Solution for week 3 tutorial

Algorithm: We choose the shortest job first.

Proof:

Let us compare the greedy solution $G=j_1, j_2, ..., j_r, j_{r+1}...$ with an optimum solution $S=j_1, j_2, ..., j_r, j'_{r+1}, ..., j_{r+1}, ...$

Assume that the first r choices of G and S are the same and the (r+1)-th choices is different.

Switch j'r+1 with jr+1 in S, we obtained a new solution $S'=j_1, j_2, ..., j_r, j_{r+1},, j'_{r+1},$

We can see that in S', (1) the waiting time for jobs $j_1, j_2, ..., j_r$ and the jobs after j'_{r+1} (blue dots) is not changed and (2) the waiting time for jobs $j_{r+1},, j'_{r+1}$ is not increased since the length of j_{r+1} is not larger than that of j'_{r+1} .

So, S' is also an optimal solution and G and S' have r+1 choices in common. Repeat the process, we can conclude that there exists an optimum solution that is identical to G.