޅH=φ2L.L*IHEMwL.LPHLL*4IA|$tfLHNHLL1IHCHt^A|$t3HH3HuL@tYLH}uHELcHCHuIwLLH[A\A]A^A_gHLAH}AtEHuL[HDH5L1`YH5@H=蔷HuLC[HH5L1TH5H=wRUH5H=5VH5āH=obH5H=fDUHH]LeHHI1҅tH{Lo1҅‰H$Ld$UHAUATSHIHHu 6fDLLcH3HtL)IH`MuH[A\A]DUHATSIHHRbHH@LMu%fDHHQHuHAL[A\IL[A\fDUHAWAVAUATSHII;E1HEE1LHEAD$=LjIt$LuHËPEt-D9{t'MDKLDLH5oL1UMtLLJHHLHHuLHEL+D{L`AD$=HL}`AD$=;HuL1$LQ`A|$ fLxLIE1@LHLL-IA9~A|$A9LuHuLD)D4M2A IuLWHDH5L1lIT$H5ȀL1ZH5L+H}t&LL+MHMHQPHRHrHLbA|$H]HuHjfDL8LLLHH3LWHCHt2A|$tHH5LtL^HCHuLL&A|$BLz^L*L]L"H}tHEHH@HuHuLH[A\A]A^A_fDHLAMAt5IuLUHDH5~L1PL]IuLUHH5~L1H5}|H=}ѱH5`|H=ۉ贱LW]AH56|H=花vH1+H5'rH=r{fDUHAUATSHIAE~1ې1HLD9uH[A\A]ÐUHAWAVAUATSHIH5je OLRH5uL1ۅA|$7L~It$LIL`RH5uL AvLIE1A\$tsLC/MH5uL1FA\$ufLQA\$uDfDLQSL{QLLcHA|$LIQA|$HLHt HLA|$tH5utL1LH[A\A]A^A_PfDLLLfDA^uIH5rL1$LLtLLyH5 tL1LnPDLLLM(LLAVI6LIE1L#PH5sLttpE^EKLL[LOA|$u%UHHEf.%vE$zH5ZBXE$fDUHSHHE%Z$Y&Mf.vf(H5BH߸EH[#fUHH0f(f(fWf(f.zt f(f.zuf(%f(fTfTemu\#f(mf(euf.ztf(fW$f(f(fTf(fUfVf.w*f.lf.bXf(fDfDf.vUHATSHIH#Hdw5L#pHHLHl#H[A\H5:H=@XjfDUHfDUHH]LeLmH IIHtbI@HI|$t5HIt$LHCHH]LeLmfDfDI$HHCҺSH5:H=<iDUHAVAUATSIHIHtiL#MtaI$HuLH[ Ht4H{uH{tgUHAUATSHIH^Ht>L&Mt6HtGH;t'HLLWMd$ H[MuH[A\A]ú#H57H=v:g뿺"H5h7H==ff.UHAWAVAUATSHIHAIE~6E1fDHt:H3LpHLLIH[AE9uLH[A\A]A^A_újH56H=0=ifUHAVAUATSIH1HHcIIH;tEH3LI$H{tJI)ID$H[Ht#IH;uº/H566H=<eIDID$L[A\A]A^DfDUHAWAVAUATSH(IHuHUH,HE8utH55H=K<ZeHEDPEH}/HE8utH55H=5<eHEDHEHEpHEpLHEHELxMtkHELpMtUI7LmIIHt'fH3LuHLLIH[HuLHuLMvMuMMuHuLHuLHEH([A\A]A^A_úH54H=;7dH54H=;dH}H5c4H=;cH5F4H=;cDUHAWAVAUATSHIIIHUA>utH53H=:cE^EMA}utH53H=r:ZcAEA9FtH53H=e:0cAvL4II^Ht=HLLHtH3LHLLH[HuLL LLLH[A\A]A^A_úH53H=9bH52H=9~bAE'H52H=k9]bH52H='9@bDfDUHAWAVAUATSHIIIHA}utH5Z2H=8aA]MQA>utH5'2H=8aAFA9EtH51H=8aAuLII]Ht%fHLLBHtaH[HuI^Ht'DfDHLLHtLH[HuLLiLL^LH[A\A]A^A_H3LHLLH3LvHLL뙺H51H=7`H50H=7`AFH50H=~7p`H50H=:7S`AUHAWAVAUATSHIIIHXA>utH5k0H=6_E~EMA<$utH560H=6_AD$A9FtH5 0H=6_AvLII^Ht#HLLRHt1H[HuLLLLLH[A\A]A^A_H3LHLL#봺H5u/H= 6 _H5X/H=6^AD$%H56/H=5^H5/H=5^UHAVAUATSIIIH<A<$utH5.H=U5d^AD$MA>utH5.H=H50^AFA9D$tH5q.H=:5^I^Ht(fDfDHLLHt H[HuLLL[A\A]A^H3LRHLLźH5-H=4].H5-H=4m]AF@H5-H=Z4L]H5-H=4/]f.UHAUATSHIHH;utH5S-H=1\C~PsLIH[Ht+fH3LUHLLH[HuLH[A\A]ú H5,H=3x\떺H5,H=0^\UfUHH/UHAWAVAUATSHxIHL=IHE1LHHsHL`LL`@ǀ|HcHDLmLeHMIuLPLLtHUIuLHEH]LeLmLufDfDUHH]LeLmH HIHvIHLH,LH1H]LeLmÐUHAVAUATSH IIIփ~ |t H5fH==A\$LL 9t H5:H=s=LeLuLuA|$HtKHEHUHEHpLHLLtHUI4$LHEH [A\A]A^ID$XHXAD$HH@HEHu.HEH9yH@HEHhIt$LfHLHL(tHEHI4$LaUHAVAUATSH III֋F vt0qt+et& H5 H=k<A\$LL蠞9t H5 H= dtLHELxMHE@M'HUHLmHuEbfH{t%MIUI4$L`MmMd$H[ HtMusH5EH=2MtH5&H=2MtH5 H=2LHMIHuLAMMHuL躭HuLHEHUHBHH[A\A]A^A_úvH5H=z +2HUHHpHt tHEHpLP HUBHH[A\A]A^A_HvLEHUHBHpL|EHUHBHpHLZEUMELAfWL诫HLL衪IH}tVH5H=r ?1E~bHE@tWA HUBtDI]DUMELΝLHMLHuL`?AE9}LL}^E!AH5 H=0HEHpUHH0Ht3HuHHEEHUHMHuPHfUHH UaHH6fUHH]LeLmLuL}HHIL=IHE1HvH.IHpHL`LHgLHLHM,AE L(9HǃHHP1HǃPHHH !LIuHHHHt5:HH7t <7HHPH5 H11tHEI3dH]LeLmLuL}HPLa$@HHHH;8HǃHHP0HǃP@H5 AE H|HDLHsLfWLIHsLfWLwHsLkH*@LcNHsLIHpH H`H`HLYLLޛH`H! t€DHAHDHH+` H*HsLHsLLwHsLHsLL:HsL~HsLjL:HsLAHsL-L]LxL胳L^HsL%IHxHQHyuLLAHsL(HsLlfWTHsLKfT#HsL*7L`ILcMt+@I4$LTHLLfIMd$MuHsLL*LL觙bLILcMt5I4$LHLLIMd$MuHsLLzH{ H5H=u%LLLmILcMt(I4$LdHLLvIMd$MuHsLL H{H5aH=M${HCHPL蘲;HHHHHsH a4L f.2,H5L1iHsLHsLLOHsLHsLL“UHsLHsLLHsL\HsLHL舳HsLhHsL hL HsLpHsLpLaHsLxHsLxL衰$HsLhHsLTLԯHsL+HsLLGHsLNIHpHH`H`HLLL:HsLIHpHLLL|LLLH`LߐHsL&HsHL9ILLcMI4$Lf(fTfUfVMd$MupILLcMRfI4$Lf(fTfUfVMd$MuHHDžHHsH <0LHHHH?HHHHHHsH /Lf.H5L1eDfD5H5$H=.>CH HcH iJ8(HA@HHA8H*A0HAHx0HA HHAHx(tjHAHCH HcH7HAHx8JHA(HTHAHx0{IL/HHHsLIHDžLL!HH5'L1}cgLAH ~eLMH`H`A$AH FeHǸpH`H`A$AH eHǸ8HHH H*X>ILfUHH]LeLmLuL}HpII~ rtH5H=0AU$AE0t|AE4uTAE->@H5VH=Bf.AE4$AE4Eu86fDAE4IU8Au LhAE4tEu8@DH]LeLmLuL}H HcHfZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ )jZZZZZ[MZZZZZZZZZZZZH5H={8IuH)~ vL4IIuL%HHLLDDLLHLAE4f.H5H=_IuH~ vLIIuLHHLLjIuH~ v LKIIuLHD<$LIHHH5L12ALHL;aLL蘟HƺH`HH! t€DHAHDHH+HHL&HH[L_HD<$LIHHH5L1S@LHL\`LL蹞HƺH聲HH! t€DHAHDHH+HHLGHH[L耠HD<$LIHHH5L1t?LHL}_LLڝHƺH袱HH! t€DHAHDHH+Hv( H5H=HLTHH[L荟HD<$LIHHH5L1>LHL^LLHƺH诰HH! t€DHAHDHH+Hv H5H=HLaHH[L蚞HD<$LIHHH5L1=LHL]LLHƺH輯HH! t€DHAHDHH+Hv H5)H=HLnHH[L觝HD<$LIHHH5L1<HLb0MLZYHA'DfDLLjMd$MAI$Hx$tT H5UH=HL蚌HHLpIHI4$L&uHLcHH[L蜜HEIHHH5:L1;3HNHEH3HX[A\A]A^A_úS H5H=%I$ H5pH=2 H5SH=L; H56H=PPUHH]LeLmLuH IHIHvXHt!HpLH$Ld$Ll$Lt$1Hs8HtgLILLHLkLLHsXHL1|HLLHCLH$Ld$Ll$Lt$Hs@HuHsPHt L覊IL[LHHH5L19UHSHHHFHtHHHH6H[fDHVH6HCH[fUHAWAVAUATSH8IHHHHKHHU1Ln(MKALI}HHZHuf.H[HHIuL4uH(LHƺL<LH! t€DHAHDHL)Hv" H5H='EH[LAHEMHHH5/L1=8H[H-MmMt+AI} H5=H=HJHEH3uH8[A\A]A^A_5DUHH]LeLmLuH HIIHvP{Ht!LpLH$Ld$Ll$Lt$DIu0HtL1H[H9HEHX0HYLNIA#LL`H[H&AHH&x$tf H5H=+EL^fHLLPeIHH3LouHU[LHEEAHEHH5{L0IL%\Mf..L%@lMf.L%Mf.mbfL%lf.ENf.EL%2HH[A\A]A^A_úe H5wH= HD H5WH=Ef.Izf.zHU[LHEAHEHH5L/E膢f.EzHU[LjHEAHEHH5La/ofDfDUHH]LeLmH0IHIHvXzsHt%@EEH]LeLmHs8HtFLEELHLLLHDUHHHvH HDUHHHvH ެHշDUHHHvH H鵷DUHAWAVAUATSHIILn@H6H=1IuLIMHAPHHPHH@H9t$ H52H=IMHAPH@HX;ut H5H=IMC;A t H5H=uH[H(HH0H IEHH(H0LրHIEp ~)H 1HH9u1Ht"HHcH(HIHHu9t H5&H=_IEx ~IvPLLmlHAv LnZHC, H5H=/=IMHAP(HLSLLHHL腃HH5UL1(HLRELLVH5L'LLHHHDH5:UL1'LLIHHuY&H@H[LHSHRIH H5GL1'H[HHCHuH5L'LLIHXHH(L薄HH5L1&H[HuLLYHLLHLQlI$H5-L1v&ID$8HXHMvM7H55L1A&LLPI$H5ӿL1&ID$@HXH^DHUIt$L菝HEAL$It$LL6HUIt$LPHEAL$It$LLHUIt$LaHEIt$LLHUIt$LHEIt$LL賉HuL7P_HUIt$LEIt$LL|4H5L1%I\$H? UHH]LeLmH HIHvrIHLH茡LHP1H]LeLmÐUHAWAVAUATSHIHH3HHU1HtfH5mH=mHIIH@@H@@ H@(H@0H@8H@@HHAHtfAEH@HuA}ǾIEAE~/fDIEHHA9M}HL`MHDžPL`I$x |tH5\H=zI4$LHHpHyLLy~HLMHPI]LH! t€DHAHDHL)yHIEHPH<LCMd$HPM/HApt!wH5}H=HL` Mt^E|$HEIt$PH~tH5;H=}It$P1L`HAt$ LNHCAD$HHHZ0Hu^@HH[HtMHD`HEtHH5L1HAH eLjE] EHHA(HtfDAE H@HuHHB0HtAE H@HuA} Ǿ#IE(A} ǾIE0A} ǾIE8A} ǾIE@HLa(E1MAHDž@DfDAIU(I$J:IE0H@?IE8J8LI]@eDHIE@J8Md$IH@MDuHLy0Mt~A@HL$HH8IU(IGIIE0H8?IE8J LI]@e%HIE@IMIH8MuRLUtA;M 6LnoEU E~JA AHE9e |0IE0<?uIE(HXH5ʹL1 AHE9e }L8IHLa(Dž\MDHDž(HDž0XfIE0H0NSNH5ԦH=hMd$H(H0M\\A;E ~BH5H= {DfDHcIE0?DfDI]@H(H<ԎHdH(H4LjHLOHLLNI6IE8H(LOHHy t-LLnHHQ HRPHRHrHLKHL`0M\HHHHH Oe'{H5KH=/Md$HH MO\\A;M I$HpXLL ^Ht+L[LzHI$HH5ٟL1LLmI$HrXHL;[HI$B qtX"vtM|IE0H NSwH5HH=IE0H <NtHH5L1IE8HHHHAfDfDYH5ԣH=]hLLGI]@HH< 2HdwwHH4LahHLLHHB6IE8HL.MHHBIH52H=˵I]@rH5H=I]@hEM EHHA(Ht AE H@HuA} ǾIE(A} ǾIE0A} ǾIE8A} ǾvIE@HL`(MtqAHDžHIU(ID$J:IE0HH?IE8J8LI]@eeHIE@J8Md$IHHMuWLnHHq H HLLML3@H)HUH3uvH[A\A]A^A_úH5H=)I$H5]L1?It$PH~0H5NH=NhUHH]LeHIHI$Ffv'H5H= H$Ld$DH HcHf&L9LLhLHVBpwxH5?H=PHsLH$Ld$m6H=&1]HsLH$Ld$7HFH0H=d12HsLH$Ld$H51HsLH$Ld$ơHvH$Ld$HvH$Ld$H$Ld$H2H=_1,H2H=X1fUHAUATSHILH^HtHLH[HuM$1H[A\A]UHAWAVAUATSHHXH.&HHU1LLf(M5AAH`HP8D|t{H5H=Md$IIMI4$F vuIE0B8NLI]8I4$HX莠IE@J0fDHXHHxtZIE0B8SIE8J0HsHPHXqIE@J<0HPCHHX@0IE0B8NIU8HJ2IE@J0HXN1H$HMH3 uHĈ[A\A]A^A_wUHH]LeLmH IIՅ~p;w kHcID$0H=HH=01ҋH[UHAVAUATSIDEEEItH5|H=I tH5ZH=~MexMubMd$MA|$uID$H@8HXHufDH[HtHCDEt뺍H5H=AǾNIA~(IHHA9}MuxMufDMvMA~guIFH@@L`MtID$~ A;~H5;H=e_HcIH<tH5H=6IID$HMd$MuMvMlA~-AIH<AHE9}AǾI A~(I HHA9}MuxMufDfDMvMA~uIFH@8L`MtID$t\~ A;~H5H= HcI H<tH5ϢH=I ID$HMd$MuMvMiA~-AI H<oAHE9}[A\A]A^MuxMulfDMvMA~guIFH@@L`MtIT$DEukAAID$HXHt0H{tXHCH@H@H[HuMd$MpIT$DEtH5H=[軽IT$sH5uH=Q虽IuxHuxfHvHb~uHFH@8HPHtHJ9tAAHRHu뵺H5H= tH5ܠH=ۤH5H=1EEH5H=軼fDUHAUATSHHH@HHLPLXHH)H)HE)x)p)h)`)X)P)H)@L-IEH(1DžDž0HEHH0HL LH1LsLH! t€DHAHDHL)H|~NH5IH=mH(I3EH[A\A]H0HHYHDLH=U1ȹfDH5ԞH=UH1HtHbrfUHATSHHHPHXL`LhHH)H)HE)x)p)h)`)X)P)H)@H!HH81DžDž0HEHH@H L0LH1LqLH! t€DHAHDHL)H|~AH5lH=Þ萹ǃHXqDH0HHHDLH=1HVH5H=/RH1HtHHHHDLH=+1芷EDUHSHHH8HtNHH98twH8;uH[HH@H5H1H[H5.H=RH8fUHH]LeHHAH8HtIHH98t"DH51H$Ld$WDH=f1H$Ld$酶lH5H=轷H8@UHAUATSHIH@HHLPLXHH)H)HE)x)p)h)`)X)P)H)@L-IEH(1DžDž0HEHH0HH LH1HnHًH! t€DHAHDHH)HwC tLECHÄuH(I3Eu(H[A\A]úH5#H=)GmUHATSIHH8tWH5H=HtLH5%!H}I$8HtKHnx耹HI$@H[A\nfH HI$8H@HHH57L1UHSHHH(tH(…x#H[ú8H5H=S7H(ɽt;HH0H5ǝH10fUHATSHIG GG HG1HWG G$HG(HW0G8G<G@GDHGHHWPHGXI LI LHI L@H HxH Hp H HH(H HP0@8 C`H(t$H5—H=H5LWH(HtL0HL\H[A\`_˻HLH5H1fUHHH}HuȃvH=7"HH=X1H}H}HXltHUfHEǀHuH=_1谱HUBdHuHH51vH}uUH}<H}ClHU2HvHHEH=E1JH}!HUDH}'^HExtH5H1H}^vH=HH=X1UHATSIH_xHt!fDHL7H[HuI$\I$ \QI$[I$[I$[I$[umI$[u:I$[u[A\I$~[H5uL1[A\WI$Z[H5L17I$8[H5L1nI$[H5ZL18I$ZH5L1I$ZH5L1I$ZH5SL1I$ZH5L1\PUHSHH}HXhHU苂xMnH5H=ǯHUHzHEHx(ݱHUHzHбHEHxXñHUHzhYHEHxpHUHYHEHYHUHYHEHYHUHyYHEHiYHUHYYHEHIYHUHHEH HUHYHEHHtHUH HtϰHEH(Ht*HUH8HtHKH;8t HEH@Ht脰HUHHHt߷HEHPHtZHUHHtEHEH5H},H[DH}HEHt]H5H=AHUH_H5sH=藭HEHHtfH{ HtH[0HuH}0UH5H=vC?UHATSIDEu?ADŽ$I$HtHL%H[HuIDŽ$[A\úH5H=Xì말UHHH}tk;H=oZHH=01H}HXDeu H}?H}H='1HUfDfDt@UHATSIu;I\$xHu "H[HtHL,I$x{uI$[A\únH5H=^ɫUHHH}HuȃvH=gRHH=x1H}HX tL-EM}E1C<4FC<yFA}mF9t]̅1DEEUH*E}UH*EuIE*EMɋUHЉUUIEE}:*EYJEŰu}']Å/ ])*YIXE ^HYXEYXEXEHx[A\A]A^A_ËEx4L ~LEHhLHpHx IA< t0< 1A0EIAB< wҋMDBЉEIƋEL [~EEE̲fWEEEHEEx7L ~LEHhLHpHx,A< u@IA< t0< A0EIAB< wҋ]DBЉEIL }}IEI} L }fDfDExWt.1HEHx过HEHxl=H}詇H[HHHEH%>uH}fHEǀHx1Ҿl=HEH.HEHHEHHEHHEHx<HEHx<$<8=HHEHpH=_x161H}<;8a=HHEHpH=xDUHH]LeLmLuH IHQH5xH=(gHCEu=H$Ld$Ll$Lt$uHsH1A뱐IH@HH5wL1H$Ld$Ll$Lt$fDLcA<$WtYE1I|$舅I|$8;LvAHsHT1A,fDfDHsHdA I|$:I|$:tg:8;HA$It$H=v1zA]UHAWAVAUATSHHHHHGHHU1҃>Wtf H5tvH=vbHHHH;t(HHMH3 HH[A\A]A^A_þ H&HH=9t'H5uH=vсHIAL=f.MH5uH=v舁AIHD9ACNuDHfT:f.=_E ETH u1L8LLH! t€DHAHDHH)H"A;T1fB4;HCHA9TDHlNDHTS@3H55tH=Jc#ATH99xHHE1UHAE9T9CHÄufD HAE9TGH5sH=XRvLH! t€DHAHDHL)DHAH iV1L6LDHHH1DHHH=[sQ}1H7E16DHHHH=r1}1H6UHAWAVAUATSHH}LA/t}H5rH=1a ~u/H[A\A]A^A_ÃRuIvL}+ÅtHUHH@HH5rH}1H[A\A]A^A_MfA<$WtuH5qH=r}LADžAJSH5QqH=f`?}It$,E9 NK5AE9|8DL"NuDLI|$H5?T5A$I|$4>485HA$It$H=p1Q{IvL*IvLlIt$"4DLLtKHIt$i4SHÄt."uIt$"J4It$";4SHÄuIt$"!4fDUHATSHH3AH{3uRtfH5mmH=)o[yHHHHXH 2t)HHMH3 uH]LeLmLu0HHt HH~*HP'HHE1LpLhHHBT1ۅ~5fDfDHHB+CHHBTH9HcƄpHHBCNHHB~>LELLNHHBhHP:AD$IHH9HH1sH5kH=lwB~LLHHBHHP냺H5WkH=BmEwCHHHqH=m1u1HX/UHAVAUATSH@H}uHHHU1ҿzHEMH@H@HHEH/HEǀǀǀH}H}H^/xyHUHBH}HHMHy$/}R}WttH5"jH=nvHEHHMH3 H@[A\A]A^HEHxHt xHUHzHt-H}wHEH}H}HUH}1HHMDE:H5UH=X\aH5\LgtH5r\LTu7DH9HCH5JUH=\8aLH=+\1_UHHGH-q=HGUHAUATSHEA LgfT\EiDEDH5[LhELgHtHXHBH5PH17LSH v{AAtLEfWf.ztf.ExAUEH5P[LrfDLH vaH5+[H=-[_LH[A\A]fDfDUHHGt1u&fVHƄt uVHƄuH(-UHSHHPHXL`LhHH)H)HE)x)p)h)`)X)P)H)@H󋗼HwH= v1]H Dž Dž$0HEH(H@H0H\H[fDfDUHATSHHHPHXL`LhHH)H)HE)x)p)h)`)X)P)H)@I􋗼HwH=|1\H Dž Dž$0HEH(H@H0L[H(HDUHATSIH>t1ǀHcHSDH=X\HCLH=XI[A\Af[A\DfD8H=9X\HLH=HX1W;H= X\HHSLH=>X1?DfUHAUATSHH zfDH{ iAą B RCA E1AĀAEIcHDFL18QEGLEDžlDžpDžxHDžHPH8IO`HH4Fxusx҃EH DHL$D$H $ADxH5EL1iPtIO`HH4hfWf.F0zHDžPHH H@0H`H H@8HH8E1pHXvIAH &DH5EL1OAfDH1Ht0HXEADEۺDDIAH CDH5DL1EOCHX҃EAIA H lCH5uDL1NAEAtH[0Ht6AA6H5qL1NtH[0HuEpHpA9OLxxЃ)\ DlE~lH=C1@H5CL1:NDtAAOH9 HcL$Dž|=AG8fWf.z|uIO`HH4 H5L1JtBxxЃ)wx҃EH >HL$D$H $ADxH5?J(nHDžuH5L1?JAAwHX|tH5L1JAAOHIWXHcHƒx {AHHHHx _uAOLIW`HcHƒxfWf.@ AHH(fHzHfWf.J uH5F?L1UILGLEDHH`H=Q1p;LSFHjHMH3 H[A\A]A^A_L >AH 7=H5>L1H'GDH5[>L1HAAGL$DžHDžHPHPHHHHH@HfH5L1/HAIIHA9GLHDžXHDžPIG`HHB&:Ht=HPDžHB HE1HPJHFHXɃEHD$L$H;H$AL<HH5<L1GHHBH@BHX҃EAIA H ;H5)<L1FjHc<HPDžB fWf.zt H8<HPDžzH<HXDžH ;HPDžH;HXDžHB(Hl]H54H=>}9OB fWf.zt H;HPDžH l;HXDžHB(HH5;L1hEAAwHADžHDžAHE9gHEIGXHHx uֻu:vL :AH B9H5:L1DDHXKEAҺDIAH 8H59L1|DIGXHH@0\@(HX҃EAIA H 8H59L1DH5L1CAAHE9gHH5vL1CALB0EAuH=9151eL ,9AH 7H58L1VCDžhDžHHXHHP҃EH @7HL$D$H $ADxAH57L1Bt>ƅHHXeH6HH(>HH`H='143H51H=75aT@UHAWAVAUATSH8HHbHHU1HxHǾ:HHHHcPHHH1DžLHHAHAAu[1HDkEHLH,DEAHLHiLH;&AŅCMcHLH:HNf(fTHC@f(fTf(fWfUfVH;HGXJB  tNB(fWf.)f(XʺDfDHLDENLL?H52H1f.LH5%6H1LH52H1HH5n1H1jDB(fWf.!҃fT}f(XDH5-H=72B0fWf.!҃fT f(\DLLFH54H1H54H1LlHRH54H1+H/4HǃHHEH3u:H8[A\A]A^A_fWf.f(XºD5DUHAWAVAUATSHHHAHHH-HHU1HH="10AD$v"rH=,0HDH=341HrHH=>46HH1AHHHHHDžH~HHt8:HHt2HHt2HHt2t H5H HMH3 -HH[A\A]A^A_fDDžDžDž DžƅDžDžDžHDžHDžHDžHHz"H52H>HHbHHHHr HtH=21-1HH52H1HHHAH8HXHHLbXA4@HHxAHHD9jHIHpHuúH5)H=32{.HLaXIHpHH5r,9$HsH~@HSXHBx w f.HBHx T 9~苅 HcHHCXHHpHHs(H=׏1j,HHH5+lHtFHHHQXHHX8Ht,fDfDHCC0HH[ HuLI$H5Q+HLI$H5/+H$ H5+HLI$H5+H HDJPH݂H^-AHHEHKLILEsHHEH<$H= 1+HU~7HUAH$VA= H=g1*fH=R21*HH1DDHHQHH5/H HHsDH=1+*N  A9T H=1*H58H=m11)HxHǾq0HHHHcPHHH1DžIHH&f.ALNAAu^1LJZDELTLL DEALLLfHLwÅ LcHLH8Lf(fTH@f(fTf(fWfUfVHHGXJP u0;W fWf.4.Hf(f(‰DELHH5V(L1f.LH5P(L1\LH5N-L1<L/H5'L1 H5,L1$?HLfH5,L1HPH5,L1Hl*HDžH5,H1{~HxLǾP-HHHHcPLHH1hDžMHHHHDELXHLHH!AŅFMcHM< A# LfTHHf.v HDžHH@`JBf B fDH5(HSf.f.?f.]WHDCAL^LV1L\L|H5'HDž DžƅHHL.HLHHfLH5)HHDbH?HHDžf.zhHDf.uzH DS#H5iH=*$HH5)L1\H5I)L1?jf.H5%H5KH5%HwADž DžƅfHHHHfHDl'B HHdH WWDH5'L14gHHvH5'L1:HH5((L1A# #HH5'L1A# Z(HH8H5BH=s!lH$HDžLHH5'L1B Z(H5#HSH5p#HuUDž Džƅ0)HHH=A$1JH=Cw1H5"HDž Džƅ/H5"H|HHHH.H=v1 H5Jf(1HH5#kH=v1H=v1H5"HbH5!Hu|HH]H5!Hu Dž DžƅH5!HVuiDž DžƅH5 $HHD ]H5#HWH5#HLH5#HunH5~#L1 fH5P#HcrHDQ\bH50#L1薿 SH5]H='# UHAWAVAUATS}IHUIMLME1ɅHE11ADHMDADH]DAHD;EuЋMEEHEHEDMH]Hu3E}EIcHHEHHUL,EUEMLEAHUD@DD)AA9|KHcA HcIDECBHMAA HcIIAE9}AEH]HEH] }лH<HE L,xkA?LEAD@D)AA9|NHcA HcHHULE9 u`FHIA HcHHuL0HE9 u5AE9}Hu<>D9HcHE }TA<E HcHUHEDD)AEED9MiHcILmI݉8DD)AEEE~]HUDAuHH]D3At7IcH4A7HMDXH] D+IcA HcED9~EHEHEȋu9uDMD9MHuH1@H;UuL1DEAHcH] HD9tBtHH] HD9u1FuHcLE IcAH9uD[A\A]A^A_AHE HcHHcILmLm}UHAWAVAUATS}HuHUHMLELMLmLuD?EEn11ADHMDH]DH;}uHcEHuHHEE1EEHEE|HUETEADAD]HMDMEAEEfDMcJLeIA$MDHuHMBx)։MD9|pHcHM4HcH N1EEeMDBHHuL$A2HcH N1IA-AD A;}A9}A$AA;E̋|+MEgA9M|iHcHuHc‹|AtE$ED9tEAHHUL-fDfDAHc‹|ALAEH8[A\A]A^A_ùHc\ADDž`94|.HcHf.HEH94}狅PȉpHcL<HEB8HcHEHL4H H8ڋHD,ExA*EHc,HAHUH0xA*EHc0HAHUHHEB0II;HEB8HcHEXpDDdH;dHEHh9ADMD@dH_9@HcL$HxEH HH= 1I94}H= 1H uH=V 1sT;4'HcH HxH94}䋅HAH HT;4$HcHHEH94}狅LȉpLD)H`H~7LEHA<ttVH{H9}HcHXADH@  ,t9};Hى ‰BAAQH 9u)FHH\ ,9~K;}5fD+,C+,CSH ,99~H?HE*\EIƋ~L1H9L8'E1L}HHAD9ILHmA$HI8uIAžH=YdH‹H=10H=/:H‹H=*1H=H‹H=01K( < HC4HS4 lbL@ ~TE1L}HHAD9 ~+ILH9A$HI8uIAL~+11H8CHH9D E~+11H@CHH9 I?Le*\EDD9~TL}HHAD9~4HLHGLH6C;uHALeHH5H=9AR  19~RE1HHII`LHAAD$A9DLI9׋ Ct-))9}At$I9;}5HHII`LHAAD$I9LeHH5H=@@Y  9}FHHIIŐLHAAD$ I9ދ ))9}(AD$ I9;}8HHIIŐLHAAD$ I9D(A*X*^LL8~N1LYX|,AD A)čCH;|L8EeED(D( A*Y A*^LL@~T1fDLY\ܭ,AD AčCH; |L@DAEED( HHDExMHEDE~9HH@ HHcHBHUHH9}H8DE~`HXE1HDEx/*CEHcSHH@ HHcHBHUHAHD9H@ ~^HXE1H)x/*CEHcSHH@ HHcHBHUHAHD9 H}H_E1jSsHx*CEHcHAHUHx*CEHcHAHUHAHD9~)HHuKSsDCH=1H}|H8pH@d1SsH=1SsH=1o,AAA@ADEt9}1B HډJH9u)FHH\,AAD9AuI@)ȉSH,99A@)ȉSH,9Ή0**^X3,,L5L5qsL=nL=YbH*E*C8E|*C(P*C,X%H=1H=1H=10,H=1 H=1$H=1(H=1HaH5pH=9xt}tcnH5HH=s9HH3H= K1x,,A,uH=1,U,uH=K1,PH=1C,X,PH=1 HK4HUHAO8AȋGDGDHO(HHI H@HW(HcGDHR H@DDHW(HcGDHJ H@W@TfUHAWAVAUATSHLH}HuHUMHtxG49DcCS C[E|DEl\TH@98,H}HtW4w0H}H5k.艿HHED U‰EEE0HEUPME))HEPH]{Ǿ LHC HE@(HUBB,}Ǿ$HEDEE~HEH9U}UDžDž+*HEHDD9tP~LAH}蠾HUJ "1E)*Y,HHU4I9]EDž AWDADž ʉ ‰p@A~EE DDH 9U ~E苍DDHEAA9F$09tuDMDD)HHU EEHHUHR H@D$HcEHUHR H@LHc]H[HHEHX H}+Y,CD9mA؋ DDHH[A\A]A^A_þ,H=H‹uH=1 9 A 9 ~9t2Uf.E苍DDHQH}LuLHThis filHHe was geHHnerated H Hby genrmH(fDž0f.ƅ2I\$PT$$DDH 1H1褠L0H8A^E~H}HHUHtAF(HUHtAF,E~tE1A 7S3xH‹Ex*CEHHBHUHAI E9t2LI^ H}HuKS3H=1AI E9uI~ LxH}Ϲ1LH=L1H8H=71DH=*1Av(H=(1Av,H=1UH~~ xx1Ðy>UHAWAVAUATSHD@H8H0L(L r @G E1E1틅@WfH(BDxH B;D~qH5NH=AID;@H8FdH0B\E~ D;D~nH5H=~;D~oH5H=uA9LpH5H=sT/DHh@Dd6DmHpDþRHx?HED~&Hh1@H;Du닅@~C11fDH8HcDHhH0HcDH;@uHhHHHHhP‰PD~(Hh fDPPH;DuHcDHHHHHh@~n1@fH8HcDHhHʉHcHp H0HcDHhHʉHcHp H9uHH:tH5H=_D;#tH5H= BD@E~HE1@H;@uDDE~$HE 1f@H;DuD@EeH8HHH0HHHuHHH HHHEHHH(HHHHMHH]HHuLLLAIA9l~9`AHEHEHEIIID9@H}?}HED0HcIcHM +HuD&DLDLDAAu9|DSA9KD\uĉ`EDE1!AHU BDIAD$9DHxBDuH} B\D3tHhHpHxH}H[A\A]A^A_Ë}ĉ\D`Hx1DDE~@@H;DuHc\HxD \H}WDžXHEH HMHhEHHHHP;HHpL<fDIcHHxL,EMEu~H]UH(B;&~gH} HE+HUB"Uމ]QDfD}A}XHcXHUD4D;`fEI]HP9DAEHcL$H8D4D9\tF\H0B;<&H5[H=_HcHxL,AQH0F4#IcHHxL,0EUEOH}UH B;!4Hu H}>+HEB EމrU]H(B;!]H B;!EHE9XHuH}t\Hc\`E1pHU :H] IcH} ;H}H( 9)‰dDEt D;d~DdD9 HcH<HxHc4H H0D$A9t*H89R[H5H=]*H8 HU HU +:HcH} ~kHEH(9|kIH59H=]0HEH  9XH5H=O]DH}H 9})ЉdE6`H5H==XfDH}D),:;`HcHxHcHH09t&H89trH5VH=\H8HMD, HH;~1H9}6lfHETH(9TQH DH9;A9@}ƋDLhAEeE;e}IcHpHE1HUD+4AHE9e~NHcHH8D9<H0D9<tºH5LH=[AHE9eEAID9DcD@E1f.HA9@H8HcDHuTH} H0HcD+HuDH(;DtBHuD4E1E1wHcHAHC`H4xI$Hc 8I$FH I$HFPHAHE9D$l}A$A|$4Ǿ7I$A|$0ǾI$A|$4ǾI$A|$0ǾݸI$.UHAWAVAUATSHH}IH@xHEHpL蠄HUHr LPHE0LpHUSH5vH=EHEY@(1LzlHUHZ8Hu?z`Kf. Il ЍTDLnH[8HtpL聅AĉC(HSLݐCf.ltKf. kztf.!Ѓ@kE,A~HǾnIA~HǾ[IHEHXHHLZAHSL虊{҃DLCf.HkK f. 'k ЍTDLkEYC(DLkHK01Ht(1VH@(ADHAIDHI0HHuMLDLzH[XH(LGL?AFHHUBhAFLBlAFPBpzhǾ7HUHBxzlǾ HUHHJ8HtHEHPx2HI8HHuHUHJHHt"HEH2HIXHHuHUHzZHEH@H@ H@H@(H@@H@8H@PH@HH[A\A]A^A_K f. izdf.!ЃMfDiEUHH]LeLmLuH IIAHX[HL(I|$XD[HCID$`HCI\$`HCH$Ld$Ll$Lt$UHATSHIHEH8L[HL HXE@H@IL$ HH H@(HC0HB0HtHQHB0HtHP(HS0IT$ HH[A\fDfDUHATSIH`ZHAD$4AD$4HCC1HC(HC HCHC0C8HLH[A\fDUHH]LeHIH@OZHAD$0AD$0HCIL[ILSHC C(HLHH$Ld$fDUHHVHtSHF HB HV HtHFHBHV(HtAHF0HB0HV0HtHF(HB(H8WfHHF HB HVHF0HB0fUHAUATSHIHLfMtKLfPI}LW2DfDHF HB HV HtHFHBI}8iWHs0HtHF0HC0HVHuHHF HB HLwI}`HH[A\A]WfDfDUHATSIHHv Hu;XHF0HB0HV0HtHF(HB(I|$8VHs HtHF HC HV(HuHVHF0HB0[A\DfDUHH]LeLmH IIH^HtHdPI|$HUVLL:LLI|$@LH]LeLm VUHSH H@ @@WHCHC HCHC(C4C0HC@HC8HCPHCHVHCXHC`CpClChHǃHCxǃǃǃǃǃǃHǃHǃHǃHǃHH[DUHAWAVAUATSHHIHuUMDEFHEVLU}vjH5xH=Eȃ}vlH5LH=շة}HUB0AEqtH5 H=,虩EAEUAUHUBPAE Et`Hz Ht%cbpI}UHIEHEHp 7bHEHx(Ht%1bpI}]UHIE HUHr(bEHEY@8AE(}ǾFIƋEDEA\AD$  ^'ID$(HCHCf.EIU9UHUHBXN$8L)HK7E9tH5H=qCEt,I|$Ht"%apI}QTHHCIt$`E,AL$@AD$ Ndf(AYD$(CCEIU9U'DEE,AHEfHUHB`HUHLID98tH5H=H}t1H{Ht(+`pI}WSHID$Hs`fD}uCbHC ID$ ID$EYC0AD$(H[8Ht&HHcI4CLLFH[0HuAHED9}L蓨EAUAHH[A\A]A^A__EILcIL[}C@ECC ^EAD$ AD$EYC0YEAD$(H[8HH@@YCHcI4YELL,H[0HuAHED9}{AD$7HID$HID$ _HIL$HIT$ :HC ID$HID$ C ^EAD$HID$ ID$(HCHHC AYL$(KILSILKAYL$0KHHCID$0HCHID$HC(ID$ eHID$C(^EAD$ BH5YH=PH5<H=ȣH5H=諣H5H=ȱ莣ID$(HCID$0HCHC ID$HC(ID$ C ^EAD$C(^EAD$ yAD$(YCAYL$0KkH5oH=&\EKU mH55H=UH勇t!tHcHH1fDHcHf.UH1tHcH<t?<t @HcVH<t7<t:<u1HcVH<t<w11UH1tHcH<t?<t @HcVH<t7<t:<u1HcVH<t<w11UH僿t#HHcHHcV\1HHcH <uHcFt׀t<uHcF<u<uUH僿t#HcHHXF1ɉfHcHDA@<vUH僿t#HcHHF\1@HcHttuUH1tHHcH <t+<tHcF<w1DfDHcF<t <u11fUH僿uHcHHcHHFH1UH1tHc6HHt+uHf.=Xr1@1@UH1tLcLAtYuNHVHt/HHcBY\HRHuf. WrA1AA1fDUHATSIHF f.~W$f.CGH5L!HS HPC(YC AXD$(AD$(s/HC0H%$W)fz8@YC \JJpH@0HtZHJRf.tf.zt@YC \Jf.Vzt@YC \RpH@0HuKf.ztC \C HC[A\HHC HC[A\4H5H=讜C f.C5H5H=膜% Ve@UHATSIHNf. U f. U0C f.SH5LoHSHPC(YCAXD$(AD$(HC0H+nU'@z4@YC\JJH@0HtVHJRf.tf. 2Uzt@YC\Jf.zt@YC\RH@0HuC f.zt \CC HC[A\H5H=%Kf. TH5XH=KC f.H5,H=BȚCTOfDUHH]LeLmLuH@IITf.FAE f.S;AMf.SfTYTXTU\1f.vH]LeLmLufDfDH5TLLIAEA$IE(ID$ID$AA] AX]RYX]Q]f(\fT 6SMf(fTf(fUfVA] A]8fD_H5H=§HAMAE ^H5vH=zAE {]H5FH=w^I]0HI~XDHHSHPIT$HPID$H[0HuUHATSH IHRf.F<Cf.QKf.QfTY~RXQU\1f.wzH5LY[X[3QYX]O]f(\fT lQMf(fTf(fUfV[[H [A\f.H5ܥH=CxKCfH5H=BCH5vH=fDUHATSIHFf.F H5qLHSHPC(YCAXD$(AD$(HC0H% PP)fDz4@YC\JJH@0HtRHJRf.tf.zt@YC\Jf.zt@YC\RH@0HuHL[A\XH5HH=UHH]LeLmLuH IIfWf.F AE fWf.)f. OLIAEAD$ID$HIL$ LHIE HCHCgNLHLQNLHLH5LGAUA$PHIU H$Ld$Ll$Lt$?H5H= 袔"fDH5ܢH=`xAE fWf.@H5H==HAE fDUHAVAUATSIIMf.FMf.F 1I]HI} L!IAEAD$I\$HIt$ AE(fWRMAD$(I]0Ht&fCfW3MLH3L5H[0HuܺH5@LAUA$P[A\A]A^úH5H=/*8DUHH]LeLmH IHFf.Lf.CL0IH@KPLf. PLzt C\AD$ KLHLVH5LA$PHCHCH]LeLmÐgVH5H=BCf.CJfWH5|H=+UHH]LeLmH IHNf. yKCf.LIH@SHHR HBf.wf.vHBf.`uzHtDfDVf.zthHv Ht_H1fW1HBf.`z"u Hu3HHR H?Bf.wf.vHBf.h uzHt?%9?-)?HHBY@ \HR Ht&H9tBf.wHBY@\HR HuHtEIf.rHA^P@f(fW>f.HA^PHHf(fW >'HGf(^f(X@ @@H HGf.sf.rHGf(^f(X@@HH f.HBY@\HR Ht&H9tBf.wHBY@ \HR HuHt;Af.rHA^PHfW=f.hHA^P@HPf(fW ='HFf(^f(X@@HHv HFf.sf.rHFf(^f(X@ @@fUHH]LeHHAԃEu(=f.CtiILKH$Ld$At+ H5H=%QH$Ld$)f<f.Ct0ILC릐z H5BH=xzκ H5#H=ǂDH54H‹Cf.#<u z BKf. <tf.ztAЃBzBBUHH]LeHHI1tH$Ld$@HcHtLuF<vWH5;H=D߁A $HcHAD$ 1@1fUHAVAUATSH IIF f.FI]0HtH{0tH5H=cI]0L#A\$%:f.zzAT$=:f.f.ztWIT$ HtMfW HBH f.t0Y\HR Ht+H9tBf.wHBHf.uzf(fWf.ztIT$ HCf.f(f.ztf(f.YSAMf.zt*f(fT9Y:X:\f.AM f.zt*f(fT9Yf:X9Xf.gAeIMU H5Le}&IA$AAFAE(^Cf.9e}fA.d$f.9xfA.|$HAFID$ID$1H [A\A]A^HBHf.t4Y\HR H}H9tBf.wHBH f.uzf(Cf.Xf(f.f(f.z\f(^OAT$=@8f.|vH5H=Ue}~A\$AT$}ef.<H5H=e}B~A\$AT$}ef(^f(^f. : w7fA.L$lff.7zfA.d$AFID$ID$1H [A\A]A^øH [A\A]A^úH5ӌH=w}AD$f.ulzjfA.d$uzDH5H=@}|f(^J0H5lH=ɋ}H [A\A]A^AL$f.zp~6fTfTf. Q=H5H=P|@UHAWAVAUATSHIHuȉUăv3H5ċH=Zh|HEHP HtwH5 5@fT_f(H@ HuY8BfTf.v"f.BfTf.HR HuH5L IHUȋABf.BsmAGIGHEL` ME1fDI\$C f.CAtHI~X(~'IŋAEAEID$IEHC(IEIEIGIE MoAUąfWfA.D$tAE n4f.K CHC HCAtIfH[0Ht7L9tI~X&HHSHPIUHPIEH[0HuMd$ MHEHHXILX1H[A\A]A^A_ËMąAG3HEf.@qkGH5XH=yNAD$fWf.tAEY3f.CtMHCHC UH5H=y-mH5ֈH=zyzfH5H=n[yAG2HEf.@LH5{H=؇yqf.H[A\A]A^A_fDfDUHAWAVAUATSHHIHuFf.FHEL` MtIT$ HUHtHz t)H5H=ՈxHMLa ID$ HEHURfT2AL$fT 172f(Yf.w?f(Yf.vHEHELe'It$L8HMHqL&9LeHUHRHUHMLqH5>L&HEHUHMHUHBHAHAHMLa0M ID$0HEL;eM,$At-IX#AUIT$HPHMHQHPHAI] Hu@H[ HL9suA\$HE^XLL]]C]f(HUYJ\CfT0 -1f.AUAMf.uYzWHEYXf(\AMAMLeMHEHH[A\A]A^A_fWLLL0H;f./ztf(HUYB\AUf. /ztHMYY\AMHL]d]7H5NH=)u+fDUHAWAVAUATSHII~AE fA.EI]0HtH{0tH5H=uI]0L3AFfA.Fvp(H5LIAA$AEAD$HCID$IFID$IE(ID$ID$ I^ HtbfL9ktQIX,!HSHSHPIT$ HPID$ HCKA^L$AYL$@(\@(H[ HuAD$A^D$AYD$AXG(AG(AL$f. -AE -f.uWzU-f(AFAMf(f.ztAYL$AD$\AFLLH[A\A]A^A_YAD$\-랺H5:H=ssH5H=;sH5H=<sA]!-f(f.zJuHAVAU ,f(f.z u AN2AYT$AL$\ANYAT$\fDfDUHH]LeHIHH~ tPH5GH=rCf.,wd-f.CvH$Ld$fDHH{HHsHL1DUHATSHHf(F f.F~f.+@DcEc f.%+zt!E,f(\1f.wRSf.+zTEtF +f(\f.wY +Xf.S H[A\Df(fT D+Y ,X +ff(fT$+Y\+X\+Of(X*]X)f(]f(\fT*f.1+wnzlf(fDfDH5NH=]p]H5$H=B]p][f((f(ef.%'*ztBEtf(\)f.w+f(fT*X)YP+Xf.v[ f.UHATSHHf(F f.F>DcEtDf(XH)U (f(Uf(\fT)f.)wvztf(Kf. S)zquoK f. :)zE1)f(Xf.Y*Xf.vuK1H[A\EG)f(\f.Y )Xf.XK 1H[A\S S1H[A\DfD'H5$~H=B}UnUff(fTD(Y)X(f(\f.UfH[A\ff(fT(Y)X\(UHH]LeLmLuL}H@H}IFf.FHBI] HtH{ tH5;}H=~mI] LsAE^CLH}AǃEtDH]LeLmLuL}fD H5TH}˽IAEA$AAD$HCID$IF(ID$ID$HEȃtMI^0HtDL9+t/HEHxXIHHSHPIT$HPID$H[0HuLH}3H5&|H=}lH5 |H=|lUHATSHHf(F f.F~f.&@DcEcf.%%ztE(&X1f.wRS f.%zXEtJ &f(X¸f.wY &Xf."SH[A\ff(fT d%Y &X %ff(fTD%Y|%X|%Of(X$]x#f(]f(\fT$f.Q%wnzlf(fDfD.H5nzH=|] k],H5DzH=by]j][f("f(ef.%O$ztBEtf(X#f.w+f(fT8$X#Y%Xf.v[f.UHAWAVAUATSH(IINf. #VPFf.#f.CMu MtI~ tH5DyH=ziMu I^C f.CAAVf.2#YAM>#f.AMIL]f. #zt ^MEf."zt!HLE;}EEf."zt+}HLEZ}[EEϋE E8H5_L'IAEA$AD$IFID$HC(ID$IEID$IEID$ EAD$(EAD$)ID$0AtNfDfDH[0Ht9L9tIXHHSHPIT$0HPID$0H[0HuLL3E9EMEH([A\A]A^A_}H5HwH=wgAMfDAEf.~H5wH=vgf(^H([A\A]A^A_úH5vH=uwgAVf. AM f. AMILUf. f.H5TvH= xfIMMIMELL1H([A\A]A^A_f(^mH5uH=wfEEUHATSHIHH~0tH5uH=wPfK(f. + vf.Czf. f.S H5LUvB1HC HCwzBHCHC ]S(f.@sf. z*fTfTf.sUHHHcLA~~9HcFH¹*YXH9uA1UHf.Fff.%zHV HHBxfWf.P .f.H uz}0*HBxtVf.PuOzMf.H uFzDBf.zt f.u1z/HR Hu*f. ЃfDfD1fUHff.%zf.FHV HHBxfWf.P .f.H uz}0*HBxtVf.PuOzMf.H uFzDBf.zt f.u1z/HR Hu*f. ЃfDfD1fUHff.fHV HHBxfWf.P Ff.H uwzuH"fDHBxtVf.PuOzMf.H uFzDBf.zt f.u1z/HR Hu*f. ЃfDfD1fUHAUATSHIEH^ 1HtJE1fDI}r HEYCHCHBLbH[ IHuHH[A\A]DfDUHATSIHu*HH^I|$j Hu[A\UHAWAVAUATSH8IIFf.FEEHEHEE}uEfA.D$93EHE}uЋEEH8[A\A]A^A_fA.D$zteLLIAD$Eu1MLfWf(ڐf.HBHf. QzYXHRHuL1HBxf.Xu{zyf.@ ujzh"f.E\f.vKEf.v@f(\f. (r.f(\X%fY%^f.r f.HRHcHE}fA.D$ztbfA.D$E1LLIEAD$HID$Mt%LfDHSLL=H[HuMMELLbfDHBH f. zHEWLLIAD$E FH5doH=ho]JL蛯IŋuID$IEHIUI\$ HHSCLLTH[ Huf(\f.mcE\f.Pf(\}f(Xf.-f(\e\YYf.2XmHHHID$IE1UHAWAVAUATSH(IIFf.FEEEuD,fA.D$RLE}uՋEH([A\A]A^A_fA.D$ztLLIAL$MȀuπH?HEEMLHEWHCxtvfWf.Huz f.@ ztH5,mH=]m[H[HtXfWf.uzH5lH=m[HCxufH5lH=lX[HCiL1f.f.lztf.xz3u1H@Huٰ)*Mf.zHEMt5LU\EMfTfUfVEH@Huf.E^MA]EfT/YXGM\f(fT Lf.v'fDfDfTf.H@HuLMMI?L0H@Ht6fWf.wHHM\MMEEE [fA.L$zt@fA.D$E1LL'MAL$IMD$Mt#L@HSLLH[HuMMELLBmLLIAL$MH5zjH=~jX@}uL親ID]EuGILPID$IFI\$ HHSCLLaH[ HuID$IFIMNf.UHAWAVAUATSHIHIMDžCMLfW5-SDfDHBxtf.`uz f.h zt2@f.Hf.z\Y\HHRHuLfDf(\f(fTf(fUfVH@Hu5bf.Mf(Y%;XXf(YL111fWAHcHQIf.B8HtfTfTf.vHHIHt3 fTf.wf.rHtfTf.vHHIHuHt=Ht8fTfTXf.vHcHWIf.B81LLhH[A\A]A^A_H f.jkfDfDxIKf. t\f(fW0sI[f.kH5;gH=gU[rzH5gH=mgUK@UHAWAVAUATSH8IIFf.FEE}uDfA.D$oiE}uՋEH8[A\A]A^A_fA.D$ztELLjIAL$MȀuπH?HuEMLHEWHCxtvfWf.Huz f.@ ztH5eH= f`TH[HtXfWf.uzH5eH=e3THCxufH5eH=eTHCiL1f.f. ztf.( zDuBH@Huٰ)*Mf.z$H f)EMHELU\EMfTfUfVEH@Hu f)MAEfTLf.Ev$fT f.EH@HuLLMhHRHt/Ht fT v fTj f.vHHRHuLH#fDfDH9t Ht fTMfTEf.vHH@HuHfTE fTMXMfTMY ! X ! XMf.EEMLH?HH@HtvfWf.wHHE\EE LL=IAL$MH5 cH=cQ#}uyE fA.L$zuusE1LLHID$MAL$Mt.LHSLLݡH[HuMMELL} fA.D$zvL螢IƋEID$IFHIFI\$ H>HSCLLWH[ HuH5aH=kbqP1Mu;H5aH=WbRP1HIFID$IFvL1DUHAWAVAUATSH8ILoPEMfEEEA}AMAU f.zfWf.uzf.z1 f.f. f(\f. kEfWf.,*Ef.>EA~E9}D`EEĺ H5(L@HEAEHUBEBD9I?ME }AELI@H@H?HX *EEAYE(@(HUB.A$BI]0Ht/EYCLH3LH[0HuAD;}t&egEfDMmPMD]E~UċuH=`1vLDUE~uH=;`1\LDME~uH=Q`1BLEH8[A\A]A^A_úH5^H=_hM,LLfWfA.EuHzFAU ADA;$H5^H==_ MH5h^H=^LL袞HEILxE@I?Me LLcUHH]LeLmH IHF f.FHC0H$Hx0t1H]LeLmfL AD$fA.D${uHL2fA.D$wfA.D$I\$ HtfHsLH[ HuLLк1YfH5|^H=^K{$HLF LL1HLtͺ!H5]H=KHC0fDUHAWAVAUATSH8H}HuUtH5]H=]J;HEf.@uzf.@fHuH}NHUHB EHu;DAD$@f.AAuHEHL`H@ HEE1M|$I\$ EtAD$Hf.ztLH}rAAAEE̋Et)I\$0Ht@H3H;ut H}nH[0HuAVLH}菲HEHSEH8[A\A]A^A_LH}AArM|$I\$ At@H5\H=*IH5[H=,\IwEtfDUHAWAVAUATSHIIA^f.FuzEf.FIE HfHx LL=3m؃t!]TH5<[H=HH%fA.EfA.EfA.EI] Ht@HsLH[ HuLL1H[A\A]A^A_7fA.EzQ1LL%DU lH5IZH=UGfA.E4A$t1H[A\A]A^A_EtLL yָ H[A\A]A^A_ú#H5YH=3ZFY#H5YH=YFLLIE HLpLx I^0HtfH3L5H[0HuLLaLMuLLLLH5YH= FIE ^1LLVIH@HEAEfA.Eu9z7LLtaȃH5XH=,ELL/AǃvZrH5ZXH=fEHEHX0HtH3L H[0HuHuL41HuLaA~!HEHX0HtH3LH[0HuAUHAUATSHIHw8HufHHt6H^8<f.Fuz#f.FuzL誳HHuIu8HtAfH^8Ff.ztNf. zt f.HHuIuHHuf.HHt"H^XFf.F uzLHHuI]HHtEfDLcXCf._ztK f. Fzt f.wL@LMuH[A\A]LMEYH5aVH=mC(HL譨tuHLJUHAUATSHIAHID$8Ht@(H@8HuID$HHtfD@8H@XHu1I\$8HtfK(t_HL}DHLøt˃ t tH5mUH=UyBH[A\A]fDfDI\$HHt*S8t#HL~HLøt둅DA$t1EuI\$8Hu@H[8Ht1HLy cfDfDUHAVAUATSIH󃿈tH5TH=TALQAƅsdIu@HE1DfDH^0Nf. zFf.ztZHV HtQHz tJf.HBxt6fWf.@u+z)9f.@ uzHR HuLWA@HHtE~DH=mT1n?Iu@HE1H^0Nf. zFf.ztZHV HtQHB HtHHx tAHBxt6fWf.@u+z)yf.@ uzHR HuLGA@HHtE~DH=S1>Iu@HtHE1HHt%H^0Ff.FztLAHHuE~DH=S1]>D[A\A]A^ÐFf.K@fFf.GL:DUHSHHtH5RH=cS#?1HH[UHAWAVAUATSHIHMMMHEAHcUHAWAVAUATSH}IIHLMHEDLvE1E1HRHUIcETA4A9DIcH A@HIN!f.AAD;}GAHHID9}HcHUH xAIcHUDD؉AAuBD!~1McTJFExUE\C A9EIcIHcDExGACHMDfDLIcID ExAD9}FH9}[A\A]A^A_HMЋFH9jUHAWAVAUATSIHHUHMMHE/1HM HcDABLEA0H9}ޅMt$HEHUHM HcDAEEEHcEEAE9sIc‹|tfABHHHcHD"EuE\EyEEHHU(H4vL*1L1LvL (LuLuLLL1L1L L L1L1L1LLsLfLYLLL?L2L%LL LLLLLLUEADHAE؉E]]E1EE~JHcEHUL$1 ID9t019]~A$AA tDLID9uEċUUȋE9EuLL1ۅurLH8[A\A]A^A_þbH=D50H‹uH=D1ҋE=CdH=D0H‹uH=D18HHuH=E1.fx8HHuH=D1.CUHLGHHLH9wf+%HHH9vH9rL+%HHH9vHHfUHSHHAADDǺE1G@DR O DD)k7A)DAA6t"D))AƁHc‰4@uHHHHHH[fDfDUHHxHHf.UH0fDUHAUATSHIA1A)E~)L9vAH[A\A]úH5CH=|-DUHSH}1H@DHH7uHH;HH[ÐUHH*^f.r f.zv"/H5}BH=BED-EfDUHSH(HEMf.sdH| <\YMYEXf.Mr Ef.s"HH5AH=ABM,Mf(H([EH=A_,HMEH=AkUHG$GfDfDUHSHHHk.H{b.H{Y.H{0P.HH[B.fUHH]LeLmLuH AD7Do~HD9CD9^E9YSADӉ)H$Ld$Ll$Lt$f.dH5AH=+D9~eH5@H=@h+fDUHH]LeLmLuH AD7Do~XD9SE~.E9)CADH$Ld$Ll$Lt$f.YH5|@H=*fDXH5\@H=*fDUHAWAVAUATSHXIHUDgD9g$vMwIGHEIWHUIO0HMEBHADLHIHEfW1fY@XHHD9uKAHE9~IcH]HHEIEDDLDCHHUL,HcEHM^AtmMAMMDLD9}HHUH HUDDfDYM\MHH9Iy11HEHcTH]HDH]HHD9uHX[A\A]A^A_IGHEIWHUIwMw0E~11HcDH]HIDHD9uMnډLHAUHM^AUD9HE1H@HD9uMAAEEDLHHMHHE1EYX@@HH9uAIE9~HX[A\A]A^A_ÍBHHLf(Y\HHD9~If.QH=L='HH=]=1EgUHAWAVAUATSHIIHH@TDgHWHXHOH`HGHhHW0HpD;T[El$DoDAS1HcHXHTD9uDLzHHXH1HH9uDDLLHHXH?HL!HHXHHDžx1AYDXxxHHAA9DLHxH`A9x1HhHcDHHHHpHDHBA9Ic@HpHhD,AfWHpf.A?9HpA@HfWf. AE9AG EgIGHEIWHUE~E9~H5:H=vH%E9 IcHpHHEADuIcHHE]ˉډLAƺLmE̺DLZAIcHULAf(fT;HM f(fT'f.LAFHH HUHEfDQHHHHHA9}E~=HcEHUH4IcH 1fDHHHHHHD9uAfT0f.vHEHIHU ufWf.zf(A^A9|BAFHHUH‰HUDfDf(Y\HHA9}E~;IcHMHHcEH1f(Y\HHD9uHEEHEA9IcHpHfT 5f.vHDDLHHHMHDLHDDL:HHXH?H Ic@HpHhD,AAG (H57H=7-"AEgMwL1E~)1HcfWfA. D9uA$1A9HĘ[A\A]A^A_A_IGHEIWHUE~A9~H57H=D!D9IcHpL$AFHHHEDDLGEDLEȺLAHcEHUHfT _f.v/A$f(fT ?f.vI$HA$fWf.z2f(fT Tf(fTHf.rf(fW B^f(YXQ-^f(YHNjEHHUHDLHUPZf(Yf(Y\YYXHHHH9}~bHcEHMHIcH1f(Yf(Y\YYXHH9uAIHEA9HcHpL$A$fT f.vI$ډL/HI$HMHf(fW ^f(YXDQ%8^f(YUHAUATSHAAE=v">H=A4tHDH=41ҿ89"HD(@DAǾ#HCEeDAʼnǾ#HCD#HCC C$HC(Dm#HC0HH[A\A]ÐUHAUATSHIAԅ;wLzHcIU`HHH8HVfDIfTEtHHQ@@YB@YHy(tf.vf(HI0Huf(H[A\A]útH5`3H=b3Liwf(H[A\A]UHAUATSHIAԅ;wLzHcIU`HHH8H&fDIfTEtHHQ@@YB@YHy(tf.vf(HI0Huf(H[A\A]ú[H52H=2|if(H[A\A]UHATSHIGL8ELM^MA9\$L|MLELM^f(_MMuEA9\$L}EH[A\EEH[A\ÐUHAUATSHIAԅ;wHzHcIUXHHH8HvfDIfTEtHHQ@@YB@YHytf.vf(HI Huf(H[A\A]úBH50H=0if(H[A\A]UHAUATSHIAWH~c f(ȻA9\$H|5DLMMf(_f(ʃuf(A9\$H}f(H[A\A] cf(H[A\A]fDfDUHAUATSHIAԅ;wHzHcIUXHHH8HffDIfTEtHHQ@@YB@YHytf.vf(HI Huf(H[A\A]ú)H5p/H=/\if(H[A\A]UHATSHIOHELM^MA9\$H|MLHELM^f(_MMuEA9\$H}EH[A\EEH[A\ÐUHAUATSHIAwH~cD)f(ȻA9\$H|5DLMMf(]f(ʃuf(A9\$H}f(H[A\A] f(H[A\A]fDfDUHAWAVAUATSHIAEQDHH=.10LL PLHH7rH`f(^Pf(PH5-HǸPf.rHf. "A&A+A ED$HE~6LF L A9\$H}A|$L~'L Lg A9\$L}޾LELf(^Uf(EH5,H`HĘ[A\A]A^A_H=,1A@HĘ[A\A]A^A_þH=+HDH=+1LeXL5XE1f.AAvH5x+H=,dE1E9EL$LE~6L:ELk ^EL A9\$L}AAuLEL;f(^Uf(EH5+H`qLtpLDp1f.|AfWEȾLhLh^hAtYEf.L|vH5*H=* E1D;|E\$LE~gDfDLELELMYMMQ^LA9\$L}AApAAhEAD$H~f.L!ELELMYMMQ^L A9\$H}[LrELf(^Uf(EH5k)H`FET$HEkLEL^ELqA9\$H}0UHHwfDUHGUHSHHHH;3HH[%DUHSHHPHXL`LhHH)H)HE)x)p)h)`)X)P)H)@HWH7H=(1&H Dž Dž$0HEH(H@H0H*H[UHATSHHHPHXL`LhHH)H)HE)x)p)h)`)X)P)H)@IWH7H=`1aH Dž Dž$0HEH(H@H0LeH{Hu+^H='HH=1H[A\þUHH]LeLmH IG  I|$jÅ tkE1AEHcHgD tNIcA\ AAuLH5U%L1EtAEHA| uE~AUHcA| tIcAD L[A\A]A^AfDUHAVAUATSHC tF tA/uFHh{*tH5$H1QHH{*uH:{/uH,먃 tg tbC IALs  t$AD$!AAt$IHC uIcD [A\A]A^LH5J$H1E1fUHSHHHC H[@UHATSHHLc HuL-tt'u7EH[A\ÐLH5#H1! 1UHAUATSHAxt HD(EeDHCD HCE~+D@HHSHC 0 H9uHH[A\A]ú/H5d H= `oDfDUHAVAUATSIIIԋ~Ǿ} HAM~1HDBHA9E}AfWIEH0HtHcBHXBHRHuIFH 0HtBHcQID$Hf(Ht@HcYBXHR(HuIHIHuIEH0HtHcBHHRHuHA9>UAE~HE1AD$IA9E|5fWfB.DztH5 H=UAD$IA9E}H[A\A]A^ UHAVAUATSHIEIMIԋǾ HAu-1HDBAMH9} IFH0Ht+HcBHEYBXHRHuID$H0Ht2HcBHEYBXHRHuIEH 0HtHcAHHHQHHIHuAEH9J~HE1AD$IA9E|5fWfB.DztH5H=AD$IA9E}HH[A\A]A^UHAWAVAUATSHIEE1?AAID$J40HueDfDHXHVHtHFHBHV H~HF(HB(HV(HtHF HB I|$0VAHHtaH^FfWf.ztfT.Mf.vHFHvHcID$HiDHcNIT$HF(HtAIE9<$DH[A\A]A^A_UHAWAVAUATSH(H}HuEDH=W1E=*AG=B]A߉cIHcӾHBDEEEHEE1HUHBHUL$Mukf. Md$MtTA\$~D9~H5AH=j=ADHJ(:uAD$fWf.vQMd$MuEHEEE9EgLDuH}L H([A\A]A^A_fWf. IH5H=4AG=H5{H="wfUHSHHHHt覬H{HtxH{HtjHH[\fDfDUHAUATSHHAAE؅;7ED;kH{0HD DhE@H@IcH4HCH0HAHtHHHA IcHCHHA(HtHH HsHCH HHH[A\A]DfD_H5<H= 8Q^H5H=UHAUATSHAA%EA iHD DhEExHCA|$HCE~#1ɺDHCHHD9uA}HCE~J1ɺDfDHCHHD9uHCHCHCHH[A\A]f.4H5H=3H5H=UHAWAVAUATSH(H}HuG;tH5|H=xHEpHUȋ:VINjxǾIEgE~1ADBHA9G}AAAHMHAN,MtnIcUHMHAHHu NfH[HtCSHcM$E$EufWDLDELMA$LMDEH[HuMmMuIGJHtHcBAHRHuAIE9OEWE~>1 CHA9G|.ELEtH52H=P.CHA9G}LJLH([A\A]A^A_UHH]LeLmH HI1ILHHLH]LeLmUHAWAVAUATSH(H}Hu;tH5}H=yHEpHU;rtH5UH=QHMqHE8/IƋxǾ}IAF~1ADBHA9F}AAHEHUHBHMHHuGDfDH[Ht3SHcMdA$ufWDLA$H[HuHUHBHMHHuIfDH[Ht3SHcMdA$ufWDL%A$H[HuIFHMHHtHcBADHRHuAHEE9>AF~>1 CHA9F|.E|Et꺬H5H=CHA9F}LLH([A\A]A^A_fUHH]LeLmH0EIMHIHMLEHlLH]LeLmDfDUHAWAVAUATSHIA6IA~OAAIFJ8Ht*sCDLH[HuAIE9&}LH[A\A]A^A_fDUHAWAVAUATSHH XHEHH]HRHEEHUDDLHHEHHUH5HzD}HEHUBS1[A\A]@UHAWAVAUATSHXHf(7LwHGHEHWHUHO HML_PDLHHEHHUDHcHfWf.GDo1HIcB<0E1fD(-EEHuE1=|DDfD(fE(fE(fD(B1<HEfA(f(fATAYAXYXA\L=^˸f(_f(f(fTf.wf.u&z$f(fTfA.vfDEωEfD(f(AHE9DNIcAH<fA(HMYf.vzHcA-HHUf.HMfA(f(fATY sX ӧYXA\L=^˸HcAB1<t <t<-HE f(f(fTAYAXY\A\L=^˸ff.VAHE9f.z$E^f.zEHuE1Ef(5:E1GaDB1<wDHEA\D=^f(_f.rfTf.vEωEf(f(DAHE9tqDNIcAH<fA(HMY f.HcAlHHUf.HMA\D=^Xf(EDE~IcIcB<0ẺDYDHX[A\A]A^A_HHUf.wf.;HM f(fTY XkY\A\L=^˸ǃhHM,HU\,AD DD 5GE>H5H=uDEuf(E1DEDHcAtBB1<t <t< HEA\D=^f.HHUf.vHMA\D=^|f.vfDfDUHAWAVAUATSHHIEGHWXHULHHUEAfWE1MfW -MDhUf<H5H=MEKEYHE^Df.Ev DeEAHE9t)ADHUD<t9~<t(<uAHE9u׋UAHH[A\A]A^A_f.Er@Mf.szf.Esn@UHHLGHOHHWPHcHGX<tD~"fW<t <uHcADfD<tVH5H=ADfHcfDUHAWAVAUATSH8ID'DOL(HwPHAE~411DA9}D)HAYDXHD9uE~xAD$HHAEqfDfDAHE9tIA9}D)HAEDLMLEYEMXLEAHE9uf(H8[A\A]A^A_UHAWAVAUATSHHHIUD7HGHEHGHEHGHEELPL>9vD~-HHYA*L$Df.;MEE1fW11LtRtMB<wADHE f.v \XА1AHD9t9IcLHEuALHEf.v\XE1fWHU }*EDUf(H=aHH[A\A]A^A_ÉA|$@fUHAWAVAUATSHHIGHWXHUHHu EfWEHEEHEHU|AIFPHEMM0EHHUD ~#L1fDfDH@H9uD9McIOA~`I~hLR ̞C|=ufWɅ~,11HuHcDB<8tADYXH9uf(HEHU\DfTޞfT ֞X f^_EEEHEȋu9uEHH[A\A]A^A_IV8IN@MVHD)HH ~"DH=G1H=q1 H(Axu Ht, H5vH=*IGhH(HIGhǃǃHǃAǃDžDWIcHIIcIGPHc IG \IG HA>MGPDž<AHcLXGH5}H=.1f(H=ǯmALADž<MGPA j^AG0i^AG0AG0H=@IjH5H=>sY 6jAO0MEMLmMAM H5aH=AAc[AH 9!H=B1yH 8~H=1ZL¼LH BLAۃAH L*A# H5uH=)@H=B1­ANLLBA3ALLAL A}~H=1UAAHIWPDH(LDžDH DE~H={1H(yxuH H5dH=UHH]LeLmLuL}H0I͋LG8LO@LHHcHGP9|0BH?IEADH]LeLmLuL})HIc EdA)IcIHzHI4fI}HK4HeE~L1fDfDqHD9u끐UHDGHHE~Rf(fWf1&D<t2f.v D2<v HBA9|Lf.vD2<uʸ1UHAWAVAUATSH(EDwHG(HEHHH}EfWfEȍAHL$E1E<ftrIIAEA9|vA$~D9~H5H=HUBDMf.vHcHU<vf.EvHcHU<uH([A\A]A^A_1H([A\A]A^A_DUHAWAVAUATSHHh`GtHHxHHEEHHUHHUU;EfWf.UfWf. 3dM}LmEHE XdME1@fDfWf.Hx<<AID;}EeE~ D;t~5H5 H=1\IcL4MHEY fWf.uo9H5H=PPfWf.GfHx<CHEB0\`^f`HEBX0^fW_f(Uf.fT 'cDeMEAID;}`fWf.zuUf.zHHMȋUeLmEME1@fDfWf.Hx<<AID;}EeE~ D;t~xH5`H=/蜨IcL4MHEY fWf.uo|H5H=APOPfWf.GHx<LHEB0^fW_f(Uf. fT af.M DeMEAID;}EEEUHhEYE HĈ[A\A]A^A_fDfDUf.fT `f.M!H5H=+EfWf.*H5H=UfWf./`U}EH`ENH5bH=螦MMEUHH]LeLmLuL}H@IHuD/DHG HELD9B+HA~FC/9>HcHU A9|GH]\ f(H]LeLmLuL}f.H5H=KȥIT$PMD$XIt$`D)HcË T9}HcH}HD*}HD}HD}HD|HD|HD|HD|HD|H0D|H8Dv|H@Db|HHDN|HPD:|HXHpHLhA>| DžDžDžDžDfD4HxHxHh@Hx DžHhD*E~.H5HxHlHEH=1tHh{{LxAdžDžHxHIH '1ҋ0HxcHxǁDžDžDfDHxBv% H5בH=АuHxxu*HxDžHxHhAt!" H5^H=RtDEt DEu H5.H=OjtHx+HhP8tBHx+9+DžvfDHhy<'zHHxHyY-LhA*N~H=1mE1HpHxmDžLhAN(f. 'Hf.„a?(LhAYFH_ǃSHKHLsLkH[(HHxHHHxHHHxHHDDEE11/@H5H=RlAHE9tfH|wDH HcHfFHD IDIDAHE9uDE=HHL$E1E1BfHBDfWf.ЃHADAIID;A$~D9~H5H=nkHcH<uHAD HDHIDIDHDIDH?IDHD H@IDH@@ID[HxǁHHhCHx$LxAdžDžHxLX~9~H5H=j~!L1f.H@H9uHcH?IH5yH=\D9t)HcHHMHMH]Y \AIE9uLhAFt!"y H5EyH=:\HxHHHH5DžtHxǃDžHxD0DxHPHULHHMHH]ED~D9~vH5|xH=x[E~E9~wH5ZxH=|[HcILHc1C<4HcIT2HcLuAHcAtIDžHhYAHxӮPfWHx辮;ufDžHxHQPIHIXMN`D)HcËHxt~tr H5qH='UE1ٺHpHx*DžAHh:H=1SHxzHxH=61ISH=%16S+HhHx Hxt\ H5pH=6THxHxH=>1R~Hh9HxHcHDHpHDžkHh~H=o16RHpD[xEuH H5pH=-qPSH=$51QVH= r1QLxA E YX 9 Y81DAD9tIcHXH4HcAfTc f.wHcHXH븐UH>H5rH=5R?H5hrH=mrlR1UH8H5@rH=k5DR9H5(rH=-r,R1UH2H5rH=+5R3H5qH=qQ1UHEH5qH=4QFH5qH=qQ1UH?H5qH=4Q@H5hqH=mqlQ1UH9H5@qH=k4DQ:H5(qH=-q,Q1UHH=%q1O1f.UHH=-q1O1ÐUHAWAVAUATSHID?GEHHW0DȉEHRDuEEAIEH<ÀAHE9~I}RAIEH<蓀AHE9~I}nRE11fIE(H<cAHE9~I}QUȅ~1AfDfDIExH<#AHD9e}I}xPE~4AfDIH<~AHE9}IPEȅ~.AfDIH<~AHD9e}IwPE~.AIH<`~AHE9}I8PI<~LH[A\A]A^A_PfDUHAWAVAUATSH(D'DwHGxHEDL|HEȅD9EE9IcHUHHUH:IH蒘E~^E1A ID9tGD9tK|gttKtHEHH}HUJ|HUHYID9uH}H([A\A]A^A_(}H5I| stITHuLƗHEH|LHHÍCA9}H}{LH8[A\A]A^A_{H5kH=kpKIH5kH=hSKUHAWAVAUATSHHID'GEHW(HUHO0HMHG8HEHW@HULoXHpH}yIƅ;]B#HA\~MED9CA9|[HcHMHHMH4LLHH[A\A]A^A_zfD'H5jH=jhJA9}HcHUH4L谂D)HcHMD,DEA9}IcHUL$HMHIc$HMHH3L LLLkAIHD;muBD%H54jH=IUHAVAUATSIDwHGxE~0HAfDfDHSDLAAHE9}[A\A]A^fDfDUHAWAVAUATSHhI|_HWHUHOHMHGHEHWXHUHOhHMEHHUMwHEwIDeEA9]8}t}t H5iH=GiHEED|EA1WftHEHcTHMD$AD$oDEEtH}}oAHD9|HEH|ToE}HUHcDHMD$AtAtAuHMHHEHtL'HMHTLLLLhDUE@1AD@ELH}DuH}n5E|HHUHcHM<UAMAt,H}hnVuIHuuH}LwLHh[A\A]A^A_6wfDHEHHMHtL'HEHTLLLLhDMEu/1ADH5fH=fFLH}脓LH}oIHu肆(HMHHMH4Lu}tLH}"~LH}b~EEEAUACH5.fH=sfEfDUHAWAVAUATSH8H}WU ۃˉ]HOXHWHHUHWxEEuHL4IAfWEowME~HI}qfTEfWf.tzEt Ef.EvADeD}MMAIID9}|`IcI}kADeHUmEmuzH5dH=ivDgUHE]H8[A\A]A^A_fDfDUHAWAVAUATSHXEWUHO0HMHG8HEHW@HULgXHHMHrIƋ}EHIHEIEHEHHE,HcHMH4IEHEIU9UHUȋ9]}I1s+]HcHUD,HMHHED;(}IcHUL$HMHIc$HMHH3L)ILH芐AIHHED9(YLHX[A\A]A^A_+sDfDUHH]LeLmLuL}HPHUD/DwHGHEHWHULHLgXD9B+HA~PC.9HHcAt`u|HUH4H}H]LeLmLuL}zfH5bH=bBHcAuHUfDH5TbH=AUtH50bH=^H]LeLmLuL}A1H}H]LeLmLuL}qDfDUHAWAVAUATSH8ID7_HGhHEHOxHMDEHHMpHEDEE9]A|9 E9HUȋuLIIcHMHAIIHHUD92DH8[A\A]A^A_újH5)_H=@_>A9THEXHUHz6nA맺hH5^H=;_v>UHAWAVAUATSH8H}D7HG0HEHW8HUHG@HELoXDLED;gE~"1@I|1mHÍCA9}C4HADA9D)HHUD,HDHED;(}9IcHUL$HUHfHcIUZHXH H< 4ZHEH8HHwHUH:HMHTHvL LLxH`HH4HEH8TQEEA(fWf.r",0HI/f.(SLEEFL?LGEELA`LxL0IcIH4IcIHHK0H1IcIc\ \ YYXQ,Ls(MHC0HEHMcCEIcAEHEBEHEvM\f(E XME\EgYEE\EEEXE<YEM\f(YYmXm,H{(HHK0HIcIc \ \YYX^ Qf(X,*Pf.ȉGKjH=AjHH=B1H{(HK0H=A>HH=lB1H{(HK0Q|H=AHH=@B1Ls(H[0H]%sH=_AHH=B1H{(HK0eH=3AHH=A1HSPUHSHHH?HtH{HtH{(HtH{0HtH{8HtH{@HtH{HHtH{PHtHH[wUHSHHH-CH{t;8HSH3H=1H[fDfDH{tC1H[{ t,ǀuvHcH^tD1fDUHH]LeLmH HIu{u2SH3H=>H]LeLmDfDLkLLa1҅tЋSLH3H=>1TfDUHSHH1mu!{:t.HKSH3H=]>H[f.H1҅‰H[UHAUATSHH1CE1PHcHpD<u {_ItUCADADHoIąu(E{ǀtfDH[A\A]HKSH3H==1H[A\A]EuȋSH3H==f.UHAWAVAUATSHHoHHU1HHH=S=1HH5HH7XWIH@H@@@@ @$H@(H@0H@8H@@H@HH@PDžLLI<$HtSI|$HtDI|$(Ht5I|$0Ht&I|$8HtI|$@HtI|$HHtI|$PHtLHE1HLHUnHMH3 EHĨ[A\A]A^A_fDMnHHPID$HHMDfDLH5>LI<$fLv1L~LH! t€DHAHDHL)y=HI$LzI4$H=;1,L,6H5|;L7ufA|$LLH5e;L)AD$LH=|;nHH5;LI|$\L,1LqƅL.fD t.L9bCCL3HÅ7uLH! t€DHAHDHL)yHID$LIt$H=?1L H5):LAD$H5:LuhAt$LZHH1LJAAt$H=:1LfH5:L)AL$rLLH5:LXAD$LH=:JH59LHAD$HH=\8?Y8pHHH=81HH=98HH=R8HH=81H5:LAT$ 6LDLH5:LAD$ LH=J: H5*9LdAD$HH=7H5":L!E\$$ELLH5':L#AD$$LH=S:SH539L3AD$ H5U8LAD$HH=p7#=HLH=61HH=X7H59LAT$`?I|$(L`þ#ID$(ID$0DžD`EcHHIT$(IL$0IL IL9`}9`HcHIT$(f.1LAHcHIT$01LL9`HP1LSHH=817 QfH58LWDAD$dI|$8Lr dþvID$8eID$@DždHHIT$8IL$@HH4HH 9d}HP1Lh_9dHcHIT$8f.-'1Lt HcHIT$@1LRLB9dSH54LQAD$H55LuMAD$$HH=4A [H54Lcu1AD$ HLH=51 H54Lu.AD$ HH=C61 HLH=x41 HH=51y HH=h5[ uHH=3= WH593L_,AD$HH=G4 HH=51 H55LaA\$=I|$H(L{(ID$HDžhHDžpHPHX6fD9ID$HHp hHHp;h|\HPL,#HLH=11HPHXHXLHH=4HH=i41b|H54LA\$AD$ I|$PL/ǾID$PAD$ DžDžHcHHxDžlHPLIT$PHx lHHx;l};}H53Lfu7L;H=31H4HLH=31AAHPLD8D0D8D0A@DHIL$PAADHIL$PAE9}AD9E~Ap~CAIcID$P9KA@HHHAHPLD8D8IT$PHHcIT$PH;}D>HH=115OHH=|11/UHH}uEHcHHHHHHUHHEBEEHcHHHHHHMUHcHHHHHHUHHBAUHcHHHHHHUHEHEBUE}~CUHcHHHHHEEHcHHHHHE9UHH}؉uEEEE;E}AEHcHHHHHE؋0HMH EHcHHHHH9|EEHcHHHHHE؋EHcHHHHHE؋9EHcHHHHHHUHHEBEEHcHHHHHHM؋EHcHHHHHHUHHBAEHcHHHHHHUHEHEBEEE;EUHH H}uEuH}EE;E~UHH}HEH@(Ht HEH@0Hu EEEUHH0E EHHHH_HEI_9E|H _HE=HEH@XHEHEHHEHPPHUHEHHE@ HEH@@HEH}uH^HE^HEHxXr^PH=t^PEH=.bEEHHHH5^H%^9}DHV^HHEHHHH^HHHHH0H=H51.H=׺E]9EoH= .贺EH]HPEHHHEHHHHm]H0ʿHEHP]HPEHHHEHHHH*]H0ʿSHEHUHEHB8HUHEHB8E\9EPHEH@@HEH}8 ݹH\HE2HEH@XHEHE@ HEHPPHEHHEH@@HEH}uUHHH}HEH@(HtWHEH@0HuHHEH@@HHEH@HPHEpH=,9HEHxHHEHx@UH}uE;E|EEEEEUH}uE;EEEEEEUH}uUEHHHH[HHUʋ[ЋEȍHHHHUHH H}uH=+xEbuH=+OEHHHEH@HE#HE0H=+!HEH@HEH}uֿ EE;E|H,WH8HUHH H}HEH@(Ht HEH@0Hu2ZHHHHZHHE@ZxZRHEH@(HEH}tHEHH;Et H}HEH@0HEH}tHEHH;Et H}VUHH H}HuHEH@(Ht HEH@0Hu3HEHHHHYHHE@HEPHEXHEH@(HEH}tHE@ t HuH}wHEH@0HEH}tHE@ t HuH}KUHH@H}EEEEEHHHEȋuEEEEWEHHHEȋEEHHHHMHUHEHHHHUHEHHH‹EME;E~.EHHHEȋHUHEHHH9sEE;E\EEEHHHEȋkXHHHxJHERXHH<.HEH}tH}uH=(@jEEEHHHHU؋EHHHEȋEHHHHU؋EBEEEHHHEȋuEEHHHEȋuEEE]EHHHEHHEЋEHHHHMHUHEHHHHHHUHEHHHHEHM}~.EHHHE؋HUHEHHH9oEE;EXEEhEHHHE؋@E'EHHHHUEHHHEȋEEEHHHEȋƋEHHHEEEE;E|EHHHEE$EHHHHUȋEHHHEEEHHHEuH}趲H}譲UHH H}uE%EHHHHUHEEU V9|EEHHHEH@ EEE;E|EEAEHHHEH8Hu8EHHHHSUHEEEE;E|EEHHHEH@ EEE;E|UHHE%EHHHHTHEEU U9|HTHEHEH@X@ HEH@@HEH}uEHTHEBHEHxXHu?EHHHHZTHEEHEH@@HEH}uHFTHEHEH@X@ HEH@@HEH}uUHH H}HEH@(HHEH@0HuyHEHHu/HEH HEH@8PHEpH=f$貰UHEH HEHxHEH@8PHEpAȉH=P$tHEH@8HtDHEP HEHHExHEH@8DPHEpAAȉDH=*$HEHHuKHED@ HEH@XPHEH@0HHEH@(xHEpEAЉH=$ɯUHEx HEH@XD@HEHDPHEH@0HHEH@(PHEp<$EEH=#rHEHx(SHEHx0FUHHH}H}t#HEHx(HEHx0H}贮UHH0H}HE@HEH@(HHEH@0HHE@`謮HEH}uH=u#ŮHE_HMHUHHHBHAHBHAHBHAHB HA HB(HA(HB0HA0HB8HA8HB@HA@HBHHAHHBPHAPHBXHAXHUHEHBPHUHEHBPHEHHtHEHHEH@BHEHEHEH@(Ht HEH@0Hu%H="H MH8(HEHx(HEHEHx0HEHEH@(PHEH@0@HE؉P`QHEH}uH=B"jHEHMHUHHHBHAHBHAHBHAHB HA HB(HA(HB0HA0HB8HA8HB@HA@HBHHAHHBPHAPHBXHAXHUHEHBPHUHEHBPHUHEHHEHHEHHUHEHB(HUHEHB0HE؋@uAHOHu5HEH@(PgO9t HEH@0PRO9t HEHOOHEHEHEUHH0H}HEH@(HHEH@0HHE@`HEH}uH= HEHMHUHHHBHAHBHAHBHAHB HA HB(HA(HB0HA0HB8HA8HB@HA@HBHHAHHBPHAPHBXHAXHUHEHBPHUHEHBPHEH@8HPPHEHP8HEH@8HPPHEHB8HEHEaHEH@(Ht HEH@0HuH==HEHx(HEHEHx0HEHEH@(PHEH@0@HE؉P`莪HEH}uH=觪HEHMHUHHHBHAHBHAHBHAHB HA HB(HA(HB0HA0HB8HA8HB@HA@HBHHAHHBPHAPHBXHAXHUHEHBPHUHEHBPHUHEHHEHHEHHUHEHB(HUHEHB0HE@HEHEHEUHH`H}HuHEHEHEHELHEEH}fHEHEHu&HUHEHBHHEHPHHEHP@HEHE8HEHP@HEHP@HEHP@HEHBHHUHEHB@HUHEHPHHEH@@HEHEH;ErHEEH}HEHEHu&HUHEHBHHEHPHHEHP@HEHE8HEHP@HEHP@HEHP@HEHBHHUHEHB@HUHEHPHHEH@@HEHEH;ErHEHEHEHEHEHUUHHH}H}tMHE@HEPHEPH}t&HEH@8HEHx(HEHx0UHH@H}H}H}IuHEȋPHEȉPHEH@(HEHEH@0HEH}H}HEH@8HEHEH@8HEH}tSH}uJHEHHEHEHHEH}t-H}t&HEH;EtHUHEHB8HEPHEȉPUHH H}H}tH}wu EHEHx(EHEHx0EE;E}EEHEHHEH}uEE>HEH@8Ht+HEH@8Ht HEHHuHE@EEEEUHH H}H}H}uHEHx(HEHx0HE@HEH@8HEHEHx(HEHx0HEHx({HEHx0nHUHEHB8HEPHEPHEPHEPHEH@0HEHP0HEHP(HEH@0HEHP0HEHP(UHH H}HEH8HEH8XHEH8"EHEH8HEH8EUHH H}EEHUHHHEHUHHHHtIH=ϤEHUHHHEHUHHH9t H=衤HCH8EHUHHH@HH@@0EHUHHHEuHEHH@HUHcH H}EHUHHHuE}"UHH H}uESEHHHEH@HEEHHHHUHEH@HBH}\EHHHEH@HuEE;E|H}2UHH H}E [HEH}uHEHEPHEHEHHHhFH< tHEHHHKFH< tHEHHH.FHyu;HEHEHHHFHHEPHEPHE,HEHE@HEPHEHHHEH0HEPHEPHEHEHHHrEHuHEHHHMEH<.HEPHEHEHHEHHHEHPЉ}HEPUEHEPHEHEHHHDHuHEHEHEUHH}}UH}Hu}x-}$EH`@HDbH} },EEH}HEHEuHE@<*tkHE@#MEEHHEEHE;EH}E8]HEHH<虗HHUHcH HUHcHHuH= 蟗ɖE}u}u}_t };};EEH}蚖E}t }u}uр}_tˋEHUHH‹EHHHEHc–HHHuH= ۖE}t};tH}E}#E؋99EEH}袖-}uJ}u=}_t7},t}(t })t};uHEH0}蹕};EHEHEHHHHEHHEEH}NE}t }Tu}eu}_tHEHEHHHHEHHEHEH8UH5}tD},t}(t })t};uHEH0}ڔ};tH}觔E}EE}uS}uF}_t@},t}(t })t};uEHHHEH0}U};qVEEHUHH‹EHHHHEHHEEH}E}t }u}u}_tEHUHH‹EHHHHEHHErEHUHH‹EHHHH0HEHEHHHH84u2U‹EHHHEH8H5DEHHEEHE;EE}tM},t}(t })t};uEHHHEH0}};tH}ÒE}4E؋_69EE5EHHE<tH=z 'QEHHEEHE;EENE%EHUHH‹EHHHH8WEHE;EЋEHUHH<7E؋59E|H} HEHHeH1HMH3 t^H]UHH}}UHH }Hu}Dt$EHA1HDEHHHEyEHHHE@yEHHHHUEEEHHHE@uH}HEHEHEHE4HEH@HEHEHPHEHPH}i~}}HEHUUHSHXH}HuEE܉EEHHHEuEEEHHHEuHUE܉v!HH<-~HEH}uH=F~p}ESEHHHH]ЋEHH<}HEHHHEHHuH=K}}E 9E|EEEHHHH HHEHHHHEHHHH HHEHHHH@@A EHHHHW HHEHHHHEHHHH- HHEHHHHH@@H@@HAHE9E)ȉEEHHHHHHEHHHH0EHHHHHHEHHHHEHHHHHHEHHHHHA@HA@HFHEHHHHLHHEHHHHHE!9EEEEEEWEHHHEu EE9EEEHUHEHHHuMUuH}kEHHHEHEHHH EHHHHxHHHPEHHHEHHHHHEHHHEHEHHHH@ EHHHEEHHHHHHHPEHHHEHHHH@9tH=.zyEEHHHHHHHPEHHHEHHHH@ EHHHEHUHEHHH0}[HEHE@ EHHHEHEHHHEHHHEEHHHEHEHHHHp}HEE;EEHHHEHEHHHH@ EHHHEEDEHHHHpHHEHHHHHEHEȋPHEȉPHEȋ@ HEHE HEHHEHEH@ tHEHHEHEH@(H;EuHUHEHBH HUHEHB@HE@tHEPHEȋ@9~HEȋPHEPHEH@HHtOHEH@@HtBHEH@HPHEH@@@9~(HEH@HHEHEHP@HEHPHHUHEHB@HE@ HEHEE 9EE#9EHEHX[UHH H}uEEHHHEH8`wEE;E|H}LwUHH}uUM܋EȉEEEEHHHHHHHPEHHHEHHHH@ EEEHHHH[HHHPEHHHEHHHH@ ;E|ME;E|BEHHHHHHHPEHHHEHHHH@ ;EE;E}MEHHHEEEHHHHUEHHHEEHHHHUEEHHHEEEHHHHUEHHHEEHHHHUEEUHH0H}uUM܋E;E~QM܋UuH}>EE;E~UʋM܋uH}E;E}uƋM܋UH}UHH}uUEȉEEEEHHHEEEEHHHE;E|ME;E|EHHHE;EE;E}MEHHHEEEHHHHUEHHHEEHHHHUEuEHHHEEEHHHHUEHHHEEHHHHUEEUHH H}uUE;E~4UuH}EUʋuH}uƋUH}UHH@H}ȉuċEHHHtHEH}uH=2t\sEEHHHEH@EE;E|E/EE;EE}EHHHEHEHHHHHEHHHEHEHHHHp}裺HEEHHHEHEHHHHH;EtEY9EtJ9E}esHEH}uH=sDrHU؋EEHHHEHPHEHPEHHHHUHEHBEE;EEE;EHEUHSHH}uUMLLHxHU}EHH<EHEHHEHEHENEHEH@(H;EuHEH@0HE HEH@(HEHHHuHEHEHEHHEHEH;EuHEHHEHEHENEHEH@(H;EuHEH@0HE HEH@(HEHHHu>HEHEHEHHEHEH;EuU)֋H@H@#HHEHEH@@HH}~YHH;EuUHSHXH}HuEE܉EEHHHEuEEEHHHEuHUE܉WYHEH}uH=pYXESEHHHH]ЋEHH< YHEHHHEHHuH=YAXE}~EdE$EHHH HHHHHHHEHHHHEHHHHHHHHHHEHHHH@@A EHHH{HHHHHAHHEHHHHEHHH:HHHHHHHEHHHHH@@H@@HAHE9EȉEEHHHHHHHHHHEHHHHEHHHHHHHHQHHEHHHH0EHHHJHHHHHHHEHHHHHF@HF@HAHEHHHHHHHHHHEHHHHHE}EEEEEHHHEu EEEEEHUHEHHHuEHHHFHUuH}EHHHEHEHHH EHHHHHHHHHHHPEHHHEHHHHHEHHHEHEHHHH@ EHHHEEHHHvHHHHH<HHHPEHHHEHHHH@9tH=eTTE$EHHHHHHHHHHHPEHHHEHHHH@ EHHHEHUHEHHH0EHHHH8dHEHE@ EHHHEHEHHHEHHHEEHHHEHEHHHHpEHHHH8HEE;EEHHHEHEHHHH@ EHHHEE[EHHHHHHHHKHHEHHHHHEHEȋPHEȉPHEȋ@ HEHE HEHHEHEH@ tHEHHEHEH@(H;EuHUHEHBH HUHEHB@HE@tHEPHEȋ@9~HEȋPHEPHEH@HHtOHEH@@HtBHEH@HPHEH@@@9~(HEH@HHEHEHP@HEHPHHUHEHB@HE@ HEHEE9EE}rHEHX[UHH@H}ȉuċEHHHQHEH}uH=4QPEEHHHEH@EE;E|E?E$E;EEEHHHEHEHHHHHEHHHEHEHHHHpEHHH#H8HEEHHHEHEHHHHH;Et E}b}emPHEH}uH=POHU؋EEHHHEHPHEHPEHHHHUHEHBEE;EEE;EHEUHHH84E4R tC HHEEH8WEH8HxE} E;E}EEE}tH8HHEHEH@(HEHEH@0HEH_HEH}˒H}蹒H8H@HEHEH@(HEHEH@0HEH}耒t H}suH=NN`NHEH}uH=kNMHMHUHHHBHAHBHAHBHAHB HA HB(HA(HB0HA0HB8HA8HB@HA@HBHHAHHBPHAPHBXHAXHEH@0HEHP0HEHP(HEHP(HEHHHEHP@HEH H=HuHxuHxHpuHpAH H(H H@H(HHH@HuHp\HPH@uH@HH4HxIIѺH@LHxEME EHHH#HHHHHHHEHHHHEHHHHHHEHHHH@@A EHHHHHHHHqHHEHHHHEHHHjHHHHH0HHEHHHHH@@H@@HAHE9EȉEEHHHHHHHHHHEHHHHHEHHHHHHHHzHHEHHHHEHHHsHHHHH9HHEHHHH0EHHH2HHHHHHHEHHHHHF@HF@HAHE}#HHEHEH@@HH}JHH;EuuHpNHx^EME EHHHiHHHHH/HHEHHHHEHHHHHHEHHHH@@A EHHHHHHHHHHEHHHHEHHHHHHHHvHHEHHHHH@@H@@HAHE9EȉEEHHHBHHHHHHHEHHHHHEHHHHHHHHHHEHHHHEHHHHHHHHHHEHHHH0EHHHxHHHHH>HHEHHHHHF@HF@HAHE}u/#HHEHEH@@HH}OGHH;EuH8HHEH8H@HEH{HuH}讝H H(H H`H(HhH=H@(HEH.H@0HEHEH@8HEHEH@8HEHH@(HEHEH@8HEHEHHEHEH@0H;EuHEH@(HE HEH@0HEHEP9H}H}4H`yH`m#HHEHEH@@HmH}EH]H;EuЋ)H.HuH}aH H(H H`H(HhHH@0HEHEH@8HEHEHHEHEH@0H;EuHEH@(HE HEH@0HEHEP9H}H}4H`bH`V#HiHEHEH@@HVH}DHFH;EuЋHHuH}JH H(H H`H(HhHH@(HEHH@0HEHEH@8HEHEH@8HEHEHEHEH@HEHHEHEHHuHEHEHEH@HEHHEHEHHuHEHEHEHHEHEȋ@t HEHHuHEHHuMHEH;EtCH`#HHEHEH@@HH}rCHH;Eu8EHEHHEHEHENEHEH@(H;EuHEH@0HE HEH@(HEHhHu\HEHEHEHHEHEH;EuHEHHEHEHENEHEH@(H;EuHEH@0HE HEH@(HEHhHuHEHEHEHHEHEH;EuU4)H`H`贝#HHEHEH@@HH}5BHH;EuUHSHHEt$tH=#`BDžl[)uHHH8WAEHHH8eBE<6HHH8H5VAHEH}u)HHH0H=A@H}@E}t};u}tҋ~$H=wdAH}@DžlV(PHH<AHEH}/,HH<@HEH} HH<@HHHHH<@HHHHH<g@HEH}HH<C@HEH}tolHH<#@HEH}tOLHcHHHHH?HPHPt HH<?HEH}uH="??HUHuH}0HH}?EEHHHH]EHHHEH8eHEHHHEH8?EHHHHUEHHHEH8H5u%uH=}!?Džl(&E9EVHEH=d>Džl%E7EHHHEHE9tH=D>Džl%E9E|HErlH}={HH<2>HHzHuH=C>Džl>%ȉEEHHHHHHH<=HHHtpEHHHHHHH<|=HHHt0EHHHH]HH<L=HHHuH=-e=Džl`$EEHHHHEHHEHHH`<HHHuH=ݸ=Džl#EHHHHHHEHHHHEBEHHHHHHEHHHH@EHHHHHHEHHHH@EHHHHZHHEHHHH@ EHHHH)HHEHHHHEHHHHHHEHHHHHAXEHHHHHHEHHHHH@89E}dEHHHHHHEHHHHEHHHHjHHEHHHHH@0H@0HA(E 9EEHHHH6H EHHHHHHHPHHHHHEHHHHHH0EHHHHHHEHHHHHHHAHHAHHF@EEHHHEH8HH5>q9HHPEHHHEH8H5 q9trHHPEHHHEH8H5px9tAHHP EHHHEH8H5pG9t9t;HHEHHHH0H=ef9Džlm EHHHH^HHHPHHHHEHHHH-HHHPHHHHHA(EHHHHHHHPHHHHEHHHHHHHPHHHHHA0EHHHHHHHPHHHHEHHHHaHHHPHHHHHEHHHH-HHHPHHHHEHHHHHHHPHHHHHE9EHEHHHHHHHPtHHHHHEHHHH}HHHP<HHHH@EHHHEH8u6EEEEHHHHHHEHHHHHxHx@HxHHxHxu׋EHHHHHHEHHHHHpHpHHpHp@uEHHHHPHH+EEHHH EHHHHHHEEHHHHpHHHEHHHHHHEHHHHHxHx@HxHHxHxuE܋u9ErEc9ESE}9ERH}4H}4EEnEHHHH>HHEHHHHU‹ÉHHHHHHEHHHHHA8E9E|E9ElE'EHHHHHH8襢E9E|΋HH<84HGH@HuH=II4s34H`E+EHHHHUEEHHHEE9E|#DžDžDžE EEEEHHHHHHEHHHHEHHHH]HHEHHHHHA8EHHHH/HHEHHHHEHHHHHHEHHHHHA8E9E>EHHHHHH0EHHHHHH8迈HpHxHpHHxHEEHHF B54HHHtH= 241tEHHHEHEHHH EHHHEHEHHH‹ȉHUuH=u1HH80EHHHEHEHHH9~7EHHHEHEHHHE艅E䉅EHHHEHEHHHuEHHHEH貋E䋅;E&EHHHEHEHHHE苅;EE|EHcHHHHHHPHEHEHHHEHcHHHHHHPEBEHcHHHHHP@E9EupHPsȉEHPH HH B(HPH EHcHHHHHHPHHBAEHcHHHHHHPH H(BuHP1qEEHcHHHHHP$HHHEH0EHcHHHHHP@HHH9EHcHHHHHHP$HHHEH0EHcHHHHHP@HHHuHPQoEHcHHHHHHP$BEE;EM}UEEHcHHHHHHPHH B(EHcHHHHHHP+EHcHHHHHHPHHBA+EHcHHHHHHPH H(BE\;E3EE"EHcHHHHHPEE9E|ӋEEHPy,HHHxH HHHHHHHHHHHHHxHHHHHxHHHHHHHHHHHHHHfHHxHH:HHhH )HHHHHHHHHHHHHhHHHHHhHHHHHHHHHHHHHHHHhHHdHHhH SHHHH=HHHHHHHHHhHH HHHhHHHHHHHHHHHHHHHHhHHEE苅HHHEHEHHHHUEHEHEHUHHHHEHHHHUEHEE苅HHHEHEHHHHUEHEHEHUHHHHEHHHHUEHEHuH=)(EȉEE9E}EHHHEtM}xEHHHEtE;EEHHHEEԋEHHHHUEHHHEEHHHHUEԉEHHHHHHHxEHHHHH EHHHHHHHEHHHHHHxHEHHHHyHHHhEHHHHXH EHHHHAHHHEHHHH$HHhHEHHHHHHHhEHHHHH EHHHHHHHEHHHHHHhHEME;EE$EHHHEu`XE苅;Eы5H='-H='uH=&HH8;&H}h&E{HHEHHHHHHHEHHHHHA8HHHEHHHHHHEHHHHHA8E89EvHlH0HbHH8^|HpHxHpHHxH S&&HG5H臼HHtH=%$vn8t%HXQ~bBpH=%5dH=%PD35-H=$H=$H`HXHH)H=ԡ$HH8#HkH=EAEHHHHiHH8#EHHHH2HH8#E苅;EH=)#H=#H=#E"EHHHHHH8^#EE9E|H=G# } >HEHHHEHHEHHHHHEHHHEHHEHHHHHEHHHHEHHEHHHHEEuUEUEHEHHHEHHEHHHH;E~,HEHHHEHHEHHHHEЋuH=؟j"9EEЉYȉEЋIUЋ=Љ‹'EЍEP ЋEЉEEEEċEHH<!H@H@tJEHH<v!H8H8t%EHH<Q!H0H0uH=מd! EEHHHH0HEE;E~>HHHHH59HH&uHH2;UЋЉEE+"uHHf(0!#EE;E~͋EEEE'!uHH #EE;E~EzEEbEEHHHEHHHEHEHHHEHHHE)*uHHf(fW@#E9E|E9EwuHHq=EJuHHԤuHH fW$!uHHfWA EE;E~EMEHHHH@Uʉ}EHHHH8Uʉ}EE;E~E^EE?E$UʋȋEȉU)‰E+EEEԉEEEEHHHH0H?H}~[EȉUEEЍ NUЋBЉEHHHH0H?HEȉUEEЍ UЋЉEHHHH0H?HEԋE;EE9EE9EEEEkEPXUЋLЉEUʋ0ȋEȉU)ÉE+EEEԉE܋EEEEHHHH0H?H}~^EEȉUEEЍ UЋЉEHHHH0HHEEȉUEEЍ NUЋBЉEHHHH0HHEԋE;EE9EE9EgؾUЋ̾‰EEEE+UEЉEE+EEEE\UʋgȋEȉU)‰E+EEEEHHHH0H?HEԋE;E~E9EQE9E2H0H8H@uHHI_'HcuHHH8iDžDžHHHE} u(HHH8dH=ϗ#}}tuH='HHiuNuH=H@dH8XH0LHH. Ek}u6~+Ӽ9E~ EЉż5H=dhHXH`HXHH)H=O2EEHHHEH8E苅;EH}H}DžllHĘ[UHH H}H}u EHE@ uHEH@P@t E`HE@ uHEH@P@u E9E/EEEHHHH‹EHHHHHEHEHHHEH@ HEHHEHE@ ~HE@ tH=  EEȋEHHHptEHHHpHE@9uʋEHHHpuEHHHHhE܉EE܋+9EEEE$EHcHHHHHP@E܋E;E|ԋEЉEEHHHpE܋9E~EEEHHHhHHHH‹EHHHHHEHEHHHEH@ wHEHEHEHHEOHEH@(H;EuHEHx0+>HEHx(&HEHEHEHHEHE@ ~EEȋEHHHptEHHHpHE@9uʋEHHHpEHHHHpHE@EEHHHhHHHH‹EHHHHHEHEHEHEHHE=HEH@(H;EuHEHx0 HEHx(HEHEHEHHEHE@ ~E܋E;E%E;E~EE}XEE3EHHHhHhHEHHH9| M}yǃ}EȉE+EHHHhEHHHh9 ME;E͋EHHHhEEHHHHhEHHHhEHHHHhEEEEȉEZEHHHhEEHHHHhEHHHhEHHHHhEEME;E|AE}Ey9UE)ЉʉÉEEEHHHhEEHHHHhEHHHhEHHHHhEEE;EyEEЃ}~H0}uEH@HcЋEԉEEԋE;E!EcEHEE,EEEHHHH ‹EH@HHHHHHHEEHHHH ‹EH@HHHHHHHEH}H}HE@ ~}HE@ ~rHE@;EufHE@;EuZHEPHE@9}$}u E9}u3H0f}u E}uH0BE܋"9EEЋE;EEԋE;EEƨ9EEEHHHH@@?ư>MbP?`.A& .h㈵h㈵>A>@>Gz?{Gz?<-q=|=?sh|#@Y@N@?ffffff?j@MbP?@@+?"@)\(???ffffff?333333ӿffffff?333333?ưp9MbP-C6??:0yE>.AA?4@**A>1@.#,c-B@8@N@xDMb`?d >Hz>Hz@@z! @f@Sc@May 31, 2007 AMD version %d.%d.%d, %s: approximate minimum degree ordering dense row parameter: %g no rows treated as dense (rows with more than max (%g * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes aggressive absorption: no size of AMD integer: %d AMD version %d.%d.%d, %s, results: status: OK out of memory invalid matrix OK, but jumbled unknown n, dimension of A: %.20g nz, number of nonzeros in A: %.20g symmetry of A: %.4f number of nonzeros on diagonal: %.20g nonzeros in pattern of A+A' (excl. diagonal): %.20g # dense rows/columns of A+A': %.20g memory used, in bytes: %.20g # of memory compactions: %.20g The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): %.20g nonzeros in L (including diagonal): %.20g # divide operations for LDL' or LU: %.20g # multiply-subtract operations for LDL': %.20g # multiply-subtract operations for LU: %.20g max nz. in any column of L (incl. diagonal): %.20g chol flop count for real A, sqrt counted as 1 flop: %.20g LDL' flop count for real A: %.20g LDL' flop count for complex A: %.20g LU flop count for real A (with no pivoting): %.20g LU flop count for complex A (with no pivoting): %.20g Nov 1, 2007 %s version %d.%d, %s: No statistics available. OK. ERROR. Matrix has unsorted or duplicate row indices. %s: number of duplicate or out-of-order row indices: %d %s: last seen duplicate or out-of-order row index: %d %s: last seen in column: %d %s: number of dense or empty rows ignored: %d %s: number of dense or empty columns ignored: %d %s: number of garbage collections performed: %d Array A (row indices of matrix) not present. Array p (column pointers for matrix) not present. Invalid number of rows (%d). Invalid number of columns (%d). Invalid number of nonzero entries (%d). Invalid column pointer, p [0] = %d, must be zero. Array A too small. Need Alen >= %d, but given only Alen = %d. Column %d has a negative number of nonzero entries (%d). Row index (row %d) out of bounds (%d to %d) in column %d. Out of memory. symamdcolamdglpapi01.cglp_sort_matrix: P = %p; invalid problem object glp_set_obj_coef: operation not allowed glp_set_obj_coef: j = %d; column number out of range glp_set_col_bnds: j = %d; column number out of range glp_set_col_bnds: j = %d; type = %d; invalid column type glp_set_row_bnds: i = %d; row number out of range glp_set_row_bnds: i = %d; type = %d; invalid row type glp_set_obj_dir: operation not allowed glp_set_obj_dir: dir = %d; invalid direction flag lp->tree == NULLglp_delete_prob: operation not allowed glp_check_dup: m = %d; invalid parameter glp_check_dup: n = %d; invalid parameter glp_check_dup: ne = %d; invalid parameter glp_check_dup: ia = %p; invalid parameter glp_check_dup: ja = %p; invalid parameter k <= neglp_erase_prob: operation not allowed glp_load_matrix: operation not allowed lp->nnz == 0glp_load_matrix: ne = %d; invalid number of constraint coefficients glp_load_matrix: ne = %d; too many constraint coefficients glp_load_matrix: ia[%d] = %d; row index out of range glp_load_matrix: ja[%d] = %d; column index out of range lp->nnz == neglp_load_mat: ia[%d] = %d; ja[%d] = %d; duplicate indices not allowed glp_set_mat_col: operation not allowed glp_set_mat_col: j = %d; column number out of range glp_set_mat_col: j = %d; len = %d; invalid column length glp_set_mat_col: j = %d; len = %d; too many constraint coefficients glp_set_mat_col: j = %d; ind[%d] = %d; row index out of range glp_set_mat_col: j = %d; ind[%d] = %d; duplicate row indices not allowed aij->r_prev == NULLglp_set_mat_row: i = %d; row number out of range tree->curr != NULLrow->level == tree->curr->levelglp_set_mat_row: i = %d; len = %d; invalid row length glp_set_mat_row: i = %d; len = %d; too many constraint coefficients glp_set_mat_row: i = %d; ind[%d] = %d; column index out of range glp_set_mat_row: i = %d; ind[%d] = %d; duplicate column indices not allowed aij->c_prev == NULLglp_set_prob_name: operation not allowed glp_set_prob_name: problem name too long glp_set_prob_name: problem name contains invalid character(s) glp_add_rows: nrs = %d; invalid number of rows glp_add_rows: nrs = %d; too many rows lp->m_max > 0tree != treeglp_add_cols: operation not allowed glp_add_cols: ncs = %d; invalid number of columns glp_add_cols: ncs = %d; too many columns lp->n_max > 0glp_set_col_name: operation not allowed glp_set_col_name: j = %d; column number out of range lp->c_tree != NULLglp_set_col_name: j = %d; column name too long glp_set_col_name: j = %d: column name contains invalid character(s) col->node == NULLglp_del_cols: operation not allowed glp_del_cols: ncs = %d; invalid number of columns glp_del_cols: num[%d] = %d; column number out of rangeglp_del_cols: num[%d] = %d; duplicate column numbers not allowed col->ptr == NULL1 <= k && k <= mglp_set_row_name: i = %d; row number out of range lp->r_tree != NULLglp_set_row_name: i = %d; row name too long glp_set_row_name: i = %d: row name contains invalid character(s) row->node == NULLglp_del_rows: nrs = %d; invalid number of rows glp_del_rows: num[%d] = %d; row number out of range glp_del_rows: operation not allowed glp_del_rows: num[%d] = %d; invalid attempt to delete row created not in current subproblem glp_del_rows: num[%d] = %d; invalid attempt to delete active row (constraint) glp_del_rows: num[%d] = %d; duplicate row numbers not allowed row->ptr == NULLglp_set_obj_name: operation not allowed glp_set_obj_name: objective name too long glp_set_obj_name: objective name contains invalid character(s) glp_copy_prob: operation not allowed glp_copy_prob: copying problem object to itself not allowed glp_copy_prob: names = %d; invalid parameter glpapi02.cglp_get_obj_coef: j = %d; column number out of range glp_get_col_type: j = %d; column number out of range glp_get_row_type: i = %d; row number out of range glp_get_col_name: j = %d; column number out of range glp_get_row_name: i = %d; row number out of range glp_get_mat_col: j = %d; column number out of range len <= lp->mglp_get_mat_row: i = %d; row number out of range len <= lp->nglp_get_col_ub: j = %d; column number out of range lp != lpglp_get_col_lb: j = %d; column number out of range glp_get_row_ub: i = %d; row number out of range glp_get_row_lb: i = %d; row number out of range glpapi03.cglp_find_col: column name index does not exist glp_find_row: row name index does not exist glpapi04.cglp_get_sjj: j = %d; column number out of range glp_get_rii: i = %d; row number out of range glp_set_sjj: j = %d; column number out of range glp_set_sjj: j = %d; sjj = %g; invalid scale factor glp_set_rii: i = %d; row number out of range glp_set_rii: i = %d; rii = %g; invalid scale factor glpapi05.cglp_set_col_stat: j = %d; column number out of range glp_set_col_stat: j = %d; stat = %d; invalid status glp_set_row_stat: i = %d; row number out of range glp_set_row_stat: i = %d; stat = %d; invalid status glpapi06.ck >= 0glp_get_col_dual: j = %d; column number out of range glp_get_col_prim: j = %d; column number out of range glp_get_col_stat: j = %d; column number out of range glp_get_row_dual: i = %d; row number out of range glp_get_row_prim: i = %d; row number out of range glp_get_row_stat: i = %d; row number out of range glp_simplex: initial basis is invalid glp_simplex: initial basis is singular glp_simplex: initial basis is ill-conditioned parm != parmglp_simplex: P = %p; invalid problem object glp_simplex: operation not allowed glp_simplex: msg_lev = %d; invalid parameter glp_simplex: meth = %d; invalid parameter glp_simplex: pricing = %d; invalid parameter glp_simplex: r_test = %d; invalid parameter glp_simplex: tol_bnd = %g; invalid parameter glp_simplex: tol_dj = %g; invalid parameter glp_simplex: tol_piv = %g; invalid parameter glp_simplex: it_lim = %d; invalid parameter glp_simplex: tm_lim = %d; invalid parameter glp_simplex: out_frq = %d; invalid parameter glp_simplex: out_dly = %d; invalid parameter glp_simplex: presolve = %d; invalid parameter glp_simplex: row %d: lb = %g, ub = %g; incorrect bounds glp_simplex: column %d: lb = %g, ub = %g; incorrect bounds GLPK Simplex Optimizer, v%s %d row%s, %d column%s, %d non-zero%s ~%6d: obj = %17.9e infeas = %10.3e PROBLEM HAS NO FEASIBLE SOLUTION PROBLEM HAS UNBOUNDED SOLUTION PROBLEM HAS NO DUAL FEASIBLE SOLUTION Preprocessing... PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION OPTIMAL SOLUTION FOUND BY LP PREPROCESSOR glp_simplex: unable to recover undefined or non-optimal solution glpapi07.c-DBL_MAX <= val && val <= +DBL_MAXfabs(val - mpq_get_d(x)) <= eps * (1.0 + fabs(val))glp_exact: it_lim = %d; invalid parameter glp_exact: tm_lim = %d; invalid parameter glp_exact: problem has no rows/columns rowcolumnglp_exact: %s %d has invalid bounds glp_exact: %d rows, %d columns, %d non-zeros GLPK bignum module is being used (Consider installing GNU MP to attain a much better performance.) lpx_get_num_rows(lp) == mlpx_get_num_cols(lp) == nlpx_get_num_nz(lp) == nnzloc == nnztype[k] == SSX_LO || type[k] == SSX_DBtype[k] == SSX_UP || type[k] == SSX_DBtype[k] == SSX_FRtype[k] == SSX_FXi == m && j == nglp_exact: initial LP basis is invalid 1 <= ssx->q && ssx->q <= n1 <= lp->some && lp->some <= m+nssx != ssxglpapi08.cglp_ipt_col_dual: j = %d; column number out of range glp_ipt_col_prim: j = %d; column number out of range glp_ipt_row_dual: i = %d; row number out of range glp_ipt_row_prim: i = %d; row number out of range glp_interior: msg_lev = %d; invalid parameter glp_interior: ord_alg = %d; invalid parameter glp_interior: row %d: lb = %g, ub = %g; incorrect bounds glp_interior: column %d: lb = %g, ub = %g; incorrect bounds Original LP has %d row(s), %d column(s), and %d non-zero(s) row->lb == row->ubcol->lb == 0.0 && col->ub == +DBL_MAXWorking LP has %d row(s), %d column(s), and %d non-zero(s) glp_interior: unable to solve empty problem WARNING: PROBLEM HAS ONE DENSE COLUMN WARNING: PROBLEM HAS %d DENSE COLUMNS glpapi09.cglp_mip_col_val: j = %d; column number out of range glp_mip_row_val: i = %d; row number out of range glp_intopt: no alien solver is available glp_intopt: optimal basis to initial LP relaxation not provided Integer optimization begins... INTEGER OPTIMAL SOLUTION FOUND PROBLEM HAS NO INTEGER FEASIBLE SOLUTION RELATIVE MIP GAP TOLERANCE REACHED; SEARCH TERMINATED TIME LIMIT EXCEEDED; SEARCH TERMINATED glp_intopt: cannot solve current LP relaxation SEARCH TERMINATED BY APPLICATION glp_get_col_kind: j = %d; column number out of range glp_intopt: P = %p; invalid problem object glp_intopt: operation not allowed glp_intopt: msg_lev = %d; invalid parameter glp_intopt: br_tech = %d; invalid parameter glp_intopt: bt_tech = %d; invalid parameter glp_intopt: tol_int = %g; invalid parameter glp_intopt: tol_obj = %g; invalid parameter glp_intopt: tm_lim = %d; invalid parameter glp_intopt: out_frq = %d; invalid parameter glp_intopt: out_dly = %d; invalid parameter glp_intopt: cb_size = %d; invalid parameter glp_intopt: pp_tech = %d; invalid parameter glp_intopt: mip_gap = %g; invalid parameter glp_intopt: mir_cuts = %d; invalid parameter glp_intopt: gmi_cuts = %d; invalid parameter glp_intopt: cov_cuts = %d; invalid parameter glp_intopt: clq_cuts = %d; invalid parameter glp_intopt: presolve = %d; invalid parameter glp_intopt: binarize = %d; invalid parameter glp_intopt: fp_heur = %d; invalid parameter glp_intopt: alien = %d; invalid parameter glp_intopt: row %d: lb = %g, ub = %g; incorrect bounds glp_intopt: column %d: lb = %g, ub = %g; incorrect bounds glp_intopt: integer column %d has non-integer lower bound %g glp_intopt: integer column %d has non-integer upper bound %g glp_intopt: integer column %d has non-integer fixed value %g GLPK Integer Optimizer, v%s are%d ofis%d integer variable%s, %s which %s binary LP RELAXATION HAS NO DUAL FEASIBLE SOLUTION Objective value = %17.9e INTEGER OPTIMAL SOLUTION FOUND BY MIP PREPROCESSOR Solving LP relaxation... glp_intopt: cannot solve LP relaxation glp_set_col_kind: j = %d; column number out of range glp_set_col_kind: j = %d; kind = %d; invalid column kind glpapi10.cglp_check_kkt: sol = %d; invalid solution indicator glp_check_kkt: cond = %d; invalid condition indicator sol != solcond != condWriting MIP solution to `%s'... %d %.*g %.*g Writing interior-point solution to `%s'... %.*g %.*g Writing basic solution to `%s'... %d %d %.*g %d %.*g %.*g Reading MIP solution from `%s'... wrong number of rows wrong number of columns invalid solution status non-integer column value%d lines were read Reading interior-point solution from `%s'... Problem:%-12s%s Rows:%-12s%d Columns:%-12s%d (%d integer, %d binary) Non-zeros:INTEGER OPTIMALINTEGER NON-OPTIMALINTEGER EMPTYINTEGER UNDEFINED???Status:MINimumMAXimum = Objective:%-12s%s%s%.10g (%s) No. Row name Activity Lower bound Upper bound ------ ------------ ------------- ------------- ------------- %6d %-12s %s %20s%3s%13.6g %13s = No. Column name Activity Lower bound Upper bound %s Integer feasibility conditions: KKT.PE: max.abs.err = %.2e on row %d max.rel.err = %.2e on row %d High qualityMedium qualityLow qualitySOLUTION IS WRONG%8s%s KKT.PB: max.abs.err = %.2e on %s %d max.rel.err = %.2e on %s %d SOLUTION IS INFEASIBLEEnd of output OPTIMALUNDEFINEDINFEASIBLE (INTERMEDIATE)INFEASIBLE (FINAL) No. Row name Activity Lower bound Upper bound Marginal ------ ------------ ------------- ------------- ------------- ------------- < eps%13s No. Column name Activity Lower bound Upper bound Marginal Karush-Kuhn-Tucker optimality conditions: PRIMAL SOLUTION IS WRONGPRIMAL SOLUTION IS INFEASIBLEKKT.DE: max.abs.err = %.2e on column %d max.rel.err = %.2e on column %d DUAL SOLUTION IS WRONGKKT.DB: max.abs.err = %.2e on %s %d DUAL SOLUTION IS INFEASIBLEFEASIBLEUNBOUNDED No. Row name St Activity Lower bound Upper bound Marginal ------ ------------ -- ------------- ------------- ------------- ------------- B NLNUNFNS??%s No. Column name St Activity Lower bound Upper bound Marginal Reading basic solution from `%s'... invalid primal status invalid dual status invalid row status invalid column status %13.5f 0.00000 -0.00000 0. -0.%13.6gglpapi11.cglp_print_ranges: P = %p; invalid problem object glp_print_ranges: len = %d; invalid list length glp_print_ranges: list = %p: invalid parameter glp_print_ranges: list[%d] = %d; row/column number out of range glp_print_ranges: flags = %d; invalid parameter glp_print_ranges: fname = %p; invalid parameter glp_print_ranges: optimal basic solution required glp_print_ranges: basis factorization required Write sensitivity analysis report to `%s'... GLPK %-4s - SENSITIVITY ANALYSIS REPORT%73sPage%4d Row nameSlackColumn nameObj coefActivityStNo.%6s %-12s %2s %13s %13s %13s %13s %13s %13s %s LimitingObj value atLower boundvariablebreak pointrangeUpper boundMarginal------ ------------ -- ------------- ------------- ------------- ------------- ------------- ------------- ------------ 1 <= numb && numb <= m1 <= numb && numb <= n%6d %-12.12s%s %6s %12sBS %2s %s%6s %-12s %2s %13sEnd of report glpapi12.cglp_get_col_bind: basis factorization does not exist glp_get_col_bind: j = %d; column number out of range glp_get_row_bind: basis factorization does not exist glp_get_row_bind: i = %d; row number out of range glp_get_bhead: basis factorization does not exist glp_get_bhead: k = %d; index out of range glp_dual_rtest: basic solution is not dual feasible glp_dual_rtest: dir = %d; invalid parameter glp_dual_rtest: eps = %g; invalid parameter glp_dual_rtest: ind[%d] = %d; variable number out of range glp_dual_rtest: ind[%d] = %d; basic variable not allowed glp_analyze_row: primal basic solution components are undefined glp_analyze_row: basic solution is not dual feasible glp_analyze_row: len = %d; invalid row length glp_analyze_row: ind[%d] = %d; row/column index out of range glp_analyze_row: ind[%d] = %d; basic auxiliary variable is not allowed glp_analyze_row: ind[%d] = %d; basic structural variable is not allowed glp_analyze_row: type = %d; invalid parameter 1 <= k && k <= P->m+P->nval[piv] != 0.0glp_prim_rtest: basic solution is not primal feasible glp_prim_rtest: dir = %d; invalid parameter glp_prim_rtest: eps = %g; invalid parameter glp_prim_rtest: ind[%d] = %d; variable number out of range glp_prim_rtest: ind[%d] = %d; non-basic variable not allowed type != typeglp_btran: basis factorization does not exist glp_transform_row: basis factorization does not exist glp_transform_row: len = %d; invalid row length glp_transform_row: ind[%d] = %d; column index out of range glp_transform_row: val[%d] = 0; zero coefficient not allowed glp_transform_row: ind[%d] = %d; duplicate column indices not allowed len <= nglp_eval_tab_row: basis factorization does not exist glp_eval_tab_row: k = %d; variable number out of rangeglp_eval_tab_row: k = %d; variable must be basicglp_ftran: basis factorization does not exist glp_transform_col: basis factorization does not exist glp_transform_col: len = %d; invalid column length glp_transform_col: ind[%d] = %d; row index out of range glp_transform_col: val[%d] = 0; zero coefficient not allowed glp_transform_col: ind[%d] = %d; duplicate row indices not allowed glp_eval_tab_col: basis factorization does not exist glp_eval_tab_col: k = %d; variable number out of rangeglp_eval_tab_col: k = %d; variable must be non-basicglp_analyze_coef: P = %p; invalid problem object glp_analyze_coef: optimal basic solution required glp_analyze_coef: basis factorization required glp_analyze_coef: k = %d; variable number out of range glp_analyze_coef: k = %d; non-basic variable not allowed 0 <= rlen && rlen <= n1 <= rpiv && rpiv <= rlen1 <= q && q <= m+nrval[rpiv] != 0.0stat == GLP_NL || stat == GLP_NFstat == GLP_NU || stat == GLP_NF1 <= cpiv && cpiv <= clen1 <= p && p <= m+np != krow->stat == GLP_BScol->stat == GLP_BSll != -DBL_MAXuu != +DBL_MAXcval[cpiv] != 0.0glp_analyze_bound: P = %p; invalid problem object glp_analyze_bound: optimal basic solution required glp_analyze_bound: basis factorization required glp_analyze_bound: k = %d; variable number out of range glp_analyze_bound: k = %d; basic variable not allowed 0 <= len && len <= m1 <= piv && piv <= lenstat == GLP_BSglp_bf_update: basis factorization does not exist glp_set_bfcp: type = %d; invalid parameter glp_set_bfcp: lu_size = %d; invalid parameter glp_set_bfcp: piv_tol = %g; invalid parameter glp_set_bfcp: piv_lim = %d; invalid parameter glp_set_bfcp: suhl = %d; invalid parameter glp_set_bfcp: eps_tol = %g; invalid parameter glp_set_bfcp: max_gro = %g; invalid parameter glp_set_bfcp: nfs_max = %d; invalid parameter glp_set_bfcp: upd_tol = %g; invalid parameter glp_set_bfcp: nrs_max = %d; invalid parameter glp_set_bfcp: rs_size = %d; invalid parameter row != rowThe search is prematurely terminated due to application request glpapi13.cmip->n == nSolution found by heuristic: %.12g glp_ios_select_node: p = %d; invalid subproblem reference number glp_ios_select_node: p = %d; subproblem not in the active list glp_ios_select_node: subproblem already selected glp_ios_branch_upon: j = %d; column number out of range glp_ios_branch_upon: sel = %d: invalid branch selection flag glp_ios_branch_upon: j = %d; variable cannot be used to branch upon glp_ios_branch_upon: branching variable already chosen glp_ios_can_branch: j = %d; column number out of range glp_ios_pool_size: operation not allowed tree->local != NULLglp_ios_row_attr: i = %d; row number out of range glp_ios_node_level: p = %d; invalid subproblem reference number glp_ios_node_bound: p = %d; invalid subproblem reference number glp_ios_up_node: p = %d; invalid subproblem reference number glp_ios_prev_node: p = %d; invalid subproblem reference number glp_ios_prev_node: p = %d; subproblem not in the active list glp_ios_next_node: p = %d; invalid subproblem reference number glp_ios_next_node: p = %d; subproblem not in the active list glp_ios_clear_pool: operation not allowed glp_ios_del_row: operation not allowed glp_ios_add_row: operation not allowed glpapi14.cglp_mpl_postsolve: invalid call sequence glp_mpl_postsolve: sol = %d; invalid parameter glp_mpl_postsolve: wrong problem object glp_mpl_build_prob: invalid call sequence glp_mpl_build_prob: row %s; constant term %.12g ignored glp_mpl_generate: invalid call sequence glp_mpl_read_data: invalid call sequence glp_mpl_read_model: invalid call sequence glp_mpl_init_rand: invalid call sequence Writing graph to `%s'... %d %d glpapi15.cglp_find_vertex: vertex name index does not exist v->entry == NULLglp_erase_graph: v_size = %d; invalid size of vertex data glp_erase_graph: a_size = %d; invalid size of arc data G->na > 01 <= a->tail->i && a->tail->i <= G->nva->tail == G->v[a->tail->i]1 <= a->head->i && a->head->i <= G->nva->head == G->v[a->head->i]glp_add_arc: i = %d; tail vertex number out of range glp_add_arc: j = %d; head vertex number out of range glp_add_arc: too many arcs glp_set_graph_name: graph name too long glp_set_graph_name: graph name contains invalid character(s) glp_create_graph: v_size = %d; invalid size of vertex data glp_create_graph: a_size = %d; invalid size of arc data glp_add_vertices: nadd = %d; invalid number of vertices glp_add_vertices: nadd = %d; too many vertices G->nv_max > 0Reading graph from `%s'... invalid number of vertices invalid number of arcs Graph has %d vert%s and %d arc%s tail vertex number out of range head vertex number out of range exglp_set_vertex_name: i = %d; vertex number out of range G->index != NULLglp_set_vertex_name: i = %d; vertex name too long glp_set_vertex_name: i = %d; vertex name contains invalid character(s) glp_del_vertices: ndel = %d; invalid number of vertices glp_del_vertices: num[%d] = %d; vertex number out of range glp_del_vertices: num[%d] = %d; duplicate vertex numbers not allowed v->name == NULLglpapi16.cglp_strong_comp: v_num = %d; invalid offset na == k-1ib[1] == 1ib[k] < lastglp_weak_comp: v_num = %d; invalid offset glp_top_sort: v_num = %d; invalid offset indeg[i] == 0num[i] == 0indeg[j] > 0glpapi17.cglp_check_asnprob: v_set = %d; invalid offset glp_asnprob_lp: form = %d; invalid parameter glp_asnprob_lp: names = %d; invalid parameter glp_asnprob_lp: v_set = %d; invalid offset glp_asnprob_lp: a_cost = %d; invalid offset x[%d,%d]strlen(name) < sizeof(name)j == G->naglp_maxflow_lp: names = %d; invalid parameter glp_maxflow_lp: s = %d; source node number out of range glp_maxflow_lp: t = %d: sink node number out of range glp_maxflow_lp: s = t = %d; source and sink nodes must be distinct glp_maxflow_lp: a_cap = %d; invalid offset glp_mincost_lp: names = %d; invalid parameter glp_mincost_lp: v_rhs = %d; invalid offset glp_mincost_lp: a_low = %d; invalid offset glp_mincost_lp: a_cap = %d; invalid offset glp_mincost_lp: a_cost = %d; invalid offset glp_mincost_okalg: v_rhs = %d; invalid offset glp_mincost_okalg: a_low = %d; invalid offset glp_mincost_okalg: a_cap = %d; invalid offset glp_mincost_okalg: a_cost = %d; invalid offset glp_mincost_okalg: a_x = %d; invalid offset glp_mincost_okalg: v_pi = %d; invalid offset k == naglp_cpp: v_t = %d; invalid offset glp_cpp: v_es = %d; invalid offset glp_cpp: v_ls = %d; invalid offset glp_cpp: t[%d] = %g; invalid time glp_cpp: project network is not acyclic 1 <= k && k <= nvlist[k] == 0glp_asnprob_hall: v_set = %d; invalid offset glp_asnprob_hall: a_x = %d; invalid offset v->in == NULL && v->out == NULLnum[a->head->i] != 0loc-1 == G->na1 <= k && k <= narp[k] == 0arp[k] != 0glp_asnprob_okalg: form = %d; invalid parameter glp_asnprob_okalg: v_set = %d; invalid offset glp_asnprob_okalg: a_cost = %d; invalid offset glp_asnprob_okalg: a_x = %d; invalid offset v != vx[k] == 0 || x[k] == 1glp_maxflow_ffalg: s = %d; source node number out of range glp_maxflow_ffalg: t = %d: sink node number out of range glp_maxflow_ffalg: s = t = %d; source and sink nodes must be distinct glp_maxflow_ffalg: a_cap = %d; invalid offset glp_maxflow_ffalg: v_cut = %d; invalid offset glpapi18.c1 <= j && j < i && i <= nvglp_wclique_exact: v_wgt = %d; invalid parameter glp_wclique_exact: v_set = %d; invalid parameter 1 <= i && i <= G->nvGLPSOL: GLPK LP/MIP Solver, v%s Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Andrew Makhorin, Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia. All rights reserved. This program has ABSOLUTELY NO WARRANTY. This program is free software; you may re-distribute it under the terms of the GNU General Public License version 3 or later. --mps--freemps--lp--cpxlp--glp--math-m--model-d--dataNo input data file specified Too many input data files -y--displayNo display output file specified Only one display output file allowed --seedNo seed value specified ?Invalid seed value `%s' --mincost--maxflow--simplex--interior--alien-r--readNo input solution file specified Only one input solution file allowed --min--max--scale--noscale-o--outputNo output solution file specified Only one output solution file allowed -w--write--ranges--boundsNo output file specified to write sensitivity analysis report Only one output file allowed to write sensitivity analysis report --tmlimNo time limit specified Invalid time limit `%s' --memlimNo memory limit specified Invalid memory limit `%s' --check--nameNo problem name specified Only one problem name allowed --wmpsNo fixed MPS output file specified Only one fixed MPS output file allowed --wfreempsNo free MPS output file specified Only one free MPS output file allowed --wlp--wcpxlp--wlptNo CPLEX LP output file specified Only one CPLEX LP output file allowed --wglpNo GLPK LP/MIP output file specified Only one GLPK LP/MIP output file allowed --wpbNo problem output file specified Only one OPB output file allowed --wnpbOnly one normalized OPB output file allowed --logNo log file specified Only one log file allowed -h--helpUsage: %s [options...] filename General options: --mps read LP/MIP problem in fixed MPS format --freemps read LP/MIP problem in free MPS format (default) --lp read LP/MIP problem in CPLEX LP format --glp read LP/MIP problem in GLPK format --math read LP/MIP model written in GNU MathProg modeling language -m filename, --model filename read model section and optional data section from filename (same as --math) -d filename, --data filename read data section from filename (for --math only); if model file also has data section, it is ignored -y filename, --display filename send display output to filename (for --math only); by default the output is sent to terminal --seed value initialize pseudo-random number generator used in MathProg model with specified seed (any integer); if seed value is ?, some random seed will be used --mincost read min-cost flow problem in DIMACS format --maxflow read maximum flow problem in DIMACS format --simplex use simplex method (default) --interior use interior point method (LP only) -r filename, --read filename read solution from filename rather to find it with the solver --min minimization --max maximization --scale scale problem (default) --noscale do not scale problem -o filename, --output filename write solution to filename in printable format -w filename, --write filename write solution to filename in plain text format --ranges filename write sensitivity analysis report to filename in printable format (simplex only) --tmlim nnn limit solution time to nnn seconds --memlim nnn limit available memory to nnn megabytes --check do not solve problem, check input data only --name probname change problem name to probname --wmps filename write problem to filename in fixed MPS format --wfreemps filename write problem to filename in free MPS format --wlp filename write problem to filename in CPLEX LP format --wglp filename write problem to filename in GLPK format --log filename write copy of terminal output to filename -h, --help display this help information and exit -v, --version display program version and exit LP basis factorization options: --luf LU + Forrest-Tomlin update (faster, less stable; default) --cbg LU + Schur complement + Bartels-Golub update (slower, more stable) --cgr LU + Schur complement + Givens rotation update Options specific to simplex solver: --primal use primal simplex (default) --dual use dual simplex --std use standard initial basis of all slacks --adv use advanced initial basis (default) --bib use Bixby's initial basis --ini filename use as initial basis previously saved with -w (disables LP presolver) --steep use steepest edge technique (default) --nosteep use standard "textbook" pricing --relax use Harris' two-pass ratio test (default) --norelax use standard "textbook" ratio test --presol use presolver (default; assumes --scale and --adv) --nopresol do not use presolver --exact use simplex method based on exact arithmetic --xcheck check final basis using exact arithmetic Options specific to interior-point solver: --nord use natural (original) ordering --qmd use quotient minimum degree ordering --amd use approximate minimum degree ordering (default) --symamd use approximate minimum degree ordering Options specific to MIP solver: --nomip consider all integer variables as continuous (allows solving MIP as pure LP) --first branch on first integer variable --last branch on last integer variable --mostf branch on most fractional variable --drtom branch using heuristic by Driebeck and Tomlin (default) --pcost branch using hybrid pseudocost heuristic (may be useful for hard instances) --dfs backtrack using depth first search --bfs backtrack using breadth first search --bestp backtrack using the best projection heuristic --bestb backtrack using node with best local bound --intopt use MIP presolver (default) --nointopt do not use MIP presolver --binarize replace general integer variables by binary ones (assumes --intopt) --fpump apply feasibility pump heuristic --gomory generate Gomory's mixed integer cuts --mir generate MIR (mixed integer rounding) cuts --cover generate mixed cover cuts --clique generate clique cuts --cuts generate all cuts above --mipgap tol set relative mip gap tolerance to tol For description of the MPS and CPLEX LP formats see Reference Manual. For description of the modeling language see "GLPK: Modeling Language GNU MathProg". Both documents are included in the GLPK distribution. See GLPK web page at . Please report bugs to . -v--version--luf--cbg--cgr--primal--dual--std--adv--bib--iniNo initial basis file specified Only one initial basis file allowed --steep--nosteep--relax--norelax--presol--nopresol--exact--xcheck--nord--qmd--amd--symamd--nomip--first--last--drtom--mostf--pcost--dfs--bfs--bestp--bestb--intopt--nointopt--binarize--fpump--gomory--mir--cover--clique--cuts--mipgapNo relative gap tolerance specified Invalid relative mip gap tolerance `%s' Invalid option `%s'; try %s --help Only one input problem file allowed Unable to create log file Parameter(s) specified in the command line: %sNo input problem file specified; try %s --help MPS file processing error CPLEX LP file processing error GLPK LP/MIP file processing error Seed value %d will be used MathProg model processing error DIMACS file processing error glpapi19.ccsa != csaUnable to write problem in fixed MPS format Unable to write problem in free MPS format Unable to write problem in CPLEX LP format Unable to write problem in GLPK format Unable to write problem in OPB format Unable to write problem in normalized OPB format Interior-point method is not able to solve MIP problem; use --simplex Unable to read problem solution Unable to read initial basis If you need to check final basis for non-optimal solution, use --nopresol If you need actual output for non-optimal solution, use --nopresol Time used: %.1f secs Memory used: %.1f Mb (%s bytes) Model postsolving error Unable to write problem solution Unable to write sensitivity analysis report Cannot produce sensitivity analysis report due to error in basis factorization (glp_factorize returned %d); try --nopresol Cannot produce sensitivity analysis report for non-optimal basic solution Cannot produce sensitivity analysis report for interior-point or MIP solution gmp_pool_count() == 0Error: %d memory block(s) were lost count == 0total.lo == 0 && total.hi == 0glpavl.cglpbfd.cbfd != NULLbfd->validbfd != bfd1 <= m && m <= M_MAXglpbfx.cbinv->valid1 <= j && j <= binv->lux->nm > 0glpcpx.cfunc != NULLparm != NULLupper bound of variable `%s' redefined lower bound of variable `%s' redefined %s:%d: csa->c != XEOFread error - %s missing final end of line invalid control character 0x%02X token `%.15s...' too long !"#$%&()/,.;?@_`'{}|~x_%dr_%dWriting problem data to `%s'... glp_write_lpUnable to create `%s' - %s Unknown\* Problem: %s *\ Warning: problem has no rows/columns \* WARNING: PROBLEM HAS NO ROWS/COLUMNS *\ Minimize Maximize P != P %s: + 0 %s + %s - %s + %.*g %s - %.*g %s 0 %s\* constant term = %.*g *\ Subject To - ~r_%d >= %.*g <= %.*g = %.*gBounds 0 <= ~r_%d <= %.*g %s free %s >= %.*g -Inf <= %s <= %.*g %.*g <= %s <= %.*g %s = %.*g col != colGenerals %s End minimumminmaximizemaximummaxsubjectkeyword `subject to' incomplete keyword `%s%c...' not recognized suchkeyword `such that' incomplete sts.t.st.boundsboundgeneralgeneralsgenintegersintbinariesbinnumeric constant `%s' out of range character `%c' not recognized invalid use of decimal point numeric constant `%s' incomplete missing variable name multiple use of variable `%s' not allowed csa->token == T_COLONobjReading problem data from `%s'... glp_read_lp`minimize' or `maximize' keyword missing constraints section missing csa->token == T_SUBJECT_TOconstraint `%s' multiply defined r.%dmissing constraint sense missing right-hand side invalid symbol(s) beyond right-hand side infinityinfinvalid use of `+inf' as lower bound missing lower bound missing `<', `<=', or `=<' after lower bound invalid use of `-inf' as upper bound missing upper bound invalid bound definition missing fixed value freekeyword `end' missing symbol `%s' in wrong position extra symbol(s) detected beyond `end' sOne variable is integer One variable is binary %d integer variables, noneoneallglpdmp.cdmp_free_atom: size = %d; invalid atom size dmp_free_atom: pool allocation error 0 <= k && k <= 31dmp_get_atom: size = %d; invalid atom size glpdmx.cglp_write_prob: P = %p; invalid problem object glp_write_prob: flags = %d; invalid parameter glp_write_prob: fname = %d; invalid parameter lpmipp %s %s %d %d %d n p %s n z %s i %d f l %.*g u %.*g d %.*g %.*g s %.*g n i %d %s c i n j %d %s a 0 0 %.*g a 0 %d %.*g a %d %d %.*g e o f Write error on `%s' - %s %d lines were written j %d %s:%d: error: glp_write_ccdata: v_wgt = %d; invalid offset Writing graph to `%s' unknownp edge %d %d n %d %.*g e %d %d c eof glp_write_asnprob: v_set = %d; invalid offset glp_write_asnprob: a_cost = %d; invalid offset Writing assignment problem data to `%s'... p asn %d %d n %d glp_write_maxflow: s = %d; source node number out of range glp_write_maxflow: t = %d: sink node number out of range glp_write_mincost: a_cap = %d; invalid offset Writing maximum flow problem data to `%s'... p max %d %d n %d s n %d t glp_write_mincost: v_rhs = %d; invalid offset glp_write_mincost: a_low = %d; invalid offset glp_write_mincost: a_cost = %d; invalid offset Writing min-cost flow problem data to `%s'... p min %d %d a %d %d %.*g %.*g %.*g non-integer data detectedread error - %sunexpected end of filemissing final end of lineinvalid control character 0x%02Xtoo many data fields specifiedunexpected end of linedata field `%.15s...' too longempty line ignoredline designator missing or invalidglp_read_prob: P = %p; invalid problem object glp_read_prob: flags = %d; invalid parameter glp_read_prob: fname = %d; invalid parameter pproblem line missing or invalidwrong problem designator; `lp' or `mip' expected objective sense missing or invalidnumber of rows missing or invalidnumber of columns missing or invalidnumber of constraint coefficients missing or invalidirow number missing or invalidrow number out of rangefludrow type missing or invalidrow lower bound/fixed value missing or invalidrow upper bound missing or invalidduplicate row descriptorjcolumn number missing or invalidcolumn number out of rangecbcolumn kind missing or invalidcolumn type missing or invalidcolumn lower bound/fixed value missing or invalidcolumn upper bound missing or invalidduplicate column descriptorconstant termcoefficientobjective %s missing or invalidduplicate objective %sconstraint coefficient missing or invalidtoo many constraint coefficient descriptorsnduplicate problem namezduplicate objective nameduplicate row nameduplicate column nameobject designator missing or invalidetoo few constraint coefficient descriptorsne == nnz0 <= k && k <= nnzduplicate constraint coefficientObjective: %s glp_read_ccdata: v_wgt = %d; invalid offset edgewrong problem designator; `edge' expectednumber of vertices missing or invalidnumber of edges missing or invalidicesGraph has %d vert%s and %d edge%s vertex number missing or invalidvertex number %d out of rangeduplicate descriptor of vertex %dvertex weight missing or invalidwrong line designator; `e' expectedfirst vertex number missing or invalidfirst vertex number %d out of rangesecond vertex number missing or invalidsecond vertex number %d out of rangeglp_read_asnprob: v_set = %d; invalid offset glp_read_asnprob: a_cost = %d; invalid offset Reading assignment problem data from `%s'... asnwrong problem designator; `asn' expectednumber of nodes missing or invalidnumber of arcs missing or invalidnode number missing or invalidnode number %d out of rangeduplicate descriptor of node %dAssignment problem has %d + %d = %d node%s and %d arc%s wrong line designator; `a' expectedstarting node number missing or invalidstarting node number %d out of rangenode %d cannot be a starting nodeending node number missing or invalidending node number %d out of rangenode %d cannot be an ending nodearc cost missing or invalidglp_read_maxflow: a_cap = %d; invalid offset Reading maximum flow problem data from `%s'... wrong problem designator; `max' expectedFlow network has %d node%s and %d arc%s only one source node allowedtonly one sink node allowedwrong node designator; `s' or `t' expectedsource and sink nodes must be distinctsource node descriptor missing sink node descriptor missing arc capacity missing or invalidglp_read_mincost: v_rhs = %d; invalid offset glp_read_mincost: a_low = %d; invalid offset glp_read_mincost: a_cap = %d; invalid offset glp_read_mincost: a_cost = %d; invalid offset Reading min-cost flow problem data from `%s'... wrong problem designator; `min' expectednode supply/demand missing or invalidlower bound of arc flow missing or invalidupper bound of arc flow missing or invalidper-unit cost of arc flow missing or invalidInvalid GLPK environment %d.%dGLPK initialization failed wglpenv03.cglp_term_out: flag = %d; invalid value Assertion failed: %s Error detected in file %s at line %d glpenv05.cglp_mem_limit: limit = %d; invalid parameter glp_free: ptr = %p; null pointer glp_free: ptr = %p; invalid pointer glp_free: memory allocation error glp_malloc: size = %d; invalid parameter glp_malloc: memory limit exceeded glp_malloc: too many memory blocks allocated glp_malloc: no memory available glp_calloc: n = %d; invalid parameter glp_calloc: size = %d; invalid parameter glp_calloc: n = %d; size = %d; array too big glpenv06.cj >= 0glpenv07.cfh != fhfp != fpc != c0x00 <= c && c <= 0xFF.gzCompressed files not supported/dev/stdout/dev/stderr/dev/stdinglpenv08.ch != hsymbol != symbolShared libraries not supportedglpfhv.cfhv_h_solve: the factorization is not valid fhv_btran: the factorization is not valid fhv_ftran: the factorization is not valid fhv_factorize: m = %d; invalid parameter fhv_factorize: m = %d; matrix too big fhv != fhvfhv_update_it: the factorization is not valid fhv_update_it: j = %d; column number out of range fhv_update_it: ind[%d] = %d; row number out of range fhv_update_it: ind[%d] = %d; duplicate row index not allowed fhv_update_it: val[%d] = %g; zero element not allowed i_ptr <= i_endluf->new_sva > luf->sv_sizej_ptr <= j_endglpgmp.cmpz_sgn(&x->q) > 0xval != 0x80000000 && yval != 0x80000000x->val != 0x80000000sx == +1 || sx == -1y->val != 0x80000000sy == +1 || sy == -1sx > 0 && sy > 0 || sx < 0 && sy < 0x->val != 0size > 0gmp_work == NULLgmp_work != NULLgmp_pool != NULLmpq_set_si: zero denominator not allowed q <= 0x7FFFFFFFx->p.ptr == NULLx->q.ptr == NULLx->val == +1 || x->val == -1x->ptr == NULLy->ptr == NULLnx > 0ny > 0z->ptr == NULLmpz_div: divide by zero not allowed wy[ny-1] != 0mpz_out_str: base = %d; invalid base 0 <= r->val && r->val < base && r->ptr == NULLmpq_out_str: base = %d; invalid base x->q.val != 0mpq_div: zero divisor not allowed 0 <= d && d <= 150123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ%s:%d: read error - %s %s:%d: unexpected EOF %s:%d: missing final LF %s:%d: invalid control character 0x%02X %s:%d: card image too long glphbm.c1 <= width && width <= 80%s:%d: field `%s' contains invalid value `%s' hbm_read_mat: format `%s' not recognised %s:%d: can't read array `%s' - invalid format `%s' %s:%d: can't read array `%s' - invalid value `%s' 0%s(%d): can't read array `%s' - value `%s' has no decimal point strlen(str) < 80hbm_read_mat: reading matrix from `%s'... hbm_read_mat: unable to open `%s' - %s %s key = %s totcrdptrcrdindcrdvalcrdrhscrdtotcrd = %d; ptrcrd = %d; indcrd = %d; valcrd = %d; rhscrd = %d RCPSUHZRAE%s:%d: matrix type `%s' not recognised nrowncolnnzeroneltvlmxtype = %s; nrow = %d; ncol = %d; nnzero = %d; neltvl = %d ptrfmt = %s; indfmt = %s; valfmt = %s; rhsfmt = %s nrhsnrhsixrhstyp = `%s'; nrhs = %d; nrhsix = %d colptrrowindvaluesrhsvalrhsptrrhsind%s:%d: right-hand side type `%c' not recognised sguessxexacthbm_read_mat: %d cards were read glpini01.cglp_adv_basis: flags = %d; invalid flags Constructing initial basis... triang: m = %d; n = %d; invalid dimension 0 <= len && len <= nrs_len[i] == 10 <= t && t <= n1 <= jj && jj <= nj == 0j != 00 <= t && t <= mlen >= 1cn[j] != 01 <= ii && ii <= mrn_inv[ii] == 0cn_inv[jj] == 0jj <= ii!diagdiagSize of triangular part = %d cn[i] > sizetypx != typx1 <= j && j <= m+nglpini02.cC2[k].q <= C2[k+1].qC3[k].q <= C3[k+1].qC4[k].q <= C4[k+1].qglpios01.cpool != NULL1 <= i && i <= pool->sizepool->curr == NULLpool->curr != NULLpool->ord == i1 <= p && p <= tree->nslotsnode->count == 0tree->curr != nodenode->data == NULLtree->slot[p].node == nodenode->count > 0glp_ios_del_row: i = %d; cut number out of range pool->curr == cutpool->head == cutcut->prev->next == cutpool->tail == cutcut->next->prev == cutd > 0glp_get_status(mip) == GLP_OPTglp_bf_exists(mip)1 <= t && t <= lenstat == GLP_NL || stat == GLP_NU || stat == GLP_NFdz >= 0.0dz <= 0.0mip->tree == treenrs > 0n == tree->ntree->mir_gen == NULLtree->clq_gen == NULLnode->p == 1tree->root_m == 0tree->root_type == NULLtree->root_lb == NULLtree->root_ub == NULLtree->root_stat == NULLpred_m <= mnode->b_ptr == NULLnode->s_ptr == NULLnode->r_ptr == NULLm == root_mtree->curr == NULLroot != NULLmip->m == tree->root_mnode == rootmip->row[i]->level == 0r->name == NULLtree->nslots > nslotstree->slot[p].node == NULLp == 1nnn > 0mip->tree == NULLglp_ios_add_row: cut name too long glp_ios_add_row: cut name contains invalid character(s) glp_ios_add_row: klass = %d; invalid cut class glp_ios_add_row: flags = %d; invalid cut flags glp_ios_add_row: len = %d; invalid cut length glp_ios_add_row: ind[%d] = %d; column index out of range glp_ios_add_row: type = %d; invalid cut type glpios02.c0 <= nrs && nrs <= m+1max_pass > 00 <= i && i <= m!mark[i]size == nrsa != au[k] != +DBL_MAXl[k] != -DBL_MAXsize <= mglpios03.cT->curr != NULLCuts on level %d: gmi = %d; mir = %d; cov = %d; clq = %d; app = %d;1 <= p && p <= T->nslotsT->slot[p].node != NULL%17.9enot found yet%17stree is empty-inf+inf>=<= 0.0%%< 0.1%%%5.1f%%%6s>>>>>mip =+%6d: %s %s %s %s %s (%d; %d) T->curr == NULLActive list is empty! dmp_in_use(T->pool).lo == 0T->next_p == 0T->reason == 0T->head->next == NULL------------------------------------------------------------------------ Processing node %d at level %d Gomory's cuts enabled MIR cuts enabled T->mir_gen == NULLCover cuts enabled T->clq_gen == NULLClique cuts enabled Time used: %.1f secs. Memory used: %.1f Mb. Relative gap tolerance reached; search terminated Time limit exhausted; search terminated *** not tested yet *** ios_driver: unable to solve current LP relaxation; glp_simplex returned %d Found optimal solution to LP relaxation ios_driver: current LP relaxation has no dual feasible solution T->mip->mip_stat == GLP_FEASLP relaxation has no solution better than incumbent objective value LP relaxation has no feasible solution T->mip != T->mipp_stat == GLP_FEAS && d_stat == GLP_FEASLocal bound is %.9e Current branch is hopeless and can be pruned T->reopt == 0T->reinv == 0glp_factorize(T->mip) == 0temp1 > 0.0 && temp2 > 0.0There are no fractional columns There is one fractional column, integer infeasibility is %.3e There are %d fractional columns, integer infeasibility is %.3e New integer feasible solution found mip->pbs_stat == GLP_FEAS && mip->dbs_stat == GLP_FEASOne column has been fixed by reduced cost %d columns have been fixed by reduced costs Current branch became hopeless and can be pruned T->local != NULLT->local->size == 0T->mir_gen != NULLT->br_var == 0T->br_sel == 01 <= j && j <= nlb <= new_ublb + 1.0 <= new_lbnew_ub <= ub - 1.0new_lb <= ublb <= new_ub && new_ub <= ub - 1.0lb + 1.0 <= new_lb && new_lb <= ubBoth down- and up-branches are hopeless Up-branch is hopeless mip != mipDown-branch is hopeless Branching on column %d, primal value is %.9e Node %d begins down branch, node %d begins up branch node->up != NULLT->child == 0next != nextNode %d fathomed One hopeless branch has been pruned %d hopeless branches have been pruned glpios04.c1 <= j && j <= v->n0 <= k && k <= v->nnzx != yx->n == y->nv->n >= 0v->ind[k] == jv->nnz == nnzglpios05.cstat != GLP_BSrow->type != GLP_FXglpios06.cm+1 <= k && k <= m+nmir->isint[k]u[j] >= 1.0k != kx[j] >= -0.001!mir->isint[k]mir->lb[k] != -DBL_MAXmir->ub[k] != +DBL_MAXx >= -0.001s >= 0.0a[j] != 0.0delta > 0.0!failr_best > 0.0mip->m >= m1 <= i && i <= m!mir->skip[i]1 <= kk && kk <= m+nmir->isint[kk]d1 != DBL_MAX || d2 != DBL_MAXmir->subst[k] == '?'mir->vlb[k] == 0 && mir->vub[k] == 0mir->lb[k] != -DBL_MAX && mir->ub[k] != +DBL_MAXmir->vlb[k] == 0mir->vub[k] == 0jj != 0mir->subst[k] != '?'d != DBL_MAXm+1 <= kappa && kappa <= m+n!mir->isint[kappa]mir->agg_cnt <= MAXAGGRmir->skip[ii] == 2glpios07.clpx_get_status(prob) == LPX_OPTa[j] > 0.0b > -1e-5u >= 0.00.0 <= x[j] && x[j] <= 1.00.0 <= y && y <= ur <= nbr <= lenlpx_eval_row: len = %d; invalid row length lpx_eval_row: j = %d; column number out of range glpios08.ci != j1 <= i && i <= cog->ni != 01 <= j && j <= cog->n1 <= p && p < q && q <= lengen != NULLlevel = %d (%d); best = %d 1 <= v && v <= 2 * cog->nbval != valmip != NULLCreating the conflict graph... The conflict graph is either empty or too big The conflict graph has 2*%d vertices and %d edges glpios09.ccsa != NULL1 <= j && j <= tree->ndx != 0.0glp_get_status(P) == GLP_OPT1 <= j && j <= T->nbrnch != brnchPseudocosts initialized for %d of %d variables T != Tdelta_z >= 0.0delta_z <= 0.0branch_drtom: column %d chosen to branch on branch_drtom: down-branch is infeasible branch_drtom: down-branch bound is %.9e branch_drtom: up-branch is infeasible branch_drtom: up-branch bound is %.9e glpios10.ccol->kind == GLP_IVFPUMP heuristic cannot be applied due to general integer variables Applying FPUMP heuristic... k == nvPass %d Warning: glp_simplex returned %d Warning: glp_get_status returned %d delta = %g glpios11.cpool->size > 0k == pool->size1 <= aij->j && aij->j <= T->nT->mip->row[i]->origin == GLP_RF_CUTcut->type == GLP_LO || cut->type == GLP_UPglpios12.cT->tail != NULLT->head != NULLbound != +DBL_MAXbound != -DBL_MAXbest != NULLroot->ii_sum > 0.0Guessing initial point... glpipm.cx[j] > 0.0 && z[j] > 0.0Optimization begins... csa->iter <= ITER_MAX%3d: obj = %17.9e; rpi = %8.1e; rdi = %8.1e; gap = %8.1e OPTIMAL SOLUTION FOUND PROBLEM HAS NO FEASIBLE PRIMAL/DUAL SOLUTION NO CONVERGENCE; SEARCH TERMINATED ITERATION LIMIT EXCEEDED; SEARCH TERMINATED x[j] > 0.0z[j] > 0.0NUMERIC INSTABILITY; SEARCH TERMINATED Best point %17.9e was reached on iteration %d row->type == GLP_FXloc-1 == nnzcol->type == GLP_LO && col->lb == 0.0Matrix A has %d non-zeros Matrix S = A*A' has %d non-zeros (upper triangle) Original ordering is being used Minimum degree ordering (QMD)... Approximate minimum degree ordering (AMD)... Approximate minimum degree ordering (SYMAMD)... Computing Cholesky factorization S = L*L'... Matrix L has %d non-zeros glplib01.cm >= 1y[m-1] != 0n >= 1glplib02.cx.hi == 0x80000000 && x.lo == 0x00000000xldiv: divide by zero 0 <= t.rem.lo && t.rem.lo <= 90123456789glplib03.cx > 0 && y > 0x > 0y > 0n > 0x[j] > 0fp2rat: x = %g; number out of range k <= 100temp != 0.0x > 0.0glplpf.clpf->B == NULLlpf_btran: the factorization is not valid 0 <= m && m <= m0 + nlpf_ftran: the factorization is not valid lpf_factorize: m = %d; invalid parameter lpf_factorize: m = %d; matrix too big lpf != lpflpf_update_it: the factorization is not valid lpf_update_it: j = %d; column number out of range lpf_update_it: ind[%d] = %d; row number out of range lpf_update_it: ind[%d] = %d; duplicate row index not allowed lpf_update_it: val[%d] = %g; zero element not allowed used >= 0lpf->n <= lpf->n_maxglplpx01.clpx_write_bas: operation not supported lpx_read_bas: operation not supported lpx_set_class: invalid problem class cps != NULLlpx_get_real_parm: parm = %d; invalid parameter lpx_set_real_parm: RELAX = %g; invalid value lpx_set_real_parm: TOLBND = %g; invalid value lpx_set_real_parm: TOLDJ = %g; invalid value lpx_set_real_parm: TOLPIV = %g; invalid value lpx_set_real_parm: TOLINT = %g; invalid value lpx_set_real_parm: TOLOBJ = %g; invalid value lpx_set_real_parm: MIPGAP = %g; invalid value lpx_set_real_parm: parm = %d; invalid parameter lpx_get_int_parm: parm = %d; invalid parameter lpx_set_int_parm: MSGLEV = %d; invalid value lpx_set_int_parm: SCALE = %d; invalid value lpx_set_int_parm: DUAL = %d; invalid value lpx_set_int_parm: PRICE = %d; invalid value lpx_set_int_parm: ROUND = %d; invalid value lpx_set_int_parm: OUTFRQ = %d; invalid value lpx_set_int_parm: BRANCH = %d; invalid value lpx_set_int_parm: BTRACK = %d; invalid value lpx_set_int_parm: MPSINFO = %d; invalid value lpx_set_int_parm: MPSOBJ = %d; invalid value lpx_set_int_parm: MPSORIG = %d; invalid value lpx_set_int_parm: MPSWIDE = %d; invalid value lpx_set_int_parm: MPSFREE = %d; invalid value lpx_set_int_parm: MPSSKIP = %d; invalid value lpx_set_int_parm: LPTORIG = %d; invalid value lpx_set_int_parm: PRESOL = %d; invalid value lpx_set_int_parm: BINARIZE = %d; invalid value lpx_set_int_parm: USECUTS = 0x%X; invalid value lpx_set_int_parm: BFTYPE = %d; invalid value lpx_set_int_parm: parm = %d; invalid parameter ret != ret0 <= piv && piv <= lenglplpx02.clpx_put_solution: p_stat = %d; invalid primal status lpx_put_solution: d_stat = %d; invalid dual status lpx_put_solution: r_stat[%d] = %d; invalid row status lpx_put_solution: c_stat[%d] = %d; invalid column status lpx_put_mip_soln: i_stat = %d; invalid mixed integer status lpx_put_mip_soln: col_mipx[%d] = %.*g; must be integral lpx_write_pb: sorry, currently this operation is not available glpluf.cluf_v_solve: LU-factorization is not valid luf_f_solve: LU-factorization is not valid luf_a_solve: LU-factorization is not valid vc_cap[j] < cap1 <= i && i <= nvr_cap[i] < cap1 <= p && p <= np_ptr <= p_endq_ptr <= q_endvc_len[q] == 0luf_factorize: n = %d; invalid parameter luf_factorize: n = %d; matrix too big luf_factorize: j = %d; len = %d; invalid column length luf_factorize: i = %d; j = %d; invalid row index luf_factorize: i = %d; j = %d; duplicate element not allowed luf_factorize: i = %d; j = %d; zero element not allowed vc_len[j] == 1vr_len[i] == 1min_p != min_pk <= i && i <= n && k <= j && j <= nluf->new_sva > kglplux.clux_solve: LU-factorization has incomplete rank lux_decomp: j = %d: len = %d; invalid column length lux_decomp: j = %d: i = %d; row index out of range lux_decomp: j = %d: i = %d; duplicate row indices not allowed lux_decomp: j = %d: i = %d; zero elements not allowed C_len[j] == 1piv != NULL && piv->c_next == NULLR_len[i] == 1piv != NULL && piv->r_next == NULLsome != NULLC_len[q] == 0V_col[j] == NULLlux_create: n = %d; invalid parameter glpmat.cU_diag[i] != 0.0i > ki < j && j <= npos - 1 == neP_per[n+j] == iret == AMD_OK || ret == AMD_OK_BUT_JUMBLED1 <= P_per[k] && P_per[k] <= nP_per[n+P_per[k]] == 0okS_ptr[ii+1] - 1 <= sizek < j && j <= nU_ptr[k+1] - 1 <= sizeglpmpl01.cslot->code->up == NULLdomain != NULLblock != NULLblock->next == NULL_|_'...'0 <= mpl->c_ptr && mpl->c_ptr < CONTEXT_SIZEx != NULLoperands preceding and following %s have different dimensions %d and %d, respectivelyoperand following %s has invalid typeoperand preceding %s has invalid typenode != NULLavl_get_node_type(node) == A_INDEX...Context: %s%.*s e->x != NULLe->x->up == NULLarg->slice != NULLarg->arg.x != NULLarg->arg.x->up == NULLarg->arg.y != NULLarg->arg.y->up == NULLarg->arg.z->up == NULLdomain->code->up == NULLblock->code != NULLblock->code->up == NULLarg->loop.x->up == NULLop != opy != NULLfinal NL missing before end of filecontrol character 0x%02X not allowed0 <= mpl->imlen && mpl->imlen <= MAX_LENGTHsymbolic name %s... too longsymbol %s... too longnumeric literal %s... too longstring literal too long!mpl->f_scanandbycrossdiffdivelseifinInfinityinterlessmodnotorkeyword s.t. incompletesymdiffthenunionwithinsymbol %s%c... should be enclosed in quotescannot convert numeric literal %s to floating-point numberunexpected end of line; string literal incompleteunexpected end of file; comment sequence incomplete+-._mpl->flag_dcharacter %c not allowednumeric literal %s incompleteendno semicolon following end statement; missing semicolon insertedunexpected end of file; missing end statement insertedsome text detected beyond end statement; text ignoredsolveis_keyword(mpl, "solve")at most one solve statement allowedsyntax error in solve statementmpl->token == T_STRINGmpl->token == T_NUMBERmpl->token == T_LEFTtoo many components within parenthesesduplicate dummy index %s not allowed%s not definedcomponent expression has invalid typecode->dim == 0right parenthesis missing where expectedkeyword in missing where expectedsyntax error in indexing expression0-ary slice not allowedinvalid use of reserved keyword %ssyntax error in expressionstrlen(opstr) < sizeof(opstr)+-*multiplication of linear forms not allowed/&..invalid use of %smpl->token == T_IFexpression following if has invalid typex->dim == 0keyword then missing where expectedexpression following then has invalid typekeyword else missing where expectedexpression following else has invalid typeexpressions following then and else have incompatible typesexpressions following then and else have different dimensions %d and %d, respectivelyargument for %s has invalid typex->dim > 0member expression has invalid typemember %d has %d component%s while member %d has %d component%ssyntax error in literal setmpl->token == T_LBRACEempty indexing expression not allowedmpl->token == T_INdomain expression has invalid typecode->dim > 0indexindices%d %s specified for set of dimension %dblock->code == NULLavl_find_node(mpl->tree, slot->name) == NULLexpression following colon has invalid typeprintfis_keyword(mpl, "printf")format expression has invalid typeonly numeric, symbolic, or logical expression allowedfile name expression has invalid typesyntax error in printf statementdisplayis_keyword(mpl, "display")invalid reference to variable %s above solve statementconstraintobjectiveinvalid reference to %s %s above solve statementnode != nodesyntax error in display statementcheckis_keyword(mpl, "check")expression has invalid typechk->code->dim == 0syntax error in check statementtableis_keyword(mpl, "table")symbolic name missing where expected%s multiply declaredOUTkeyword OUT missing where expectedINkeyword IN missing where expectedargument expression missing where expectedargument expression has invalid typetab->arg != NULLcolon missing where expectedtab != tab%s not a set%s needs no data%s must be a simple setdelimiter <- missing where expectedfield list missing where expectedfield name missing where expectedsyntax error in field listthere must be %d field%s rather than %dparameter name missing where expected%s must have %d subscript%s rather than %dstrlen(mpl->image) < sizeof(name)strlen(in->par->name) < sizeof(name)expression missing where expectedfield name requiredsyntax error in output listsyntax error in table statementminimizeobjective statement must precede solve statementobj->code->dim == 0syntax error in objective statementconstraint statement must precede solve statementtokeyword subject to incompletesubjkeyword subj to incompletefirst->dim == 0strict inequality not allowedconstraint must be equality or inequalityexpression following %s has invalid typesecond->dim == 0double inequality must be ... <= ... <= ... or ... >= ... >= ...leftmost expression in double inequality cannot be linear formrightmost expression in double inequality constraint has invalid typethird->dim == 0rightmost expression in double inequality cannot be linear formrho != rhosyntax error in constraint statementvaris_keyword(mpl, "var")variable statement must precede solve statementintegerat most one integer allowedbinaryat most one binary allowedlogicalkeyword logical understood as binarysymbolicvariable cannot be symbolicboth fixed value and lower bound not allowedat most one lower bound allowedexpression following >= has invalid typevar->lbnd->dim == 0both fixed value and upper bound not allowedat most one upper bound allowedexpression following <= has invalid typevar->ubnd->dim == 0at most one fixed value allowedboth lower bound and fixed value not allowedstrict bound not allowedsyntax error in variable statementmpl->token == T_SEMICOLONboth upper bound and fixed value not allowedparamis_keyword(mpl, "param")symbolic parameter cannot be integersymbolic parameter cannot be binaryat most one symbolic allowedinteger or binary parameter cannot be symbolickeyword symbolic must precede any other parameter attributesmpl->token != mpl->tokencond->code->dim == 0keyword within understood as inexpression following in has invalid typein->code->dim > 0set expression following in must have dimension 1 rather than %dat most one := or default allowedexpression following := has invalid typepar->assign->dim == 0expression following default has invalid typepar->option->dim == 0syntax error in parameter statementsetis_keyword(mpl, "set")dimendimension must be integer between 1 and 20at most one dimension attribute alloweddimension %d conflicts with dimension %d already determinedkeyword in understood as withinexpression following within has invalid typewithin->code->dim > 0set expression following within must have dimension %d rather than %dat most one := or default/data allowedset->assign->dim > 0set expression following := must have dimension %d rather than %dset->option->dim > 0set expression following default must have dimension %d rather than %ddataset name missing where expected%s not a plain setset cannot be initialized by itselfdimension of %s too smalldimension of %s too bigleft parenthesis missing where expectedcomponent number missing where expectedcomponent number must be integer between 1 and %dcomponent %d multiply specifiedk <= gadget->set->dimensyntax error in data attributethere are must be %d components rather than %dsyntax error in set statementset statement not allowed hereparameter statement not allowed herevariable statement not allowed hereconstraint statement not allowed hereobjective statement not allowed heretable statement not allowed heresolve statement not allowed hereforsyntax error in model sectionmpl->model == NULLis_keyword(mpl, "for")indexing expression missing where expectedfur->domain != NULLmpl->token == T_NAMEabsceilfloorexploglog10sqrtsincosatanroundtruncIrand224Uniform01UniformNormal01Normalcardlengthsubstrstr2timetime2strgmtimefunction %s unknownstrlen(func) < sizeof(func)syntax error in argument list for %s%s needs no arguments%s needs two argumentssyntax error in argument for %s%s needs two argument%s needs one or two arguments%s needs two or three arguments%s needs one argumentmpl->token == T_RIGHTsubscript expression has invalid typesyntax error in subscript listmpl->token == T_RBRACKET%s must be subscriptedinvalid use of period%s cannot have a suffixlbubstatusvaldualsuffix .%s invalidinvalid reference to status, primal value, or dual value of variable %s above solve statementinvalid reference to status, primal value, or dual value of %s %s above solve statementsumprodforallexistssetofoperator %s unknownintegrand following %s{...} has invalid typearg.loop.x->dim == 0arg.loop.x->dim > 0glpmpl02.cpar != NULLaltval != NULLdefault value for %s already specified in model sectionpar->defval == NULLis_number(mpl)name != NULL%s not a parameter%s already provided with datais_symbol(mpl)%s%s already definedpar != parpar->dim == slice_dimen(mpl, slice)with != NULLlack > 1%d items missing in data group beginning with %sone item missing in data group beginning with %smemb != NULLslice != NULLset->dimen == slice_dimen(mpl, slice)memb->value.set->dim == set->dimen%s already definedmpl->token == T_COLONparameter name or := missing where expected%s not a subscripted parameterlast_name != NULL%s has dimension %d while %s has dimension %dat least one parameter name required.slice_arity(mpl, slice) == 2number, symbol, or := missing where expectedwhich != whichwhich == 2%s cannot be subscriptednumber, symbol, or asterisk missing where expectedsyntax error in slice%s must have %d subscript%s, not %d%s has dimension %d, not %dclose != closeis_literal(mpl, "param")defaultdefault value missing where expectedsymbol, number, or semicolon missing where expectedslice currently used must specify 2 asterisks, not %dtrtranspose indicator (tr) incompletesyntax error in parameter data blockis_literal(mpl, "set")number or symbol missing where expectedsyntax error in set data blocksyntax error in data sectionglpmpl03.c1 <= k && k <= dca->nfdca->type[k] == '?'dca->type[k] == 'S'dca->str[k] != NULLdca->type[k] == 'N'1 <= k && k <= dca->nainfo == NULLsym1 != NULLsym2 != NULLitem2 != NULLitem1->sym != NULLitem2->sym != NULLitem2 == NULL%.*g / %.*g; floating-point zero divide%.*g / %.*g; floating-point overflow%.*g * %.*g; floating-point overflow%.*g less %.*g; floating-point overflow%.*g - %.*g; floating-point overflow%.*g + %.*g; floating-point overflow%.*g .. %.*g by %.*g; zero stride not allowedtemp >= 0.0%.*g .. %.*g by %.*g; set too large1 <= j && j <= arelset_size(mpl, t0, tf, dt)strlen(buf) < sizeof(buf)%.*g div %.*g; floating-point zero divide%.*g div %.*g; floating-point overflowsym != NULLtemp->sym != NULLtype == A_NONE || type == A_NUMERIC || type == A_SYMBOLIC || type == A_ELEMSET || type == A_ELEMVAR || type == A_ELEMCONdim >= 0dim > 0var != NULLstr != NULLarray != NULLset != NULLset->type == A_NONEvalue != NULLcode != codecode->op != code->opstmt != stmttuple_dimen(mpl, tuple) == array->dimset->dim == tuple_dimen(mpl, tuple)log(%.*g); non-positive argumentsqrt(%.*g); negative argumentUniform(%.*g, %.*g); invalid rangetrunc(%.*g, %.*g); non-integer second argumentround(%.*g, %.*g); non-integer second argument%.*g ** %.*g; result undefined%.*g ** %.*g; floating-point overflowcos(%.*g); argument too largesin(%.*g); argument too largelog10(%.*g); non-positive argumentexp(%.*g); floating-point overflowstrlen(buf) <= MAX_LENGTHslot->value != NULLslot != NULLleaf->op == O_INDEXtemp != NULLtuple->sym != NULLX != NULLX->type == A_NONEX->dim > 0Y != NULLY->type == A_NONEY->dim > 0X->dim == Y->dimset->dim > 0%.*gstrlen(buf) <= 255strlen(str) < sizeof(str)%s%s.val = %.*g %s%s.lb = %.*g %s%s.ub = %.*g %s%s.status = %d %s%s.dual = %.*g suff != suff%s%s = %.*g %s%s = %s is empty:%s%s%s %s tuple != NULL%s%s out of domainduplicate tuple %s detected%s & %s; resultant symbol exceeds %d characterscode != NULLcode->type == A_SYMBOLICcode->arg.index.slot->value != NULLsubstr('...', %.*g); non-integer second argumentsubstr('...', %.*g); substring out of rangesubstr('...', %.*g, %.*g); non-integer second and/or third argumentsubstr('...', %.*g, %.*g); substring out of range!code->validcode->type == A_TUPLEinfo != infomy_info->tuple != NULLmy_info->tuple == NULLtuple == NULLcon->dim == tuple_dimen(mpl, tuple)var->dim == tuple_dimen(mpl, tuple)par->type == A_SYMBOLICpar->dim == tuple_dimen(mpl, tuple)par->type == A_NUMERIC || par->type == A_INTEGER || par->type == A_BINARYcode->type == A_ELEMSETbound == NULLtemp1 != NULLtemp2 != NULLtemp1 == NULLtemp2 == NULLaunable to open `%s' for writing - %swriting error to `%s' - %scode->type == A_NUMERICcannot convert %s to floating-point numbermin{} over empty set; result undefinedmax{} over empty set; result undefinedcode->type == A_LOGICALcode->arg.arg.x != NULLentry != entrycannot convert %.*g to integerformat specifier missing or invalidcheck%s failedcode->type == A_FORMULAcode->arg.var.suff == DOT_NONEcode->arg.arg.y != NULLcode->arg.arg.y->type == A_FORMULAcode->arg.arg.x->type == A_FORMULAcode->arg.arg.y->type == A_NUMERICinfo->tail == NULLinfo->tail != NULLcon->code != NULLcon->type == A_MINIMIZE || con->type == A_MAXIMIZEcon->type == A_CONSTRAINTremove_constant(mpl, eval_formula(mpl, con->lbnd), &temp1) == NULLremove_constant(mpl, eval_formula(mpl, con->ubnd), &temp2) == NULLcode->dim == 1implementation restriction; in/within setof{} not allowedcond->code != NULL%s%s = %s not < %s%s%s = %s not <= %s%s%s = %s not = %s%s%s = %s not >= %s%s%s = %s not > %s%s%s = %s not <> %sin->code != NULLin->code->dim == 1%s%s = %s not in specified set; see (%d)no value for %s%swithin->code != NULL%s%s contains %s which not within specified set; see (%d)%s%s = %.*g not integer%s%s = %.*g not binary<%s%s = %.*g not %s %.*g; see (%d)><>%s%s = %.*g not in specified set; see (%d)Generating %s... gadget->set->array != NULLgadget->set->array->head != NULLgadget->set->array->head == gadget->set->array->taildata->type == A_NONEdata->dim == gadget->set->dimeni == gadget->set->dimenwork[i] != NULLset->dim + set->dimen == gadget->set->dimen%s = %s %s has empty content mpl->flag_ptruefalseset is empty linear form is empty %.*g %.*g %s%s mpl->dca == NULLdca->na == 0arg->code->type == A_SYMBOLICset->array->head == NULLdca->nf == 0field %s missing in input tablek <= dca->nfstrlen(dca->str[k]) <= MAX_LENGTHdca != dca%s requires numeric datain != inReading %s... Writing %s... Checking (line %d)... Display statement at line %d out != outstrlen(str) <= MAX_LENGTHglpmpl04.cmpl->phase == 31 <= j && j <= mpl->n1 <= i && i <= mpl->mmpl->in_fp != NULLmpl_has_solve_stmt: invalid call sequence mpl_get_col_bnds: invalid call sequence mpl_get_col_bnds: j = %d; column number out of range mpl_get_col_kind: invalid call sequence mpl_get_col_kind: j = %d; column number out of range mpl != mplmpl_get_row_c0: invalid call sequence mpl_get_row_c0: i = %d; row number out of range mpl_get_mat_row: invalid call sequence mpl_get_mat_row: i = %d; row number out of range term->var != NULLlen <= mpl->nmpl_get_row_bnds: invalid call sequence mpl_get_row_bnds: i = %d; row number out of range mpl_get_row_kind: invalid call sequence mpl_get_row_kind: i = %d; row number out of range mpl_get_num_cols: invalid call sequence mpl_get_num_rows: invalid call sequence mpl->m == 0mpl->n == 0mpl->row == NULLmpl->col == NULLmemb->value.var->j == 0memb->value.con->i == 0t->var != NULLmpl->row[i] == NULLmpl->row[i] != NULLmpl->col[j] == NULLmpl->col[j] != NULLstrlen(msg) < sizeof(msg)(unknown)%s:%d: warning: %s %s:%d: %s mpl->out_fp != NULLwrite error on %s - %s%cmpl->out_fp == NULLunable to create %s - %sread error on %s - %smpl->in_fp == NULLunable to open %s - %smpl_read_data: invalid call sequence mpl_read_data: no input filename specified Reading data section from %s... semicolon missing where expected%d line%s were read internal logic error: %d string segment(s) were lostinternal logic error: %d symbol(s) were lostinternal logic error: %d n-tuple component(s) were lostinternal logic error: %d array(s) were lostinternal logic error: %d array member(s) were lostinternal logic error: %d elemental variable(s) were lostinternal logic error: %d linear term(s) were lostinternal logic error: %d elemental constraint(s) were lostmpl->a_list == NULL!mpl->flag_pmpl_postsolve: invalid call sequence Model has been successfully processed mpl_generate: invalid call sequence Model has been successfully generated stmt->u.set->array == NULLstmt->u.par->array == NULLstmt->u.var->array == NULLstmt->u.con->array == NULLmpl_get_col_name: invalid call sequence mpl_get_col_name: j = %d; column number out of range len <= 255strlen(name) <= 255mpl_get_row_name: invalid call sequence mpl_get_row_name: i = %d; row number out of range mpl_get_prob_name: invalid call sequence mpl_read_model: invalid call sequence mpl_read_model: no input filename specified Reading model section from %s... empty model section not alloweddata section ignoredglpmpl05.cj != jweekday(j) == 1time2str(%.*g,...); argument out of rangejdate(j + jday(1, 1, 1970), &day, &month, &year) == 00 <= ss && ss < 86400%02d%02d/%02d/%02d%2d%04d-%02d-%02d%04d%03dAMPMampm%02d:%02d:%02d %s%02d:%02d%02d:%02d:%02d%dFormat string passed to time2str: ^%*s invalid conversion specifiertime2str; output string length exceeds %d charactersInput string passed to str2time: Format string passed to str2time: gmtime(); unable to obtain current calendar timemonth multiply specifiedabbreviated month name missing or invalidday multiply specifiedday missing or invalidday out of rangehour multiply specifiedhour missing or invalidhour out of rangemonth missing or invalidmonth out of rangeminute multiply specifiedminute missing or invalidminute out of rangesecond multiply specifiedsecond missing or invalidsecond out of rangeyear multiply specifiedyear missing or invalidyear out of rangetime zone offset multiply specifiedtime zone offset sign missingtime zone offset value incomplete or invalidtime zone offset value out of rangecharacter mismatchMondayTuesdayWednesdayThursdayFridaySaturdaySundayJanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecember%s:0x%X: seek error - %s %s:0x%X: write error - %s %s:%d: write error - %s glpmpl06.cerror on closing table %sdbf->mode == 'W'dbf->nf == mpl_tab_num_flds(dca)xBASE driver: field %s: cannot convert %.15s... to field format xBASE driver: field %s: cannot convert %g to field format %*.*fdbf != dbfcsv->mode == 'W'error on writing data to table %s%s:0x%X: read error - %s %s:0x%X: unexpected end of file 0x00 <= b && b <= 0xFFcsv->c != EOF%s:%d: warning: missing final end-of-line dbf->mode == 'R'%s:0x%X: invalid record flag str2num(buf, &num) == 0xBASE driver: file name not specified rbxBASE driver: unable to open %s - %s dbf->nf == 0%s:0x%X: too many fields %s:0x%X: invalid field name %s:0x%X: invalid field type %s:0x%X: invalid field length %s:0x%X: field too long %s:0x%X: invalid file header RECNOxBASE driver: file format not specified xBASE driver: field %s: specification missing xBASE driver: field %s: invalid field type xBASE driver: field %s: invalid field format xBASE driver: field %s: invalid field length xBASE driver: field %s: invalid field precision xBASE driver: unable to create %s - %s mode != mode%s:%d: empty field not allowed %s:%d: empty record not allowed %s:%d: invalid field %s:%d: field too long %s:%d: invalid use of single or double quote within field csv->mode == 'R'k == 1%s:%d: one field missing %s:%d: %d fields missing str2num(csv->field, &num) == 0csv != csvcsv->what != CSV_EOF%s:%d: too many fields error on reading data from table %scsv_driver: file name not specified csv_driver: unable to open %s - %s csv->what == CSV_EORcsv->nf == 0%s:%d: invalid field name csv_driver: unable to create %s - %s %s%cdca->id == 0dca->link == NULLdca->na >= 1CSVxBASEODBCiODBCMySQLInvalid table driver `%s' error on opening table %s%.*E%.*Gglpmps.cstrlen(csa->field) <= 12%s: blank = 0x%02X; invalid parameter %s: obj_name = "%.12s..."; parameter too long %s: tol_mps = %g; invalid parameter unexpected end of file in fixed MPS format white-space character 0x%02X is not allowed in fixed MPS format record must not be longer than 80 characters in fixed MPS format positions %d-%d must be blank in fixed MPS format positions 62-72 must be blank length of field %d exceeds 255 characters some extra field(s) detected beyond field 6; field(s) ignored field %d must be blank csa->fldno == 4 || csa->fldno == 6missing numeric value in field %d cannot convert `%s' to floating-point number csa->c == '\n'NAMEROWSCOLUMNSRHSRANGESBOUNDSENDATAinvalid indicator record field 1 must be blank 'MARKER'field 4 must be blank 'INTORG''INTEND'missing keyword in field 5 invalid keyword in field 5 missing column name in field 2 column `%s' multiply specified kind != kindmissing row name in field 3 row `%s' not found duplicate coefficient in row `%s' NGLEmissing row type in field 1 invalid row type in field 1 missing row name in field 2 row `%s' multiply specified missing NAME indicator record missing model name in field 3 1 <= j && j <= csa->P->nC%07d0 <= i && i <= csa->P->mR%07dglp_write_mps: fmt = %d; invalid parameter glp_write_mps* %-*s%s LPMIPClass:* %-12s%s * %-12s%d * %-12s%d (%d integer, %d binary) Fixed MPSFree MPSFormat:* NAME%*s%s ROWS %c%*s%s COLUMNS %*sM%07d%*s'MARKER'%*s'INTEND' %*sM%07d%*s'MARKER'%*s'INTORG' %*s%-*sP->m > 0%*s0%*s$ empty column %*s%*sWarning: problem has %d empty column(s) RHS RHS1RANGES RNG1BOUNDS FRLOPLMIUPFXBND1 %s %-*s%*s%-*sENDATA %d records were written missing RANGES vector name in field 2 multiple RANGES vectors not supported duplicate range for row `%s' range for free row `%s' ignored glp_read_mps: fmt = %d; invalid parameter glp_read_mpsrUnable to open `%s' - %s Problem: %s missing ROWS indicator record unable to determine objective row P->row[i]->name != NULLobjective row `%s' not found missing COLUMNS indicator record missing RHS vector name in field 2 multiple RHS vectors not supported duplicate right-hand side for row `%s' non-zero right-hand side for free row `%s' ignored LIUIBVmissing bound type in field 1 invalid bound type in field 1 missing BOUNDS vector name in field 2 multiple BOUNDS vectors not supported missing column name in field 3 column `%s' not found duplicate lower bound for column `%s' duplicate upper bound for column `%s' (flag[j] & mask) == 0x00invalid use of %s indicator record of which %s binary %d records were read %6s%6d%6d%2s%10d%10d glpnet03.cglp_netgen: v_rhs = %d; invalid offset glp_netgen: a_cap = %d; invalid offset glp_netgen: a_cost = %d; invalid offset BEGIN NETGEN PROBLEM%8d%10s%10d NODES AND%10d ARCS USER:%11d%11d%11d%11d%11d%11d DATA:%11d%11d%11d%11d%11d%11d NETGENSUPPLY %6s%6d%18s%10d ARCS itsup > nsorcDEMAND END glpnet04.cglp_gridgen: v_rhs = %d; invalid offset glp_gridgen: a_cap = %d; invalid offset glp_gridgen: a_cost = %d; invalid offset GRIDGENc generated by GRIDGEN c seed %d c nodes %d c grid size %d X %d c sources %d sinks %d c avg. degree %d c supply %d c arc costs: UNIFORM distr. min %d max %d c arc costs: EXPONENTIAL distr. lambda %d c arc caps : UNIFORM distr. min %d max %d c arc caps : EXPONENTIAL distr. %d lambda %d n %d %d a %d %d 0 %d %d glpnet05.cglp_rmfgen: a_cap = %d; invalid offset RMFGENThe parameters are: a: %d b: %d c1: %d c2: %dc %s p max %7d %10d n %7d s n %7d t a %7d %7d %10d glpnet06.cnv >= 0na >= 01 <= i && i <= nv1 <= j && j <= nv0 <= low[a] && low[a] <= cap[a]ptr[1] == 1ptr[nv+1] == na+na+1delta > 0glpnet07.cnv >= 21 <= s && s <= nv1 <= t && t <= nvs != tcap[a] >= 0glpnet08.cglpnet09.cW->size == 0W->pos[j] == 0glpnpp01.cnpp->orig_dir == orig->dirnpp != nppnpp->orig_m == orig->mnpp->orig_n == orig->nnpp->orig_nnz == orig->nnzrow->type == GLP_LO || row->type == GLP_DBrow->type == GLP_UP || row->type == GLP_DBrow->type == GLP_FRcol->type == GLP_LO || col->type == GLP_DBcol->type == GLP_UP || col->type == GLP_DBcol->type == GLP_FRcol->type == GLP_FX!npp->scalingcol->mipx == floor(col->mipx)npp->orig_dir == prob->dirnpp->m == prob->mnpp->n == prob->nnpp->nnz == prob->nnztse->func != NULLtse->func(npp, tse->info) == 0names == GLP_OFF || names == GLP_ONsol == GLP_SOL || sol == GLP_IPT || sol == GLP_MIPscaling == GLP_OFF || scaling == GLP_ON!scalingrow->i == irrr != rrrcol->j == jccc != cccglpnpp02.cq->ub != +DBL_MAXq->lb < q->ubq->lb != 0.0q->lb != -DBL_MAXp->lb != -DBL_MAXp->ub != +DBL_MAXp->lb < p->ubq->lb == q->ubq->lb == 0.0q->ub > 0.0q->lb == -DBL_MAX && q->ub == +DBL_MAXp->lb == -DBL_MAX && p->ub == +DBL_MAXglpnpp03.cinfo->stat == GLP_NL || info->stat == GLP_NUq->ptr != NULL && q->ptr->c_next == NULLp->lb != -DBL_MAX || p->ub != +DBL_MAXat == 0 || at == 1j->lb < j->ubj->lb != -DBL_MAXj->ub != +DBL_MAXp->lb == p->ubp->ptr != NULL && p->ptr->r_next != NULL && p->ptr->r_next->r_next == NULL!q->is_intp->ptr == NULLu != +DBL_MAXp->ptr != NULL && p->ptr->r_next == NULL0 <= ret && ret <= 2l != -DBL_MAX0 <= lb_changed && lb_changed <= 40 <= ub_changed && ub_changed <= 4q->ptr == NULLglpnpp04.crow->lb < row->ube->aj != 0.0e->xj->is_inte->xj->lb == 0.0 && e->xj->ub == 1.0row->lb != -DBL_MAXrow->ub != +DBL_MAXej != NULLek != NULLcol->lb == 0.0col->ub == (double)uinfo->j + (k-1) == bin->j%d integer variable(s) were replaced by %d binary ones %d row(s) were added due to binarization Binarization failed for %d integer variable(s) glpnpp05.ccol->lb < col->ubnpp->sol == GLP_MIP!(row->lb == -DBL_MAX && row->ub == +DBL_MAX)0x00 <= ret && ret <= 0xFFret == 0 || ret == GLP_ENOPFS || ret == GLP_ENODFS%d hidden packing inequaliti(es) were detected %d hidden covering inequaliti(es) were detected %d constraint coefficient(s) were reduced npp->sol == GLP_SOLglprgr.crgr_write_bmp16: m = %d; invalid height rgr_write_bmp16: n = %d; invalid width wbrgr_write_bmp16: unable to create `%s' - %s rgr_write_bmp16: write error on `%s' - %s glprng01.cglprng02.c0.0 <= x && x <= 1.0rng_uniform: a = %g, b = %g; invalid range a <= x && x <= bglpscf.ci <= j && j <= nscf_solve_it: singular matrix scf != scfscf_create_it: n_max = %d; invalid parameter glpscl.c1 <= j && j <= lp->n1 <= i && i <= lp->mglp_scale_prob: flags = 0x%02X; invalid scaling options Scaling... AProblem data seem to be well scaled flag == 0 || flag == 1GMEQ2N%s: min|aij| = %10.3e max|aij| = %10.3e ratio = %10.3e %s:%d: warning: glpsdf.cline too long invalid use of slash data item `%.31s...' too long number `%s' out of range cannot convert `%s' to number data != datainteger `%s' out of range cannot convert `%s' to integer glpspm.cP->n >= 01 <= j && j <= P->nP->col[j] == iA != Afname != fnamen >= 0work[j] == 0.0spm_show_mat: writing matrix pattern to `%s'... 1 <= m && m <= 327671 <= n && n <= 327671 <= i && i <= A->m1 <= j && j <= A->n0 <= m && m < INT_MAX0 <= n && n < INT_MAXA->n == B->m!flag[j]A->m == B->mA->n == B->nspm_read_hbm: unable to read matrix RSAPSARUAPUARRAPRAspm_read_hbm: matrix type `%s' not supported nrow == ncol1 <= beg && beg <= end && end <= nnzero + 11 <= i && i <= nrown >= 14 && 1 <= c && c <= n-13n >= 3 && 2 <= c && c <= n-1glpspx01.cp != 0%c%6d: obj = %17.9e infeas = %10.3e (%d) gamma[j] == 1.0csa->refct > 0m > 0 && n > 0loc == lp->nnz+1lp->validk <= nError: unable to factorize the basis matrix (%d) Sorry, basis recovery procedure not implemented yet check_stab(csa, parm->tol_bnd) == 0IIIWarning: numerical instability (primal simplex, phase %s) csa->phase == 1 || csa->phase == 2binv_st && bbar_st && cbar_std1 != 0.0d1 = %.12g; d2 = %.12g Error: unable to choose basic variable on phase I piv = %.12g; eps = %g piv1 != 0.0piv1 = %.12g; piv2 = %.12g csa->trow_nnz <= csa->nglpspx02.c1 <= p && p <= mdelta != 0.0alfa != 0.0q != 0stat != stat %6d: %24s infeas = %10.3e (%d) |%6d: obj = %17.9e infeas = %10.3e (%d) csa->validtype[head[p]] != GLP_FRtype[k] != GLP_FXpivot != 0.0gamma[i] == 1.0exact[i] == 1.0lp->m == mlp->n == n!lp->valid && lp->bfd == NULLcsa->valid && csa->bfd != NULLloc-1 == lp->nnzk == nObjective scale factor = %g orig_type != orig_typecheck_stab(csa, parm->tol_dj) == 0Warning: numerical instability (dual simplex, phase %s) OBJECTIVE LOWER LIMIT REACHED; SEARCH TERMINATED OBJECTIVE UPPER LIMIT REACHED; SEARCH TERMINATED gamma[i] >= 0.0stat[j] != GLP_NScsa->tcol_nnz <= csa->mtcol_vec[p] != 0.0type[k] == GLP_LO || type[k] == GLP_DBtype[k] == GLP_UP || type[k] == GLP_DBglpsql.clink != linkMySQL table driver not supported iODBC table driver not supported glpssx01.c1 <= q && q <= n1 <= k && k <= m+nq_dir == +1 || q_dir == -1mpq_sgn(teta) >= 01 <= j && j <= mtype[k] == SSX_DBp_stat == SSX_NFp_stat == SSX_NLp_stat == SSX_NUp_stat == SSX_NL || p_stat == SSX_NUp_stat == SSX_NS("Internal error: basis matrix is singular", 0)ssx_create: m = %d; invalid number of rows ssx_create: n = %d; invalid number of columns ssx_create: nnz = %d; invalid number of non-zero constraint coefficients infsum%s%6d: %s = %22.15g (%d) objvalglpssx02.cmpq_cmp(ssx->aq[ssx->p], ssx->ap[ssx->q]) == 0ssx->p != 0ssx->p_stat == SSX_NL || ssx->p_stat == SSX_NUInitial basis matrix is singular ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED glptsp.ctsp_distance: invalid TSP instance tsp_distance: node number out of range tsp_distance: edge weight type not specified tsp_distance: edge weights not specified tsp_distance: node coordinates not specified tsp->edge_weight_type != tsp->edge_weight_type%s:%d: extra symbols detected %s:%d: token `%s...' too long %s:%d: missing number %s:%d: number `%s' invalid %s:%d: missing integer %s:%d: integer `%s' invalid %s:%d: missing colon after `%s' %s:%d: keyword `%s...' too long %s:%d: missing keyword tsp_read_data: reading TSP data from `%s'... tsp_read_data: unable to open `%s' - %s %s:%d: NAME entry multiply defined %s:%d: NAME entry incomplete tsp_read_data: NAME: %s TYPE%s:%d: TYPE entry multiply defined TSPATSPTOUR%s:%d: data type `%s' not recognized tsp_read_data: TYPE: %s COMMENT%s:%d: COMMENT entry multiply defined %s:%d: comment too long DIMENSION%s:%d: DIMENSION entry multiply defined %s:%d: invalid dimension tsp_read_data: DIMENSION: %d EDGE_WEIGHT_TYPE%s:%d: EDGE_WEIGHT_TYPE entry multiply defined GEOEUC_2DATTEXPLICITCEIL_2D%s:%d: edge weight type `%s' not recognized tsp_read_data: EDGE_WEIGHT_TYPE: %s EDGE_WEIGHT_FORMAT%s:%d: EDGE_WEIGHT_FORMAT entry multiply defined UPPER_ROWFULL_MATRIXFUNCTIONLOWER_DIAG_ROW%s:%d: edge weight format `%s' not recognized tsp_read_data: EDGE_WEIGHT_FORMAT: %s DISPLAY_DATA_TYPE%s:%d: DISPLAY_DATA_TYPE entry multiply defined COORD_DISPLAYTWOD_DISPLAY%s:%d: display data type `%s' not recognized tsp_read_data: DISPLAY_DATA_TYPE: %s NODE_COORD_SECTION%s:%d: DIMENSION entry not specified %s:%d: NODE_COORD_SECTION multiply specified %s:%d: invalid node number %d %s:%d: node number %d multiply specified DISPLAY_DATA_SECTION%s:%d: DISPLAY_DATA_SECTION multiply specified TOUR_SECTION%s:%d: TOUR_SECTION multiply specified %s:%d: extra node(s) detected EDGE_WEIGHT_SECTION%s:%d: EDGE_WEIGHT_FORMAT entry not specified %s:%d: EDGE_WEIGHT_SECTION multiply specified EOF%s:%d: keyword `%s' not recognized tsp_read_data: %d lines were read tsp_read_data: COMMENT: %s ( dummy) %d has left child %d and right child %d Create graph: %d: %d Out of memory(1)leaf %d with mate %d and debug %d leaf %d with mate %d, parent %d, and debug %d internal node %d with mate %d, max %d, min %d, and debug %d %d has children %d, %d, origin %d, and debug %d %d has children %d, %d , parent %d, origin %d, and debug %d Out of memory(2)error in tree childrenOut of memory(3)Out of memory(4)Out of memory(5)unknown error.unknown error2.Out of memory(6).%d Failed to initialize the stack.Empty expression.Bad expression 1.Bad expression 2.Bad expression 3.Bad expression 4.Bad expression 6.Bad expression 7.Bad expression 8.Failed to open a temporary fileOut of memory(7)Out of memory(8)Out of memory(9)The two trees do not have the same leaf sets.Out of memory(10)Out of memory(11)Out of memory(12)Out of memory(13)%s#H%dOut of memory(14)Out of memory(15)leaf %d %d has children %d, %d leaf %d with mate %d and debug %d, type %d from Tree %d leaf %d and debug %d, type %d from Tree %d %d has children %d from tree %d, %d from tree %d and type %d, debug %d from Tree %d and mate %d Out of memory(16).Out of memory(17).Out of memory(18)Out of memory(19).Out of memory(20).Out of memory(21).Out of memory(22).error in the direct arrayOut of memory(23)Out of memory(24)Out of memory(25).Out of memory(26).Tree 1 is not a tree. Leaf: %d About to cut the dummy node off Tree 1.found a unifurcate node.About to cut off the dummy in Tree 2 (2)Tree 2 is not a tree. Leaf: %d About to cut off the dummy in Tree 2 (1)Empty forests. check tree %d in forest %d: Forest 2 is inconsistent with Tree 1.Out of memory(27).gBound: %d #(already cuts): %d #(remain cuts): %d Out of memory(28).Out of memory(29).Out of memory(30)Out of memory(31)Out of memory(32).Usage: MaafB treeFile.newick [Time_Bound_in_Seconds]Failed to open %s At least two trees are necessary.Out of memory(33)The %d-th temporary file is empty The first tree is empty.The trees do not have the same leaf sets.Out of memory(34).Out of memory(35).Out of memory(36).Error in file %s Out of memory(37)error: isolatedThe distance between tree %d and tree %d is %d The trees are identical.#leaves: %d #trees: %d. #different trees: %d. A quick upper bound on the reticulation number: %d MAAF bound: %d Extra bound: %d *** rMAAF bound: %d *** *** MAAF bound: %d *** Time spent on computing the rMAAF bound: %ld(s) *** RH bound: %d *** Out of memory for ILP(38).ILP bound%d seconds ran out for computing the RH bound *** RH bound so far: %d *** *** Final lower bound: %d *** Total time: %ld(s) Out of memory(39): numVertices = %d Out of memory(40)Out of memory(41)error.L AS% h hhhh{hohahRh=h.h hxhnhdhZhPhFhhh4h(*88XPP P  PPp/00590:`=`>>>0@@CC`bb0ffh lPmm~~ppp0Pp@PЩ0p` `0 !"@2`24_P``0ad`f@nnnpqssptwx yy`zzPЊ@`0p P@`p    @ `p00pp` "#$40>pBCRRS@TTV ]^^@kk@mmnpoФ` Чpp@д0@ `P0PP @   `pPP!!,/0122P3P88p:zz`p@` P  ppp`@ ,-8 9?EpFJ0KnoPpp`qupw`xxy{|`}~P`Ћ@00 00``@p `0 0 ))..?@@@ BBPCCpD@EEQ@R TapcpdhjjPlpmvpwz@p`Б0ТP@`0 0@   p  p@@@p  `  `!!@"""#0$))** .0/p/p00114406P6@;`<<= >0>>?@ABBIPK L0L Q UVWbdPe`hiPii@jlmnwPxz0{pИ@е 0`P`0 `@00PP@@PP  " $%,.@`A`GGHIIK@NRPRST[\]p_PPp0pP`0@ `  P$&+P50:;>ACFpGG[]cf i`itt uxyyzzz@{| |`|}00P@@ Pp  Pp@ @@p`  P@  `  p  U W ^ _ o o w `x  z ` `     P P  x  R  h C 3 5 | 4H (I l\ _ zRx 4$ zRx ,0'? 4L@' zRx 4>  zRx ,@ zRx ,XAN zRx ,`A) zRx 4HE zRx ,I| zRx 4I  zRx 4PKR  zRx 4`L zRx ,MN 4L0M? 48M: ,@NR ,pN? 4N ,TQ ,Q 4PM 4gC zRx ,m 4L`n 4n 4pp 4q  ,,Pr ,\ra 4 s  4w) ,xa 4,@xz  4d|  4  4  4 A  ,D( 4tA  40  4  4`  4T  4  4 zRx ,  ,L  ,|h  ,H  ,(  ,   4<x  4t0Y  4XY  4Z  4Z  4TЙ 4X 4 4x 440 4lȜ zRx ,h 4L  4P  4] zRx 4[  4T[  4 4E 4 zRx 4Hr 4Tr 4ؤ  zRx ,X ,L  ,|  ,h 4HZ  4p  4L[  4 [  4HY  4p[  4,[  4dY  4y 40  zRx 42  4Tm zRx , ,L  ,| 4h[  4[  4[  4T[  4 zRx ,@ ,Lu ,|8 ,  , 4 x[  4D[  ,| 4 4  4 4TC zRx 42  zRx 4  4TX  4  4x  4[  44  4l`   4H   4E , 4Dx zRx ,( 4L( 4) 4X) 4)  4,h* 4d@..  482] 4`6  4 H7  4D ;  4|=#  4>s  4A8  4$ C  4\M/  ,Ri , S 4S> 4,S  4dWt 4XX  zRx ,_  ,L_  ,|_$ ,_ ,_7 4 _}  4Da 4|b& 4c`  ,cx 4d 4Tpdy 4dy 4ey 4He 44e 4lHf ,fI 4gZ  4 8g ,Dg  ,tg  zRx ,g  4Lhg.  4`k  4qn 40r 4,r 4dsX  ,8s  zRx 4sK  ,Ttb 4Xt  4t ,8uG ,$Xu 4THus 4u 4u 4w 44HyP  4l`z 4z  4| 4h~@  4Lp)  zRx 4P, 4TH  4Ї  zRx 4P 4T 4p_ 4 4  44ؤ  4l0; 48H 4PP zRx 4P 4T  zRx ,h 4L  4` zRx ,  ,L  4|V  ,  ,  ," 4D 4| 4  ,@ 4 ^ zRx ,0S 4L` ,U 4 4  4$  4\b , zRx , ( 4L z  4hO  4L  4 ,, zRx ,l ,LX ,|H) 4He  , 4   4Lx  4  4h ,g ,$@ 4TU 4| 4P] 4x  44` 4lH  403 48 zRx ,,  ,L,I 4|,$ ,-\ 4.j  zRx 40/  ,T6 46  4`7f  49  4,P<  4d>#  ,B` 4C ,xDV 44D ,lpE 4F 4Y 4 `p 4Dg 4|pnD  zRx ,pw ,L0xP ,|Py ,y zRx ,xy  ,LXy  zRx 4 yR  ,THy5 4Xy^  4y^ 4y ,,0z zRx 4zR  4Tz5  ,z1 4z  zRx 4x{p 4T{ 4|o  4@} 4~  zRx ,8 4L(  zRx , ,L\ ,|؀\ 4 4p0 ,h 4L  4  4h  4@? zRx ,0 ,L 8 ,|0 zRx , 4Lh  4Ї 4h , 4$p? 4\x zRx , ,L) 4|Z  40&  ,( 4؞  ,TI ,H ,П , 4Z  ,L> ,|- 4 4 ,xo 4L 4  ,E 4  4$K  4\  ,@" 4@b  ,x ,,h" 4\h  4Q  ,ش 4ȴ!  44 4lx  4 4 4@N 4LX 4T 4 4  zRx ,@ 4L.  4 4m 4 4,@9 4dHA  zRx 4Hq 4T  zRx ,$ 4LV  zRx 4 ,T , ,x 4H 4Z  4T 4  ,5 4 4,`q  4d  4#  4xC  4    4D(  4|  4x  40U  zRx 4@ zRx 44  4TX6  46^ 49d% zRx ,^G ,L_ ,|_5 4_ 4` 4`  4Tpa  48b 4b zRx ,0c$ 4L0c zRx ,k$ ,Lk 4|k?  4m 4|B 4$  zRx 4( zRx 4ȱD 4T ,Z 4ض-  4и  4,8v  4dn  4v  4n  4 8  4D   4|w  4P zRx 4  4T  4] 4  4  44  4l  4(  zRx ,$ 4L  zRx ,^ 4L( zRx 40  zRx 4x 4T 4h  4\  , 4, 4d`u  zRx 4  4T8  zRx , ,L- ,|B ,& ,D , ( 4<  4t "e  ,X#| zRx ,#< ,L#  4|$  48%r  4%  4$%  4\p&  4&  ,( ,(U ,, )M ,\@) ,* zRx 4+  4T ,  ,, 4x-&  4p/&  4,h1- ,d`4 45 zRx ,<  ,Lp<  ,|P<  ,0<  4  ,`B ,PB 4,B 4dD 40Jl 4hK  , 0N  ,<N  ,lM  ,M 40Ng  ,hR ,4HR  ,d(R  ,R  ,Q ,Q ,$Q ,TQ  ,Q  ,hQ  ,HQ  ,(Q  ,DQ^ ,t8Q 4Qj 40Rj , hR  ,D HR  ,t (R  , R  , Qf , (R  ,4 R  ,d Q  , Q 4 Qv , Q  ,, Q  ,\ Q 4 Qv , Q  , Q ,$ Q 4T xQ5 4 T 4 U , U  ,, U  ,\ U  , `U , @U , U  ,U ,LU  ,|`U  ,@U  , U  , U  ,<T  ,lT  ,T  ,T( ,T( ,,T 4\`Tv ,T( ,T( ,T 4$Tv ,\T  ,T  ,T  ,pT  ,PT ,L0T  ,|T  ,S  4SG  4SL  4LTL  ,T  ,S  ,S  ,S  ,DS  ,txS  ,XS  ,8S  ,S  ,4R  ,dR  ,R  ,R  ,xR  ,$XR  zRx 4 R  4TT3  zRx ,V zRx ,V 4L`X[  4Z  4 \ ,\ 4$X^G  4\p`d  4bt 4dr 48t zRx 4ؒ  4T  4H[  4p 4 44@  zRx 4б!  4TȲ  4  4h  ,  4,  4dX 4,  4D 4   4D 4|` 4( 4y zRx , ,L ,| ,< 4~  4 4LP 4 ,P3 ,`# 4`}  ,T , , ,x3 4 4L  4hC   4 4 4,z 4d9 ,L , 4P   ,4 ,dx 4 4`n  4o 4< ,tH  4( 4   4  4L@  4  4pm 4  4,   4d  4pR 4_ 4   4D   4|   4 z 4 0   4$   4\ 0j 4 h  4 P4 4 X  4< "~  4t &  4 -  4 4   4 >  4T H 4 pK 4 KY  4 L 44 M 4l N 4 xN   4 X  4Yy 4L_  zRx ,pd ,LPd ,|@d" ,@d ,0d 4  d ,DdK 4td 4Pe 4ez 40fO  4THg  40ij  4hkA  4k[  44kc 4lkm  4q   4s  4HwJ  4L`y?  4hy,  4`}n  , zRx , ,LЁ ,|  ,  4  4؁ 4L@z  4L  4M  4M  ,,Ђ2 ,\ 4 4X  ,  ,, ,\ , ,p , 4PS ,TxR ,( 4p  4 ,$- 4T  4  4C 4;  44e  4l@v  4 40Z  4X}  4L 4j  ,0L 4P  4$j  ,\1 4  4g  4M 44 ؓ  4l 0 4 Z  4 H 4 ȗ4  4L З  4 8  4   4   4,   ,d H 4 (9 4 0 4  4<   4t U 4 0 , S , ؞? ,D  ,t ؞ , XC , xg , ,4# ,d ,x ,  ,  ,$ȣP ,TP ,S ,8^ ,h 4(j ,L`  4|@ 4 4 R  4$H  4\  4 4  4(  4<  4tH  4v 4  ,  4LpL  4 4 4 4, 4dh 4й 48f 4 p 4Dؼ 4| 4h 42  4$ 4\ 4O 4 4xO 4<A  4tM  4 48A  4Pq 4T  ,G , 4 ,$X ,TH 48 49 4# 4,`  4df 40 4 , 0# 4<0  4t  4 ,hG 4 4L ,G 4 4@  4$ 4\P ,(# 4(  4 ,4H ,d , , , 4$8 4\]  4#O 4#x  4 (/  4< 0I  4t 0 4 p2 zRx 43 4T3 , 4Z ,P4A 4p4 4$5 4\6 4(70  4 8 49 ,<P:A ,lp:A 4:: 4?  4 @A  ,DC 4thC  4Cp  4D ,E 4LE^ ,Gi 4HH ,J 4Lo ,TM 4hMi ,M 4NU ,$8P6 4THS 4T 4U; ,W! zRx ,XL ,LY 4|Y  4d 4He 4$f   zRx ,p$ ,Lp[ 4|q 48s_ 4`wZ  4$y 4\z~ 4X{ 4}   4H  4<q  4tX 4  4 zRx ,X" 4LX  ,@H ,` 4  4G 4TB  4ȗ  ,PM 4p 4, 4d0 4x 4 4  4D0 4|< 4 4 zRx 4H  zRx 4  zRx ,a 4L  4p  4X zRx ,N ,L(? ,|87 4H zRx ,W 4LH zRx ,1 4L zRx 4X zRx 4-  4T zRx 4   zRx ,$[ ,L$V 4|%S  48%V  ,`%[ ,%V 4L%S  4%Y  ,& ,& ,% 4L`&   48/ 44  4(8m 4,`8 4d8j 48  ,H9~ 49  4< :u 4th:p ,:+ 4;  zRx ,BF ,LC ,|C ,C ,PDM , pD` ,<D~ ,lD1 ,El ,@E 4E 44G 4lH 4J 4K! 4L 4L@N  4O  4O- 4P}  zRx ,Q" ,LQ ,|Q ,(T ,U , xU ,<V ,lXK ,X 4(\P  4@]  4<]   4tb  4e  4h  4Xk  4Tk6 4m 4o 4p6 44s  4lv zRx ,xa ,LHx ,|y ,y 4zu  4z@ 4Lz  4~f  4Ȃ  4pk  4,  zRx 4 4TP  4  4  4Xd  44{ ,lؙ= zRx 4ЙO  4Tx  40  4H  4L zRx , 4L1  41  4v  zRx ,n ,L0 ,|& ,  4k  ,ا_ zRx ,S ,L  zRx , ,L> 4| 4 4x  4$` 4\  zRx 4x  4T  4 4P  4  44P  4l 4  4} zRx ,(  ,L  ,|+ , 4x  4@ 4L 4@ , 4 4$0 4\  zRx ,H8 ,LX, 4|X ,8 ,  4  4LXi 4  4)  4  ,,XD 4\x   4P]  4x  4A 4<  4tU 4  4p  4>  4T<  zRx 4 ,T ,m 4H 4  4$h,  ,\`z 4  4x  4J  ,4. 4d 4q 46  , \ 4<@U 4th:  4p  4  4n  4Tg  4  4  4M$ 44( zRx ,q 4L  4( 4= 4^ 4,  4d@!  4#  ,@%L 4`& 4<-  4tp1  43#  45  45  4T6  47  ,@9 409W  4,X=m 4d>L 4F' zRx ,xm8 ,Lm8 ,|m8 ,m8 ,m8 , m8 ,<m ,lm zRx 4m  4Thp2  4pqR  4r}  4sT 44t  4lwd  4xU  4ye 4{  4L|_  4}[  4~  4  4, l  ,dX 4Hn 4}  zRx 4  4T8 4 4 zRx ,86 4LH1 ,P ,- 4? ,h 4L 4P 4 , h 4$`  4\( zRx ,  ,LrF ,|1 ,7 , , r ,<Y% ,lN% ,CL ,_ ,ε ,,J ,\Ѷn , , , ,@8 ,LH ,| ,@~ ,b ,  ,<f ,l ,P , ,~ ,, ,\ ,J , ,00 ,0 ,L[ ,|E ,,} ,y ,  ,<c ,l ,t , , ,,0 ,\ ,Z ,{ ,I ,  ,L  ,| =C , P , p ,  ,< P ,l  , p ,  , [ ,, w ,\ =n , { , * ,  ,  ,L T  ,| ) , ,J , JL , JD zRx ,]Z ,L] ,|O^c ,^ ,^m , ._ ,<_~ h p x  n x                 " , 6 @ J t j ` V L B 8 . $             d Z P F < 2 (                 ~   T  >       ț ϛ כ           @ @__DefaultRuneLocaleQr(@___stack_chk_guard@___stderrp@___stdinp@___stdoutp@dyld_stub_binderr`@___errorrh@___maskrunerp@___memcpy_chkrx@___sprintf_chkr@___stack_chk_failr@___strcat_chkr@___strcpy_chkr@___tolowerr@___toupperr@___vsprintf_chkr@_abortr@_acosr@_atanr@_atan2r@_atoir@_ceilr@_cosr@_exitr@_expr@_fcloser@_feofr@_ferrorr@_fflushr@_fgetcr@_fgetsr@_floorr@_fmodr@_fopenr@_fprintfr@_fputcr@_fputsr@_freer@_frexpr@_fscanfr@_fseekr@_ftellr@_fwriter@_gettimeofdayr@_gmtimer@_ldexpr@_logr@_log10r@_longjmpr@_mallocr@_memcmpr@_memcpyr@_memmover@_memsetr@_powr@_printfr@_putcharr@_putsr@_qsortr@_randr@_remover@_rewindr@_setjmpr@_sinr@_sprintfr@_srandr@_strchrr@_strcmpr@_strcpyr@_strerrorr@_strlenr@_strncpyr@_strrchrr@_strtodr@_timer@_tmpfiler@_vsprintf_ start_glp_fhidƇcmlpsrenextToken܌ekeyDFSquickSortώNXArgmh_execute_headerglp__progname$acsimbf"d$g%t&l'xdl)f)hbm_/put_Hokalgqwcliqueqkellermanqnpp_qqmd_zr{md_nalyze_rowvl_ 12aatcontroldefaultsinfoorderpvalid$+Y^aajostreprocess_treeorderstxzolamdheck_kkt_reset_defaultscommendedport}ymamdcf_|p~sx__reportsdce load_matrix a g funscale_probimwrpribtv%open_tee&netgenqort_matrixet_timplexcale_prob}df_} obj_col_rmat_ prob_name sjjbfcpgraph_namevertex_namecoefdirname bndsname statkindow_iibndsname statelual_rtestifftime'ete__ probindexv_indexgraphheck_reate_ opy_prob p lose_tee&alloc'dupasnprobr xactval_tab_ase_ ror_&prob graphcol row d nalyze_sd_ v_basis/rows cols arcverticesprob indexv_indexgraphcols rows arcverticesЍet_ ridgenq pr obj_ num_ col_ r mat_sdual_statunbnd_raybob_name im_statname dir coef valrows cols nz intbinФ type nameublbdualprimstatkindbindow_ iitypenameublbdualprimstatbindЦcolrowind_tranactorizeree%colrowvertexжjjtatusd_basisrong_compnpt_os_it_tsmcpicpxcp$env%mpscppptcpocpstatusobj_valcol_row_ДdualprimЕdualprimerioroptФХipl_aem_'p_ncost_statusobj_valcol_valrow_valntopt1os_/pm_solve6Эrite_arm_upeak_compclique_exact miptsolgraphlp$prob%ccdata%asnprob%iaxflow%psppncost%ead_mfgenqmiptsolgraphlp$prob%ccdata%asnprob%iaxflow%psppncost%ntm_rtest_f&mipiptsolrangesf_tranexistsupdatedheadfcpransform_op_sorterm_&ime'rowcolrowcolЍcoefbound rget_probtcheur_solselect_nodebpnup_nodedel_rowadd_rowmip_gapeasonow_attrree_sizeerminateurr_nodean_branchlear_poolranch_uponest_nodeool_sizerev_nodeode_ext_nodedataboundlevelfree_wksppostsolvebuild_probgenerateread_alloc_wkspdatamodelpat_Jcpl_z_*q_+icLaMdNeOpQmRgeSuTsTnumeric_UbVlWtXoXvariable_statementZf[re]has_solve_stmtmwnns_Lterated_expression\itdexing_expressionW_randializeoЎnprob_sert_'lphall okalg xflow_in lloc'lpffalg lp okalg p x_basis/s!find_node!get_node_!delete_!insert_node!create_tree"et_node_!trcmp"type!link!type!link!tree!node!Пd_"x_#get_count"set_parm"delete_it"update_it"btran"f#create_it#УХtran#actorize#delete_binv#update#btran#f#create_binv$tran$actorize$з mp_$b_in_use$delete_pool$free_atom$create_pool%get_atom%            Д   _env%'  et_env_ptr%mp_, ersion&printf& ls_&sp_set_ptr&get_ptr&  hook&out&      hook''   usage'limit'       ib_'p8uH x(err_msg)big6str7jda7gcd7lcm7fp2rat7round2n7errmsg(f(l6 e(close)flush)p)getc)open)of(rror(     utc)rintf)    close)sym)open)   hv_)falgqdelete_it*h_solve*btran*f*create_it*update_it*   tran*actorize*    s+c,g,mul.div.a.neg.init.out_str.wap+gn+et-ub.О  s+get_d,init-c-a.neg.out_str.div.mul.gn,et-ub/ mp,lear. et_d,cd. _2exp,  free_,get_-pool_count-mem,atom-Ъ work-atom-    Ю _si-. _-.si-d/ lear-anonicalize.mp/  п    bs.dd. bs.dd/                free_mat/read_mat/    f0best_node0r0is_hopeful1c1d1s2eval_degrad2add_row3p3g3linear_comb4mir_4ind_row0reeze_node3eas_pump5  e0ound_bound2lative_gap1vive_node3  l1reate_2h4o4ea1one_node3q_4r_1n_vec3pool1vec3 el1river3ete_2_row2pool2node2tree2vec3   pool2tree3vec4 olve_node2et_vj3         r3cost_5eprocess_node3ocess_cuts5  et_vj4mi_gen4eck_vec4oose_5py_vec4v_gen4term4gen4init4term5gen5init5update5free5init5branch5нvar5node6div6mul6s6neg6add6cmp6to6div7mul7et6ub6d7a7spx7rev7trim828te7y7n7n7int8num8f_8x_9delete_it8btran8f8create_it9update_it9Єtran9actorize9Зm:i:pri:w;c;repx_basisDprobmint_parm>mat_Gobj_Gprob_nameHlass=ol_@Ы r>status>int_parm>num_?c@obj_Cdual_statDprDmat_Eeal_parm>ay_infoBow_CЯeal_parm>ow_Dint>kkt>col_val?row_val?obj_val?status?opt?e?ger?riorBbin@int@nzEcolsFrowsFlass@ol_@ kind@dualCprimCstatCinfoCubElbFtypeFbndsFnameFkindAstatDbndsGnameGcol_Arow_Aobj_valAstatusAdualAprimAdualAprimAual_ratio_testBelEcolBrowBval_tab_BxactDcolBrowB dualCprimCstatCinfoCubFlbFtypeFbndsFnameFvalDcoefEdirFnameFim_statDob_nameFv_basisDd_GstatDbndsGnameGete_E_FindexEprobFcolErowEcolErowEcolsFrowsGcolGrowGcoefGdirGnameGcolsGrowsGsolutionHmip_solnHЉf_Hx_IdeHv_solveIfIa_solveIcreate_itIenlarge_Ilete_itIfrag_svaI_solveIactorizeIcolIrowIФdeJv_solveJf_solveJsolveJcreateJleteJcompJЈtransposeJuKchKaKmin_degreeLsymamd_ordLt_solveK_solveKol_Keck_LnumericKsymbolicLdat_Kmd_order1LnumericKsymbolicLpatternLfvsLreservedLkeywordQnumber]symbol]literal^memberkreate_MlQheck_WoYarMblockPdomainPs\tuple_elemsetcg_listMraycelsetfrNppend_Ndd_fssign_dummy_indexhlloc_contentog_list_lenNelset_bomain_arityNisplay_statementWelete_^ata_section_blockOslotOcharSnOxPrrorPlemset_argumentWval_iter_Od_statementTcontextOdomain_blocklpPecute_jand_Pression_Uarg_listPslice_tupledІ_PndimensionQfollowingQprecedingQЇose_Qean_dscopeQinputmriQarameter_Zlain_format^ut_lostsolveontRmary_expressionU_contextRf_statementWaRodel_section[ke_Rtrix_format_codeRternarySbinarySunarySПt_SnerateocStokenTdomain_tuplehrow_mmat_rowmnum_mprob_nameoharSol_mnTpdate_dummy_indiceshget_tokenTiformgolve_statementUtring_literalUeZi[ymbolic_argument\ubscript_list\lice_]literalUargument\ listU0V1V2V3V4V5V6V7V8V9V0V1V2V3Vranched_expressionWuild_hiWoop_within_domainjteral_setWnear_combcУstatementXthen_addivalue_kelem_setlaXuple_dimen`erminateobXke_member_kle_statementXbing_format_ular_format__`bjectYut_of_domainipen_nive_statementY_reference\nYmpare_apy_cstYcat_symbolsiraint_statementZant_termdstatementZdata_t_Zlect_^sZexpression\d]crosshinterhunionhtatement[ymdiffhmple_[ngle_variabledstatement[format^Й or\unction_reference\ake_slice_p_aree_dcacind_fetch_stringhlush_outputnn_o_statement\mat_hРlice]ymbol_dtringgdimen]arity]efault]ata_iffhad_]duce_termscmove_constantcnumber^s^value^charndataomodeloparameter^set^ymbol^lice_s_formulactuplecarraydelemsetdvaluedlice_tringcymbolcnum_`set_`get_`drv_pargs`flds`num`strlЕstr`n`typeaargaumaameaЙsatuplesatringsaymbolsa divbmblbsbabicuniform01fnormalgtruncgroundgpowergcosgexpgulbodgessbogfubbqrtfingddbtangsizecmembercdivcrand224gformuladsgtuplehelemsethstrdnumdcedepetableevariableesfforfmodelooeheckedeenstrainteomaineisplayerintfearametereetftatementfmemberftuplefmemberftuplef10g01gg2ggtringhymbolhsubtuplehproblemnЅГЖsymbolhtupleisymbolicitupleiwimember_jelemsetjnumericklogicalkformulakithin_domainjhole_lconjvarjsjnumjymjetjforkprintfkdisplaykcheckktablelstatementlбconkskvarlnumlsymknumlymletlconlvarlparlsetlcol_solnmrow_solnmbndsmkindmnameoc0mbndsmkindmnameocolsnrowsnarningnrite_ncharntextnoutputninputn_modeloo_modelooЎtime2strpgmtimepstr2timepclosepwritepreadpopenp21ap13dpбirrrasdsctutptbuevlvmake_vfwgeq_rowwhidden_ysimplexznrmpws_ysert_ractive_boundxeq_singletytegerzrowrcolserow_nnztmove_rduce_ineq_coefyrowscoltctivate_sdd_unalyze_rowwrowscoltesbnd_colwactivate_sltrowscoltol_nnztreate_wkspvlean_probzete_wkspt_unload_soltbnd_colvostprocessuush_tseurocess_zuild_probuinarize_probzaijucolurowuaijvcolvrowvrase_rowvq_xmpty_xoad_probvbnd_colveq_roww  fixedwequalityw  ixed_colwree_worcing_rowx  colwroww Ъ    lied_xrove_boundszboundsxfreexslackxupperyvalueylowerypackingz    doubletxsinglety  rowycoly      !paycoveringyckingyrtitioningy!!!!coveringzpackingz!!!а!colzrowzprobz!!!!!!!qmdzgenqmd{rch{qt{mrg{upd{!!!!!gr_write_bmp16{ng_{!init_rand|next_rand|delete_rand|unif|create_rand|!!!_|orm|rand|01|!!!!reset_it}delete_it}solve_it}update_exp}create_it}!!!Ё"""set_jump}line}close_file}warning~error~read_~open_file~""Ь"""text~i~num~"tem~nt~"""й"m_~x_ށ cdwrite_matread_mul_add_̀show_matnew_elemtount_nnzheck_perreate_"elete_rop_zerospermat"м""mathbmо"permat"numǀsymmat"numsymmat""""""""""ransposeest_mat_Ɓ""dҁe؁""primaldual#$mysql_iodbc_ʂclosewritereadĂopenЫ%%Ь%closewritereadopen%Э%%Ю%%dσupdate_eval_cȄget_xNjfactorizephase_IЅeleteriver%cbarpibbar%з%djcrbbarpi%bar„ol%h؄reateʅuzange_basisąrc%%owho%%%%%%%%%%Iۅ%%&distancefree_dataread_data&&Р&ireeMԊxˆndClustersUpۆDown&&eapifyighMatchNodes&snitStack֏LeafVisitedďStackEmpty&is܇eleteStackconnecttance&heckoщleautreateMatrix&aLjinovextchNodesinrkVisitedʏ&&ca_fess&rintostOrder2artitionĎGraphˉExtNewickƍ&nnectedComponentpy&2&ortAlletKeyP܏&2&&&CopiedTreeҍForestsemoryatrix&TreeForestPairSubTree̍&2B&B&rnUpˌFieldsދGraph֌Stack&&&OffIdenticalMoreLeafInTreeNodeInTree2&duceForestŌadIn&&2&&DataNewick&'''ʠ'qualnviron''ã''''ɮ'1ލ2²'̳'SubTreeIsolatedǶ''MatrixGraphSimpleGraphЏ'2''2ڎ'2'''2''12'''''2(((()ܑ)))ushopeekƹ)ߺ)»))ν))cv4444']dA]dM]fޒL.Pv]$P$Nd']d]d]fޒL.P]$P$@N@.]$$Nd']d]d]fޒL.,^$,$Nd']d^d(^fޒL.p/W^$p/$Nd']di^d|^fޒL.0^$0$NNNd']d^d^fޒL.0^$0$)N)d']d _d_fޒL.5F_$5$Nd']dV_dj_fޒL.9_$9$|N|d']d_d_fޒL.0:_$0:$Nd']d`d`fޒL.<O`$<$RNRd']dd`dt`fޒL.`=`$`=$Nd']d`d`fޒL.`>`$`>$PNP.>`$>$@N@.>`$>$@N@.0@a$0@$`N`.@-a$@$@N@.@9a$@$N.CGa$C$ N .C[a$C$ N .Coa$C$PNP.0Z|a$0Z$CNCd']dadafޒL.`a$`$N.ba$b$N.ba$b$N.da$d$N.0fb$0f$N.fb$f$N.g%b$g$pNp.h6b$h$ N . lEb$ l$0N0.PmRb$Pm$pNp.mbb$m$N.@rsb$@r$N.ub$u$N.yb$ybb$N.`{b$`{$PNP.~b$~$0N0.~b$~$PNP.0c$0$N.c$$N.І(c$І$N.:c$$N.Hc$$N. Zc$ $Nd']dicdtcfޒL.c$$N. c$ $N.0c$0$N.@c$@$N.Pc$P$N.`c$`$N.p d$p$N.d$$`N`.P.d$P$`N`.@d$$`N`.Rd$$`N`.pdd$p$N.0ud$0$N.d$$N.d$$N.d$$N.d$$Nd']ddddfޒL.pd$p$N.0e$0$N.e$$N.P+e$P$]N]d']d=edHefޒL.te$$`N`.e$$`N`.pe$p$ N .e$$PNP.e$$Nd']dedefޒL.pe$p$N.f$$N.pf$p$Nd']d$fd/ffޒL.@[f$@$N.jf$$N.Ф}f$Ф$N.f$$N.f$$`N`.Pf$P$N.f$$`N`.pf$p$`N`.Цf$Ц$`N`.0f$0$`N`. g$$`N`.g$$`N`.P0g$P$N.Щ:g$Щ$ N d']dGgdRgfޒL.~g$$@N@.g$$mNmd']dgdgfޒL.0g$0$ N .Pg$P$N.`g$`$N.pg$p$`N`.h$$`N`.0 h$0$`N`.2h$$`N`.Dh$$Nd']dRhd]hfޒL.h$$@N@.Ph$P$N.h$$N.h$$N.h$$N.h$$`N`.h$$`N`.`h$`$ N . i$$N. i$ $N.(i$$N.`4i$`$CNCd']dFidQifޒL.}i$$2 N2 d']didifޒL.i$$N.i$$N.`i$`$N.0i$0$N.i$$`N`.  j$ $N.j$$ N .+j$$ N .:j$$PNP.!Hj$!$N."Pj$"$Nd']dbjdmjfޒL.@2j$@2$ N .`2j$`2$N.2j$2$N.3j$3$N.4j$4$N.5j$5$N.9j$9$0N0.@=k$@=$`N`.Ak$A$ N .Bk$B$N.F2k$F$N.IDk$I$0N0.JOk$J$N.pMbk$pM$@N@.Otk$O$ N .Zk$Z$0N0._k$_$pNp.P`k$P`$N.`k$`$@N@.0ak$0a$N.dk$d$N.`fk$`f$Nd']dkdkfޒL.@n#l$@n$N.Pn3l$Pn$N.`nEl$`n$0N0.nXl$n$ N .nkl$n$@N@.n~l$n$N.pql$pq$N.`rl$`r$0N0.sl$s$`N`.sl$s$N.ptl$pt$N.ul$u$N.um$u$N.vm$v$N.v.m$v$N.w?m$w$N.wRm$w$N.xem$x$PNP. yym$ y$`N`.ym$y$N.`zm$`z$N.pzm$pz$ N d']dmdmfޒL.zm$z$N.z n$z$0N0.~n$~$N.0n$$pNp.Bn$$N.Un$$N.Pin$P$`N`.}n$$ N d']dndnfޒL.n$$PNP.n$$pNp.n$$N.n$$N.Њo$Њ$PNP.  o$ $ N .@2o$@$N.@o$$N.`Qo$`$N.0^o$0$N. ko$ $PNP.po$p$N. o$ $N.o$$ N . o$ $@N@.`o$`$)N)d']dodofޒL.p$$0N0."p$$N.1p$$Nd']d?pdJpfޒL.Pvp$P$N.@p$@$N.p$$`N`.@p$@$N.p$$ N .p$$N.p$$@N@.p$$PNP.p$$PNPd']d qdqfޒL.`Dq$`$N.Nq$$Nd']daqdlqfޒL.q$$N.q$$N.`q$`$Nd']dqdqfޒL.p q$p $N.  r$ $N. #r$ $`N`. 7r$ $N. Or$ $N. gr$ $0N0.@ }r$@ $N.0 r$0 $N.r$$N.`r$`$N.pr$p$^N^d']drdrfޒL.s$$`N`.0's$0$N.:s$$`N`.0Ns$0$N.bs$$N.rs$$N.ps$p$pNp.s$$Nd']dsdsfޒL.s$$0N0.s$$N.0t$0$PNP.t$$PNP.$t$$N.p8t$p$Nd']dNtdWtfޒL.t$$pNp.t$$`N`.`t$`$0N0.t$$pNp.t$$N.t$$N.`t$`$N.t$$N. t$ $N."t$"$pNp.#t$#$N.#u$#$`N`.0$u$0$$N.$u$$$`N`.4)u$4$ N .0>5u$0>$ N .P@?u$P@$ N .pBRu$pB$@N@.Ccu$C$Nd']dpudyufޒL.Ru$R$N.Ru$R$PNP.Su$S$0N0.@Tu$@T$`N`.Tu$T$jNjd']dvdvfޒL.V:v$V$N. ]Jv$ ]$N.^Sv$^$N.^Zv$^$pNp.Palv$Pa$N.@dv$@d$N.gv$g$0N0.@kv$@k$`N`.kv$k$N.@mv$@m$`N`.mv$m$N.nv$n$N.pov$po$ N .v$$N.Pw$P$pNp.w$$N.)w$$D ND d']d;wdFwfޒL.rw$$N.w$$PNP.@w$@$N.Фw$Ф$Nd']dwdwfޒL.w$$N.w$$ N x&  d']d xdxfޒL.Dx$$`N`.`Sx$`$@N@.bx$$`N`.px$$`N`.`~x$`$N. x$ $Nd']dxdxfޒL.Чx$Ч$`N`.0x$0$@N@.px$p$@N@.x$$Nd']dxd yfޒL.5y$$pNp.Dy$$N.Sy$$pNp.]y$$N.iy$$Nd']duydyfޒL.y$$ N .y$$Nd']dydyfޒL.y$$ N . z$$`N`.z$$`N`.p/z$p$N.Az$$0N0.@Sz$@$N.ez$$N.дvz$д$N.z$$N.z$$?N?d']dzdzfޒL.0z$0$ N .Pz$P$@N@.z$$Nd']d {d{fޒL.?{$$N.@S{$@$N.e{$$N.u{$$N.{$$N. {$ $@N@.`{$`$Nd']d{d{fޒL.P{$P$ N .p|$p$0N0.|$$`N`.|$$0N0.0-|$0$N.=|$$N.R|$$PNP.Pb|$P$PNP.u|$$N.|$$ N .|$$`N`.|$$@N@.P|$P$0N0.|$$N.|$$N.|$$pNp. }$ $ N .@}$@$N.}$$PNP. .}$ $N.<}$$PNP. J}$ $N.X}$$0N0. f}$ $pNp.t}$$ N .}$$0N0.}$$N.`}$`$`N`.}$$ N .}$$0N0.}$$N.}$$N.}$$N.~$$N.p~$p$PNP. ~$$N..~$$`N`.<~$$N.J~$$NZ~&  d~&  o~&  z~&  ~&  ~&  d']d~d~fޒL.~$$N.P~$P$0N0.~$$N.~$$pNp.~$$N.$$@N@.$$A NA d']d2d=fޒL.@i$@$N.x$$Nd']d}dfޒL.P!$P!$0N0.!$!$V NV d']ddfޒL.,$,$N./$/$N.0'$0$N.1>$1$N.2S$2$N.2h$2$`N`.P3~$P3$N.@6$@6$N.P8$P8$@N@.8$8$N.p:р$p:$N.<$<$N.B$B$0N0.0F$0F$PNP.N)$N$N.PU?$PU$N.`XI$`X$N.Z^$Z$N.^t$^$UNUd']ddfޒL.`a$`a$Nd']dׁdfޒL.0x$0x$N.z $z$N.z3$z$`N`.}B$}$d%Nd%d']dSd^fޒL.`$`$PNP.$$N.p$p$@N@.ǂ$$N.؂$$N.@$@$N.$$N.$$N.($$Nd']d;dFfޒL.r$$0N0.x$$Nd']ddfޒL.`$`$0N0.˃$$N. ރ$ $@N@.`$`$N.@$@$PNP.$$Nd']dd#fޒL.`O$`$Nd']dadlfޒL.P$P$PNP.$$N.$$`N`.Ƅ$$0N0.0˄$0$ N . ݄$ $N.P $P $pNp. $ $N.@ $@ $pNp.  $ $ N .$$ N .'$$N.p2$p$Nd']dEdPfޒL.|$$N.p$p$N.p$p$`N`.$$N.$$N.`ͅ$`$N.@ $@ $N. #$ #$ N d']ddfޒL.,E$,$0N0.-K$-$ N d']d_djfޒL.8$8$`N`. 9$ 9$Nd']ddfޒL.?$?$0N0d']dd fޒL.E3$E$N.E=$E$N.pFH$pF$N.0IR$0I$`N`.J\$J$N.0Kg$0K$N.@^q$@^$u Nu d']ddfޒL.j$j$N.nɇ$n$ N d']dڇdfޒL.o$o$ N .o!$o$0N0.p1$p$PNP.PpA$Pp$0N0.pQ$p$PNP.pa$p$N.`qq$`q$N.0t$0t$pNp.u$u$|N|&  d']ddfޒL. v$ v$@N@.`v$`v$N.pw$pw$N.`x$`x$N.x$x$N.y,$y$N.@z;$@z$N.{J${$N.|[$|$N.`}m$`}$`N`.}~$}$PNP.~$~$N.$$Nd']ddfޒL.$$N.$$N.P$P$N.` $`$0N0.$$0N0.,$$0N0.@$$N.ЋT$Ћ$Nd']dhdsfޒL.$$N.$$N.Ê$$N.Г׊$Г$N.$$`N`.@$@$N.P$P$N.`.$`$N.pD$p$N.Z$$N.0o$0$ N .P$P$ N .p$p$0N0.$$0N0.Е‹$Е$@N@.֋$$pNp.$$PNP.З$З$`N`.0 $0$N. !$ $ N .@7$@$N.L$$ N .0c$0$N.z$$pNp.0$0$N.0$0$N.@$@$N.PΌ$P$N.`$`$N.$$pNp.`$`$N.p$p$N.'$$N.=$$N.S$$ N .g$$ N .~$$N.$$N.$$N.Í$$N. ڍ$ $N.0$0$N.@$@$`N`.$$N./$$pNp.I$$pNp.pc$p$N.{$$N.$$N.$$N.$$pNp. ӎ$ $N.0$0$N.@$@$N.P$P$N.`/$`$N.F$$N.]$$N.t$$N.$$N.$$N.$$N.Џ$$N.$$@N@.$$N.$$N.$$N.)$$N.й=$й$N.Q$$N.h$$N.$$N.$$N.$$N.к$к$N.Ր$$N.$$N.$$N.$$N. +$ $N.0@$0$N.@W$@$0N0.pl$p$0N0.$$N.$$N.0$0$0N0.`đ$`$0N0.ّ$$N.$$N. $ $N.0$0$N.@5$@$N.PL$P$N.`c$`$N.py$p$N.$$N.$$N.$$PNP.Ӓ$$PNP.@$@$PNP.$$N.$$N.#$$N.9$$N.оO$о$N.e$$N.|$$N.$$N.$$N. $ $N.0ؓ$0$N.@$@$N.P$P$N.`$`$N.p+$p$ N d']dCdNfޒL.z$$N.$$3N3d']ddfޒL.ה$$Nd']ddfޒL.$$N.1$$`N`. C$ $N.U$$N.g$$N.{$$PNP.$$pNp.P$P$N.$$N.PǕ$P$Nd']dەdfޒL.@$@$N.P$P$N. 1$ $`N`.C$$N.0 S$0 $N.!d$!$Nd']dud~fޒL.#$#$0N0.$$$$ N .%ϖ$%$N.&$&$N.)$)$N.)$)$ N .,$,$`N`.`-0$`-$0N0..D$.$PNP..N$.$N.2c$2$N.4x$4$N.6$6$N.:$:$yNyd']ddȗfޒL.?$?$N.? $?$N.?$$?$ N .@;$@$@N@.@@R$@@$N.@[$@$N.pAr$pA$N. B$ B$N.B$B$@N@. C$ C$0N0.PCϘ$PC$N.C$C$ N .C$C$ N .D$D$ N .0D7$0D$@N@.pDL$pD$N.@Eb$@E$N.Ez$E$P NP .O$O$N.O$O$N.P$P$N.QЙ$Q$@N@.@R$@R$PNP.S$S$N. T$ T$ N .a#$a$N.b;$b$N.pcU$pc$N.dn$d$pNp.pd$pd$pNp.h$h$N.j$j$N.j֚$j$N.Pl$Pl$ N .pm$pm$N.`q$`q$N.t2$t$N.vI$v$pNp.pw`$pw$N. xw$ x$N.x$x$N.z$z$`N`.@$@$`N`.՛$$ N .$$ N .$$N.p#$p$N.>$$N.T$$N.`r$`$pNp.Б$Б$ N .$$@N@.0Ü$0$ N .Тݜ$Т$N.P$P$N.P$P$ N .p7$p$ N .U$$ N .@m$@$N.$$N.`$`$`N`.$$N.ѝ$$N.P$P$N.$$ N .%$$N.>$$N.Y$$Nd']dwdfޒL.$$N.Ş$$ N .۞$$0N0.@$@$ N .`$`$ N .$$N.0/$0$PNP.E$$N.P`$P$N. u$ $N.$$PNP.$$ N .$$pNp.ϟ$$PNP.$$`N`.0$0$pNp.$$pNp.+$$N. D$ $N.\$$PNP.q$$@N@.@$@$0N0.p$p$pNp. $ $Nd']dɠdԠfޒL. $ $N. $ $ N . -$ $N. D$ $N. [$ $N.` q$` $N. $ $N. $ $PNP. $ $PNP. ˡ$ $PNP.p $p $@N@. $ $N. $ $N. $$N.9$$N.P$$N.pa$p$N.r$$N.$$N.@$@$N.$$`N`.@$@$`N`.֢$$0N0.$$pNp.@$@$N.@$@$0N0.p$p$ N .*$$N. D$ $PNP.p]$p$@N@.u$$pNp. $ $N.$$N.$$`N`.ԣ$$N.` $` $N. $ $pNp.`!$`!$PNP.!3$!$N.@"J$@"$pNp."f$"$@N@."$"$N.#$#$pNp.0$$0$$PNP.%ɤ$%$N.)ޤ$)$N.)$)$`N`.* $*$PNP.P*$$P*$@N@.*:$*$N.0+P$0+$N.+k$+$N.p,$p,$N.`-$`-$N. .$ .$N.0/̥$0/$@N@.p/$p/$N.p0$p0$N.01 $01$N.1"$1$`N`.P38$P3$N.4M$4$`N`.`4^$`4$@N@.4p$4$ N .4$4$N.p5$p5$PNP.5$5$pNp.06æ$06$ N .P6٦$P6$0N0.7$7$N.8$8$N.@;$@;$N.P;%$P;$N.`;7$`;$PNP.;H$;$PNP.<Y$<$`N`.`<l$`<$`N`.<}$<$N.=$=$pNp. >$ >$N.0>$0>$N.>ҧ$>$N.?$?$`N`.@ $@$N.A)$A$N.BB$B$N.BW$B$N.Dk$D$N.@F$@F$N.0H$0H$N.I$I$N.PK$PK$N. LӨ$ L$N.0L$0L$PNP.N$N$N. Q$ Q$N. S&$ S$N. U3$ U$ N .@V@$@V$N.VM$V$N.We$W$pNp.W~$W$N.Z$Z$ N .b$b$N.dĩ$d$N.Peө$Pe$@N@.g$g$N.`h$`h$N.i$i$PNP.Pi,$Pi$N.iF$i$PNP.@jV$@j$PNP.kp$k$PNP.l$l$N.m$m$PNP.n$n$N.`t˪$`t$N.wݪ$w$PNP.0x$0x$ N .Px$Px$N.z)$z$ N .{C${$ N .0{[$0{$N.r$$@N@.@$@$0N0.p$p$`N`.И$И$pNp.@$@$N.ɫ$$N.$$0N0.$$N.$$ N . $$N.:$$PNP.I$$N.еb$е$N.|$$PNP.$$N.$$N.0$0$N. Ƭ$ $N.0$0$0N0.`$`$N.P $P$N.`#$`$PNP.2$$ N .пK$п$ N .d$$ N .}$$ N .0$0$@N@.p$p$`N`.$$PNP. ­$ $ N .ڭ$$N.$$PNP.$$N. $$Nd']d"d-fޒL.Y$$N.@p$@$N.$$`N`.`$`$PNP.$$N.`ͮ$`$N.P$P$N.$$0N0.@$@$N.&$$N.=$$PNP.0T$0$PNP.k$$@N@.$$N.$$N.$$N.0$0$N.ѯ$$pNp.0$0$N.$$N.$$`N`.%$$pNp.P9$P$N.PO$P$N.@c$@$pNp.}$$N.@$@$pNp.$$N.P$P$`N`.հ$$@N@.$$N.$$N.$$@N@.P0$P$!N!d']dEdPfޒL. |$ $PNP. $ $N. $ $ N .$$N.$$N.$$ N ױ&  ݱ&  d']ddfޒL."$"$0N0."&$"$`N`. $6$ $$N.%N$%$`N`. *`$ *$`N`.,x$,$N.@-$@-$N..$.$N.`1$`1$ N . ;$ ;$N. >$ >$N.@˲$@$N.`A$`A$N.pE$pE$Nd']ddfޒL.`G;$`G$0N0.GK$G$ N .HU$H$PNP.Ia$I$N.Ij$I$N.Jq$J$PNP.K}$K$PNP.@N$@N$N.R$R$PNP.PR$PR$N.S$S$N.T$T$0N0.[Ƴ$[$N.\ѳ$\$N.]ܳ$]$N.`^$`^$N.p_$p_$@N@.r$r$ N .v $v$Nd']dd%fޒL.pQ$p$Nd']d]dhfޒL.0$0$Nd']ddfޒL.P״$P$pNp.޴$$N.$$ N .$$Nd']ddfޒL..$$PNP.5$$@N@.P>$P$@N@.K$$Nd']dXdcfޒL.$$`N`.$$Nd']ddfޒL.۵$$@N@.$$Nd']ddfޒL.($$Nd']d4d?fޒL.k$$0N0.p$$Nd']d~dfޒL.$$Nd']dŶdжfޒL.p$p$`N`.$$`N`.0&$0$`N`.=$$`N`.V$$`N`.Pk$P$`N`.$$`N`.$$`N`.p$p$ N .·$$ N .Է$$N.P$P$ N .`$`$N.$$N.*$$pNp.0=$0$N.O$$pNp.0a$0$N.s$$N.@$@$N.$$N.$$pNp.$$0N0. Ӹ$ $Nd']ddfޒL.$$PNP.,$$N.9$$N.PF$P$N.T$$PNP.0b$0$`N`.p$$N. ~$ $@N@.P $P $pNp. $ $N.` $` $N. ù$ $N. ֹ$ $ N .$$N.p$p$0N0.$$N.@*$@$N.P=$P$N.`O$`$0N0.a$$}N}d']dtdfޒL.$$0N0.@$@$N.ʺ$$N.ܺ$$ N .$$N.`$`$N.$$N. &$ $PNP.@!:$@!$N.$S$$$PNP. &l$ &$N.&~$&$N.+$+$N./$/$N.2$2$N.P5ػ$P5$N.5$5$@N@.08$08$N.0:$0:$N.;1$;$@N@.>I$>$N.A`$A$Nd']dtdfޒL.C$C$pNp.D$D$N.EӼ$E$N.F$F$N.F$F$N.pG$pG$@N@.G$G$N.K4$K$pNp.PN$P$N.Rh$R$pNp.PX$PX$Nd']ddfޒL.[н$[$N.]$]$N._$_$N.c$c$N.0e*$0e$pNp.fA$f$N. iS$ i$=N=d']dednfޒL.`i$`i$PNP.j$j$N.0l$0l$N.nʾ$n$PNP.0q۾$0q$LNLd']ddfޒL.t$t$ N .t)$t$@N@.t3$t$@N@. u>$ u$vNvd']dTd_fޒL.x$x$pNp.y$y$N.y$y$0N0.z$z$N.zտ$z$pNp.z$z$_N_d']dd fޒL.z6$z$`N`.@{H$@{$Nd']dZdcfޒL.|$|$ N . |$ |$@N@.`|$`|$N.}$}$N.}$}$ N .Ѐ$Ѐ$N.$$Nd']ddfޒL.p1$p$N.@>$@$N.K$$N.Z$$N.g$$N.`t$`$N.0$0$N.$$N.$$}N}& ` d']ddfޒL.0$0$N.@$@$N.P $P$0N0.$$N.@/$@$N.@>$@$N.I$$N.\$$N.g$$ N .z$$N.@$@$N.М$М$Nd']ddfޒL.$$@N@. $ $0N0.P $P$N.!$$@N@.P5$P$ N .pH$p$N. ]$ $pNp.o$$N. $ $0N0.P$P$N.$$PNP.P$P$N.`$`$`N`.$$N.p$p$PNP. $$ N .$$`N`.@.$@$N.ЭB$Э$N.U$$@N@.j$$<N<d']ddfޒL. $ $N.$$N.$$pNp.$$N.$$N.$$0N0.$$N.@$@$N.@$@$N.$$PNP.@$@$0N0.p'$p$N.`5$`$N.?$$@N@. M$ $`N`.Y$$`N`.c$$@N@. n$ $N.w$$N.$$pNp.0$0$pNp.$$N.P$P$N.$$P$NP$.`$`$Nd']ddfޒL.@$@$N.$$N.$$0N0. %$ $@N@.0 0$0 $`N`. 8$ $N. B$ $N. K$ $N. Y$ $PNP. c$ $N. q$ $N.P $P $N.0 $0 $0N0.` $` $N. $ $N. $ $N. $ $N.p $p $ N . $ $`N`.$ $$ $pNp.`& $`& $PNP.. $. $'N'd']ddfޒL.U 0$U $@N@.V E$V $@N@.PV Z$PV $@N@.V n$V $@N@.V $V $@N@.W $W $@N@.PW $PW $ N .pW $pW $Nd']ddfޒL.W  $W $N.Z $Z $@N@.[ 2$[ $`N`.0] F$0] $N.^ X$^ $`N`._ l$_ $N.b |$b $pNp.0d $0d $`N`.e $e $pNp.g $g $N.h $h $`N`.j $j $`N`.`k $`k $N.pn $pn $N. o  $ o $pNp.o $o $ N .o 2$o $pNp. s I$ s $}N}d']dZdefޒL.w $w $N.`x $`x $N. z $ z $ N . $ $Nd']ddfޒL.  $ $@N@.` $` $@N@. !$ $N.0 5$0 $0N0.` ?$` $@N@. L$ $pNp. [$ $N. g$ $N.@ t$@ $N. $ $pNp.P $P $N.P $P $NdP`>>@)@7fD lQP[fq!y4`Њ@`@  `-4 ?"I#U#_0$i4u0>P@pB ]^@kk@mmn P%5FKP!QPU[0xmzz` `P P  @  )p6p@N,T8ZEdEopFy0IJ0K).@@p  #/; QH SU Ub@Vod~Peiil`t@p@ (70F0U`d0rp  ""%,@-.`1% ;1 >B`AQG[HgIpIwJK@NRPRST[\]`^rP 'P4=GLZgtP0 P  @"2`C W &iC|FpGtttx`|}p@  ` 0* 7 @B M  X c q }    @ @  @ p `         & 04 ? PL `U @a m t   0              P  0  `        p   * $ 3 `& = h H w W  \ 0 f ` s       @    P                        !   '  ` 1   9   >   I   T   ^   h   r   y                          $   (   0   8   @   H   L   T   X   \   `     h   p    ) P5 A ,O p/a 0t 0 5 9 0: < `= 9 p0  4 H ` x p `p+?0R0f0vpC> C!0@;V PpW dW xV U PW PV V @TR ST2RCO_s @`@P 0EXk`y^/? #2``X00BpUh{`P8Z@6P32 B"p7}H<^-r,0F1@@!@ 8M`by`a 90Np:8@^#3jDnUpg{x`x@z`vpwxy|~`} v)};M_o@дpp`q uo)o9PpI0tYpi`yPЋ0@'0;Ofp|'к:Max0`p @P.@C[r@ P 0$`:pQg З ` 07Ne|0@p` 0 7 N@cx0P@`Г"6PKe@y@  Е 6 M d { 0  о  P `!p!02!I! `!w!!й!p!!!!p "` "08"PL"_"q"""""P" "P##!##0 4#@E# W#g#Py#)#6#2#`-#,#&$:$.-$4B$#V$%h$${$0$p$p/$p0$P$@$@R% B%@0%G%?^%?{%%%A%%%W&`0&J&P*`&%u&0+&*&)&0/&P&p,')'`-.' .H'*^'+w''pD' ' ''W (`!!(P@(PKW(` n( >(0>(B(01(?((B) C()A)X)=p)")@") ) )")#* *6*pN*f* }*0$*Б*@*p*a*pA+/+?+CY+Cs+D+n+И++`h+k,m ,@j:,PiT,0{k,Z,b,,,,п,g-{1-zK-0xa-Pxz-- -PC-0-!-j .j$.z<.@T.l..Pl.pm.`q.t.v.pw/ x%/x2QQ2h2`22>22202 3@$3P93P3g3 T{3`33P330D344@-4?C4`W4u444w4O4E4O4P5 ,5D5P_5dy55Т5505V5@6p,6C6W6@q6h6@E6`66@677P,70B7W7 m77p777P7B7p 8 80H38L8D`8x8@F8I88@8 899b59pcN9g99 $9pE9@9 *9 9 : $:` :: Q: h: : :::0::;P+;еE;_; y;P; ;S;5;@;P<<0.<C< Q<_<v<<<<<P<p<<<< ==,=:=H=V=f=t= ==0===@=== >>p>`->P<>S>0j>0|>>0>>PX>>c> ? ?3?L?e?w?@???A?P5?/?0:@@p+@+A@@T@g@`y@K@R@@!@&@;@PA2&A5>A08VA]oA$A>AApAfAEADBF B 3BPEB YBqB B`B[B0eB_BBG CP"C7CpIC i[C` nCPCCCC0qC0lCjC`iCn D uDz5DzKDy_DysDzDzD@{DD |D|D}DЀE E2EDEPXElE`EpEE E EpE E FPFЭ1FPDFPWFlFF@FF. FFo Fb F_ G s GW "G 3G`k GG^ [Gj nG0] G o Gpn G0d Go Ge G z G`x Hg HZ /H[ CH0ZPHCdHvHH` H HP HH0HHPHI IB (I :Ic HI UI ^I hIƸ uI I^ I& Iҩ IH II I IǴ I I7 I  J5 JR (J3 7J(I JJ# ZJ~ jJh sJ J Ji_ JȤ J J J x J J J J J J  K K0$K~2K`{@K RK@aKZtKOKK@KKpK@2K_KAKKPLh L`/L >LGL!VLphLPzL~LL`LLL`L LpLgM#M1M5AMRMPmbM0nMЧ~MpMMFMMdM0MMMMNI NP`N3)N`2;NMN _NoNNpNЦNNNФNpN0NP OPO0O`@O@ROpdO0uO OOOOO2O0OOP#P5PPGPWPdPPtPPP`PPP0P`GP@PP QyQpz.Q`rCQsWQxkQn~Q yQPnQnQ`zQwQuQuQvRs%Rw8R@nHRptZRpqoRnR`nRvRpRR`R0RRPSm S`*S6SISYShSwS@SSSSSSS~TzT*Tz=TPTdTpT~T@=TT T"TT TPTT UUC'U9UKU0YUvgUpovUUUUPU@U@UМU@U VV.V0@VQV0a_VbqV`V0VpV V@rVuVbV0fWWy%W2WdDWІVWhWpuW WЩW`WpWWWWWWJXB#X5XФBX`OX`f\XoX~XPaX^XXX$X@dXgXYp_YV%Y`4Y` =Y MYl\ XY `Y_] nY4H yY ~Y; YJ Y| YH Y( Y Y YC YG Yr YX Y[ Y4 Y  Z Z $Za 0Z