
Practical Bluetooth Traffic Sniffing: Systems and Privacy
Implications

Wahhab Albazrqaoe†‡, Jun Huang†, Guoliang Xing†
†Department of Computer Science and Enginnering, Michigan State University, USA.

‡University of Karbala, Karbala City, Iraq.
{albazrqa, huangjun, glxing}@cse.msu.edu

ABSTRACT
With the prevalence of personal Bluetooth devices, potential
breach of user privacy has been an increasing concern. To
date, sniffing Bluetooth traffic has been widely considered an
extremely intricate task due to Bluetooth’s indiscoverable
mode, vendor-dependent adaptive hopping behavior, and
the interference in the open 2.4 GHz band. In this paper,
we present BlueEar – a practical Bluetooth traffic sniffer.
BlueEar features a novel dual-radio architecture where two
Bluetooth-compliant radios coordinate with each other on
learning the hopping sequence of indiscoverable Bluetooth
networks, predicting adaptive hopping behavior, and miti-
gating the impacts of RF interference. Experiment results
show that BlueEar can maintain a packet capture rate higher
than 90% consistently in real-world environments, where the
target Bluetooth network exhibits diverse hopping behav-
iors in the presence of dynamic interference from coexisting
802.11 devices. In addition, we discuss the privacy implica-
tions of the BlueEar system, and present a practical coun-
termeasure that effectively reduces the packet capture rate
of the sniffer to 20%. The proposed countermeasure can be
easily implemented on the Bluetooth master device while re-
quiring no modification to slave devices like keyboards and
headsets.

1. INTRODUCTION
In recent years, Bluetooth has enjoyed an unprecedented

penetration rate in mobile devices. About three billions
Bluetooth units will be shipped worldwide in 2017 [2]. In
particular, Bluetooth has become the de facto connectivity
interface for wireless accessories and smart devices includ-
ing keyboard/mouse, headsets, wearables like fitness track-
ers and smart watches, smart appliances, and in-car telem-
atic systems like Android Auto [1] and CarPlay [4]. Because
the communication of these devices is privacy-sensitive in
nature, Bluetooth employs a two-level stream cipher to en-
crypt packets at the link-layer [32]. Unfortunately, recent
studies have revealed many critical flaws of this encryp-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys’16, June 25-30, 2016, Singapore, Singapore
c© 2016 ACM. ISBN 978-1-4503-4269-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2906388.2906403

tion scheme [17] [10] [24] [26] [25] [31] [9] [28]. In partic-
ular, it is shown that Bluetooth is subject to several practi-
cal attacks that can circumvent, compromise, or even crack
the link-layer encryption, leading to potential user privacy
breach [9] [31] [24].

Despite the well-documented flaws of Bluetooth encryp-
tion, to date, sniffing Bluetooth traffic has been consid-
ered an extremely intricate task due to the following rea-
sons. (i) Bluetooth employs frequency hopping spread spec-
trum, where carrier frequency is rapidly switched follow-
ing a pseudo-random hopping sequence. The hopping se-
quence is hidden when Bluetooth is in indiscoverable mode,
making it difficult for a sniffer to hop following the tar-
get. (ii) When coexisting with other wireless devices on
overlapping frequencies, Bluetooth performs adaptive hop-
ping, where the hopping sequence is frequently modified to
adapt spectrum use. Such an adaptive hopping behavior is
vendor-dependent, and may differ significantly across differ-
ent devices. (iii) In the crowded 2.4 GHz band, the sniffer
may experience intensive interference from coexisting wire-
less devices, especially the prevalent 802.11 based WLANs,
resulting in poor sniffing performance.

There exist a few proprietary off-the-shelf Bluetooth snif-
fers [12] [13], which are primarily designed for protocol diag-
nosis in controlled wireless settings. In addition, to sniff the
traffic of frequency hopping Bluetooth, they rely on special-
ized radio to monitor all Bluetooth subchannels in parallel,
which makes them costly. As an example, off-the-shelf snif-
fers manufactured by Frontline Test Equipment [11] – the
leading provider of Bluetooth protocol analyzer – cost $10K
to $25K per unit. Recently, a few low-cost Bluetooth packet
sniffers have been developed based on open-source wireless
platforms [6] [5] [29] [33] [30] [7] [20] [3]. These systems are
exclusively designed for sniffing Bluetooth traffic in basic
hopping mode. In practice, they suffer prohibitively poor
sniffing performance due to the misprediction of adaptive
hopping behavior, as well as excessive packet corruptions
caused by the interference in the open 2.4 GHz band.

As Bluetooth becomes increasingly popular worldwide, an
in-depth study on its resistance to traffic sniffing becomes
imperative. In this paper, we explore the feasibility and
privacy implications of sniffing Bluetooth traffic in practical
environments using general, inexpensive wireless platforms.
Our major contribution is two-fold.

The BlueEar system. We present the design, imple-
mentation, and evaluation of BlueEar – the first practical
Bluetooth traffic sniffer that consists of only inexpensive,
Bluetooth-compliant radios. BlueEar features a novel dual-

333

http://dx.doi.org/10.1145/2906388.2906403


radio architecture, where two radios – named as scout and
snooper – coordinate with each other on learning the hop-
ping sequence of indiscoverable Bluetooth, predicting adap-
tive hopping behavior, and handling complex interference
conditions. Specifically, the scout hops over all Bluetooth
subchannels to survey interference conditions and monitors
the target’s packet transmissions. By fusing these measure-
ments, BlueEar uses a probabilistic clock matching algo-
rithm to determine the basic hopping sequence, and then in-
tegrates statistical models and a lightweight machine learn-
ing algorithm to predict the adaptive hopping behavior, which
allows the snooper to hop following the target. To main-
tain reliable sniffing performance in complex interference
conditions, the scout runs a selective jamming algorithm,
which manipulates the hopping of the target to mitigate
the impacts of interference. We have implemented a proto-
type of BlueEar for sniffing the traffic of Bluetooth Classic,
which offers enhanced data rates and a more complex hop-
ping protocol than Bluetooth Low Energy (BLE). The pro-
totype employs two Ubertooths [6] to implement the scout
and the snooper, and interfaces them to a controller running
on a Linux laptop. We identify critical issues in Ubertooth
firmware that severely degrades its performance during fre-
quency hopping, and present novel solutions to address these
flaws. Extensive experiments results show that BlueEar can
maintain a packet capture rate higher than 90% consistently
in practical environments, where the target Bluetooth net-
work exhibits diverse hopping behaviors in the presence of
interference from coexisting 802.11 based WLANs.

Privacy implications. We discuss the implication of the
BlueEar system on BLE privacy. Moreover, we evaluate the
performance of BlueEar when eavesdropping on audio traf-
fic, which is known to be extremely sensitive to packet loss.
We show that the packet capture rate achieved by BlueEar
translates to a high audio quality with a mean opinion score
(MOS) of 3.5, which is translated into F̀air’ and G̀ood’
from the listener’s perspective. Furthermore, we present a
practical countermeasure, that can be easily implemented in
the user-space driver of the Bluetooth master device, while
requiring no modification to existing slave devices like key-
boards and headsets. The countermeasure effectively re-
duces the packet capture rate of the sniffer to 20%, and
degrades the MOS of eavesdropped audio to 1.5, which is
between B̀ad’ and P̀oor’.

The rest of the paper is organized as follows. Section 2
reviews related work. In section 3, we introduce the back-
ground on Bluetooth system in general. We present system
overview and architecture in section 4. In section 5, we dis-
cuss BlueEar system design in detail. Evaluation of BlueEar
system performance is presented in section 7. We discuss the
impacts of BlueEar on privacy breach for Bluetooth system,
including BLE, in section 8. Section 9 concludes the paper.

2. RELATED WORK
Bluetooth employs E0 – a two-level stream cipher based

on 128-bit link key – to encrypt packet payloads. The link
key is established through pairing, where Bluetooth devices
authenticate each other using a secret PIN. Recent studies
have revealed many critical flaws of this encryption scheme
[31] [17] [10] [24] [26] [25]. First, the security of E0 relies on
the strength of PIN – which is often too weak and can be eas-
ily cracked [31]. Moreover, recent cryptanalysis studies have

shown that the 128-bit link key of E0 is considerably weaker
than what is originally intended [17]. It can be cracked in
265 operations, instead of 2128 [10]. Furthermore, the ef-
fective security of the link key will further degrade when
a packet sniffer is employed by the attacker [24] [26] [25].
In particular, after capturing 44.3 MB of data transferred
by the target, the attacker can reverse the link key in 238

operations, which makes fast key recovery possible in prac-
tice [24].

Recent studies have demonstrated the feasibility of cir-
cumventing Bluetooth encryption using expensive, propri-
etary packet sniffers. For instance, the traffic pattern of
popular fitness trackers is found to be strongly correlated
with the user’s activity, making it possible to track user gait
and identity. As a result, a passive traffic sniffer can uncover
important private information about the user, even without
decrypting packet payloads [9]. Moreover, due to computa-
tion and power constraints, many Bluetooth peripherals –
including most Bluetooth mice manufactured by major ven-
dors like Logitech [23] – do not support encryption, which
may result in user privacy breach.

Despite the well-documented flaws of Bluetooth encryp-
tion, sniffing Bluetooth traffic has been widely considered
an extremely intricate task. There exist several proprietary
and open source systems for sniffing Bluetooth traffic. For
example, the firmware of a few Bluetooth chipsets allow the
radio to report packet-level diagnosis by working in sniffing
mode [7] [20] [3]. However, the sniffing device must pair with
the target, which makes it incapable of passive sniffing. The
GNURadio/USRP [5] [29] platform can be programmed to
decode Bluetooth packets [33]. Due to large signal process-
ing overhead and frequency switching delay, they are limited
to sniffing one subchannel at a time. There exist several
proprietary Bluetooth packet sniffers designed for protocol
diagnosis in controlled wireless settings [12] [13]. They rely
on specialized radio to monitor all subchannels in parallel,
which makes them extremely costly. For instance, off-the-
shelf sniffers manufactured by Frontline Test Equipment [11]
– the leading provider of Bluetooth protocol analyzer – cost
$10K to $25K per unit.

Recently, several low-cost Bluetooth packet sniffers [6] [30]
have been developed based on Ubertooth [6] – an open-
source Bluetooth development platform. However, existing
Ubertooth-based sniffers are exclusively designed for sniff-
ing Bluetooth traffic in basic hopping mode. In the crowded
2.4 GHz band, Bluetooth rarely hops in basic hopping mode
because of the interference from coexisting wireless devices,
especially the prevalent 802.11 based WLANs [14] [22] [34]
[19]. As a result, existing low-cost sniffers suffer prohibitively
poor sniffing performance in practice due to the mispredic-
tion of adaptive hopping behavior, as well as excessive packet
corruptions caused by interference.

Compared with existing Ubertooth-based systems, BlueEar
is designed for sniffing Bluetooth traffic in practical envi-
ronments where both the sniffer and the target may suf-
fer from intensive interference from coexisting wireless de-
vices. To achieve this goal, we address the key challenges
posed by the indiscoverable mode of Bluetooth, the vendor-
dependent adaptive hopping behavior, and the difficulties in
maintaining consistent sniffing performance in the crowded
2.4 GHz band. In addition, we identify various critical issues
in Ubertooth firmware that significantly degrade its perfor-
mance during frequency hopping, and present solutions to

334



address these flaws. We note that although our prototype
is developed based on Ubertooth, the design of BlueEar is
platform-independent and can be easily ported to other sys-
tems.

3. BLUETOOTH BACKGROUND
Piconet. Bluetooth networks employ a master-slave struc-
ture called piconet. The device that has the least computa-
tion and power constraints is usually selected as the master
to manage communication. Other devices are slaves. Blue-
tooth piconets use the MAC address of the master device as
the piconet address. All devices from the same piconet are
synchronized to the piconet clock – a clock signal generated
by the master.

The hopping protocol. We now introduce the hopping
protocol of Bluetooth Classic, which is more complex than
that of BLE. The hopping protocol of BLE is discussed
in Section 8. In Bluetooth Classic, the hopping protocol
is defined by a physical channel, which is characterized by
pseudo-random hopping over 79 subchannels from 2.4 to 2.48
GHz. The carrier frequency is switched every 625 µs, result-
ing in a maximum hopping rate of 1600 hops/s. Specifically,
there are two types of physical channel for data communi-
cation, including,

(i) Basic channel. In each hop of the basic channel, the sub-
channel index is calculated by H(A, c), where H(·) denotes
the basic hop selection kernel specified by the Bluetooth
standard [32], A is the piconet address, and c is the piconet
clock. In Bluetooth Classic, the piconet clock is a 27-bit logic
counter that ticks every hop. Because piconet clock wraps
around every 227 ticks, the basic channel repeats itself ev-
ery 134,217,728 hops, which take approximately 24 hours.
In other words, the basic channel can be characterized by a
basic hopping sequence and a hopping phase. The basic hop-
ping sequence, which is determined by the piconet address,
is composed of 227 subchannel indices {i0, ..., i227−1}, where
in =H(A,n). The hopping phase, which is determined by
the piconet clock, is the index of the current hop.

(ii) Adapted channel. When coexisting with other wire-
less devices on overlapping frequencies, Bluetooth performs
adaptive hopping where the basic channel is frequently mod-
ified to adapt spectrum use. The adaptation is guided by
a subchannel map, which classifies subchannels as good and
bad based on interference conditions. When the subchan-
nel selected in a hop is bad, a remap function is called to
compute a pseudo-random index i based on piconet address
and clock. The bad subchannel is then replaced by the i-th
good subchannel. Although adaptive hopping is the de facto
scheme used by off-the-shelf Bluetooth devices, the Blue-
tooth standard does not specify the implementation of sub-
channel classification, resulting in different adaptive hopping
behaviors across devices manufactured by different vendors.

Indiscoverable mode. When establishing the piconet,
Bluetooth devices authenticate each other through a pair-
ing process. To enhance privacy, Bluetooth piconets can
be put in indiscoverable mode to hide key technical param-
eters from unpaired devices. These parameters – includ-
ing piconet address, piconet clock, and subchannel map –
determines hopping behavior. Although recent study has
demonstrated the possibility of extracting piconet address
from packet preambles [33], a Bluetooth packet sniffer can-

not hop following the target unless it acquires all hidden
parameters.

4. BLUEEAR OVERVIEW

4.1 Objectives and Challenges
We study Bluetooth privacy by exploring the feasibility

of sniffing Bluetooth traffic in practical environments. To
this end, BlueEar is designed as a passive traffic sniffer that
leverages general, inexpensive wireless platform to capture
Bluetooth packets without pairing with the target piconet.
To achieve this goal, we tackle the following challenges.

(i) Secret hopping phase. In indiscoverable mode, the pi-
conet clock that indicates the hopping phase is hidden from
BlueEar. In adaptive hopping mode, determining the hop-
ping phase is particularly challenging because the basic hop-
ping sequence of the target is subject to frequent modifica-
tions.

(ii) Vendor-dependent adaptive hopping. The adaptive hop-
ping of Bluetooth is guided by a subchannel map, which
classifies subchannels as good and bad based on dynamic
interference conditions. However, the Bluetooth standard
does not specify the implementation of subchannel classifica-
tion, resulting in vendor-dependent implementation, where
Bluetooth chipsets manufactured by different vendors may
hop over different subchannels even in the same spectrum
context.

(iii) Interference in the crowded 2.4 GHz band. When coex-
isting with other wireless devices, BlueEar may experience
hidden and exposed interference. When an RF signal that
interferes with the target is too weak to be measured at
BlueEar, the spectrum contexts observed by BlueEar and
the target may differ, making it difficult to predict adaptive
hopping behavior. When an RF source interferes with the
target but BlueEar, significant degradation of sniffing per-
formance may occur. While authorized devices can maintain
packet reception performance by coordinating their hopping,
designed as a passive sniffer, BlueEar cannot coordinate with
the target, which may lead to substantial packet corruptions.

4.2 System Architecture
Instead of using specialized radio to monitor all subchan-

nels in parallel, BlueEar tackles the above challenges based
on a simple dual-radio architecture that consists of two in-
expensive, Bluetooth-compliant radios. The two radios –
named as scout and snooper – are interfaced to a controller,
which employs a suite of novel algorithms to coordinate the
two radios, gluing them as a powerful passive traffic sniffer.
Fig. 1 illustrates the architecture of BlueEar. Specifically,
the working flow of BlueEar can be divided into the following
steps.

(i) Traffic filtering. When multiple piconets coexist in the
same environment, BlueEar separates their traffics based on
the piconet address of captured packets. Specifically, the
preamble of each Bluetooth packet carries a synchronization
word, which is derived from the piconet address using an
encoding function specified by the standard [32]. BlueEar
employs the brute force algorithm proposed in [33] to extract
piconet address from the synchronization word, and then
filters out the packets whose piconet address mismatches
the target piconet address specified by the BlueEar user.

335



Basic Hop 
Selection

Basic 
Channel 

Acquisition

Su
b

ch
an

n
el

 M
ap

Adaptive Hop Selection

..
.

1: good

2:  bad

78: good

Subchannel i

Yes 

No

Pc
o

n
et

ad
d

re
ss

 a
n

d
 c

lo
ck

Jam lossy 
subchannels

Interference 
measurement

and packet 
statistics

Scout

Packet 
statistics

Update 
subchannel 

map

Pa
ck

et
 

p
re

am
b

le
s

SnooperSniff 
on i

Sniff on re-
mapped good 

subchannel

Remap Function Adapted 
Channel 

Acquisition

Interference 
Avoidance

is i good?

Packet 
preambles 

and receiving 
times

Target piconet address

Traffic Filter

Figure 1: The dual-radio architecture of BlueEar. Com-

ponents in the gray area comprise a standard-compliant

hop selection kernel.

(ii) Basic channel acquisition. To acquire the basic channel
of the target piconet, the scout listens on an arbitrary sub-
channel to monitor the target’s packet transmissions. After
extracting piconet address from packet preamble, BlueEar
derives the entire basic hopping sequence, and then reverses
the piconet clock using an interference resilient, probabilistic
clock matching algorithm. Specifically, the receiving times
of captured packets are compared with the basic hopping
sequence at different hopping phases, until a correct phase
is found. The acquired piconet address and clock are then
fed to a standard-compliant basic hop selection kernel to
compute the basic channel.

(iii) Adapted channel acquisition. To acquire the adapted
channel, BlueEar needs to predict how the target reacts in
dynamic spectrum context. To this end, the scout hops
over all subchannels on the acquired basic channel to sur-
vey interference conditions, and monitors packet transmis-
sions to infer the target’s subchannel utilization. By fusing
these measurements, BlueEar trains a subchannel classifier
at run-time, which accurately derives the target’s subchan-
nel map despite vendor-dependent adaptive hopping behav-
ior and the possible disparity between the spectrum contexts
of the scout and the target. The subchannel map is then fed
to a standard-compliant adaptive hop selection kernel for
computing the adapted channel.

(iv) Interference avoidance. The snooper hops following the
target on the adapted channel to sniff traffic. BlueEar han-
dles complex interference in the crowded 2.4 GHz band using
a selective jamming algorithm. Specifically, a loss detector
is employed to monitor the sniffing performance of all sub-
channels. When substantial packet corruptions are detected
on a subchannel i, the scout deliberately generates interfer-
ence on i while the target visits i during hopping. Because of
adaptive hopping, the target will be driven away from lossy
subchannels where BlueEar observes poor sniffing perfor-
mance. The objective is to manipulate the target’s hopping
to enforce implicit coordination.

2

1

0Su
b

ch
an

n
el

Piconet clock

Piconet clock

(a) Basic hopping sequence. (b) The observed hopping 
pattern based on three packets 

overheard on subchannel 2.

(c) The observed hopping 
pattern mismatches the basic 
hopping sequence at clock 32.

(d) The observed hopping pattern 
matches the basic hopping 

sequence at clock 34.

……

……

32  33  34  35  36  37

2

1

0Su
b

ch
an

n
el

Piconet clock
32  33  34  35  36  37… …

No. of hops since the first packet
32  33  34  35  36  37

2

1

0Su
b

ch
an

n
el

32  33  34  35  36  37

2

1

0Su
b

ch
an

n
el

……

Figure 2: An illustrative example of brute force clock

acquisition.

5. DESIGN OF BLUEEAR
In this section, we present the design of key BlueEar com-

ponents in detail.

5.1 Clock Acquisition
In the following, we first introduce an algorithm that can

reverse the piconet clock when the target hops in the basic
mode, and then augment it with probabilistic matching to
determine the piconet clock in the presence of interference.

5.1.1 Brute Force Clock Acquisition
Because the entire hopping sequence is known after the

piconet address is extracted from packet preamble [33], it is
possible to reverse the piconet clock through a simple brute
force search, which compares the observed hopping pattern
with the entire hopping sequence at all phases to search for
a match. Fig. 2 shows an illustrative example of brute force
clock acquisition. At the beginning, the scout listens on a
single subchannel to monitor the target’s packet transmis-
sions. As shown in the example given in Fig. 2, the scout lis-
tens on subchannel 2 where three packets are captured. The
receiving times of these packets compose a hopping pattern
that describes how the target visits the monitored subchan-
nel. As shown in Fig. 2(c) and (d), BlueEar then compares
the observed hopping pattern with the entire basic hopping
sequence at all phases. A match is found at clock 34.

Before capturing a sufficient number of packets, the ob-
served hopping pattern may happen to match the basic hop-
ping sequence at multiple clock values, resulting in clock
ambiguity. Because the basic hopping sequence is pseudo-
random, probability that an observed hopping pattern that
comprises n packets matches the basic hopping sequence at
an arbitrary clock can be computed as 1

79n
. Therefore, clock

ambiguity decreases exponentially fast as the number of cap-
tured packets increases. As a result, the target piconet clock
can be determined in a short time period, which we will eval-
uate in detail in Section 7.2.

336



5.1.2 Probabilistic Clock Matching
In the crowded 2.4 GHz band, Bluetooth devices rarely

hop in the basic mode because of the impacts of interfer-
ence from coexisting wireless devices [14] [22] [34] [19]. To
adapt spectrum use, Bluetooth modifies the basic channel by
remapping bad subchannels subjected to interference with
pseudo-randomly selected good subchannels. Since the adapted
channel may differ from the basic channel in various phases,
the hopping pattern observed by the scout may mismatch
the basic hopping sequence even at the correct clock. Fig.
3 illustrates the impact of subchannel remapping using the
same example shown in Fig. 2. As illustrated in the figure,
brute force search may fail to find a perfect match due to
the packet transmitted on the remapped subchannel.

To acquire the piconet clock in the presence of interfer-
ence, BlueEar leverages the following key observation. When
comparing the observed hopping pattern with the basic hop-
ping sequence at the correct clock, the ratio of mismatches
should equal the ratio of remapped subchannels. As required
by FCC, Bluetooth Classic must use at least 20 subchannels
for frequency hopping [32]. Therefore, the ratio of remapped
subchannels is at most 59

79
. Hence, if the ratio of mismatches

at a clock c is significantly larger than 59
79

, then c is likely an
incorrect clock.

Driven by the above observation, BlueEar employs a prob-
abilistic clock matching algorithm for clock acquisition. In-
stead of seeking a perfectly matched clock, BlueEar deter-
mines the correct clock by eliminating incorrect clocks based
on the number of mismatches. When a new packet is cap-
tured, BlueEar updates the mismatch ratios for remaining
clock candidates. A clock is identified as incorrect if the
95% confidence interval of its mismatch ratio exceeds 59

79
.

Specifically, let dc be the number of mismatches when com-
paring the observed hopping pattern with the basic hopping
sequence at clock c, and n be the total number of overheard
packets. If c is the correct clock, the ratio of mismatches
µ = dc

n
should be close to the ratio of unused subchan-

nels. Based on the central limit theory, the distribution of√
n( dc

n
−µ) should approach normality when n is reasonably

large. The 95% confidence interval of µ can be estimated as
dc
n
± 2 σ√

n
, where σ2 is the variance. Therefore, clock c is

determined as incorrect if

dc
n
− 2

σ√
n
≥ 59

79
.

5.2 Subchannel Classification
The adaptive hopping of Bluetooth is guided by a sub-

channel map that classifies subchannels as good and bad
based on dynamic interference conditions. To acquire the
adapted channel, BlueEar employs a subchannel classifier,
which infers how the target classifies subchannels. The sub-
channel classifier must meet the following requirements.

• Accuracy. When a subchannel is misclassified, the
snooper may hop to a wrong subchannel different from
the one used by the target. Poor subchannel classifica-
tion accuracy may result in substantial packet misses.

• Responsiveness. In dynamic spectrum contexts, the
subchannel classifier must be responsive to the change
of interference conditions.

2

1

0Su
b

ch
an

n
el

Piconet clock

No. of hops since the first packet

(a) Basic hopping sequence. (b) Adapted hopping sequence 
when subchannel 0 is bad.

(c) Adapted hopping pattern 
observed based on four packets 

overheard on subchannel 2.

(d) The observed adapted hopping 
pattern mismatches basic hopping 
sequence even at the correct clock.

……

……

32  33  34  35  36  37

2

1

0Su
b

ch
an

n
el

Piconet clock
32  33  34  35  36  37… …

No. of hops since the first packet
32  33  34  35  36  37

2

1

0Su
b

ch
an

n
el

32  33  34  35  36  37

2

1

0Su
b

ch
an

n
el

……

remap

Remapped 
packet

Figure 3: The effect of subchannel remapping on brute

force search based on the same example shown in Fig. 2.

In the following, we present two complementary subchan-
nel classification algorithms, and discuss their advantages
and limitations in achieving the above goals. We then dis-
cuss how BlueEar integrates the two algorithms for subchan-
nel classification.

5.2.1 Packet-based Classifier
Design. As Bluetooth only transmits on good subchannels,
it is possible to infer the status of a subchannel based on
its packet rate, which indicates how frequently the target
transmits on a subchannel. To measure packet rates, the
scout hops over all 79 subchannels on the acquired basic
channel to monitor the target’s packet transmissions. For
each subchannel i, BlueEar computes its packet rate as ri =
pi
vi

, where pi is the number of packets received on i, and vi is

the number of times the scout visits i. When a subchannel
is classified as bad by the target, the packet rate measured
by the scout will be substantially lower than that of good
subchannels.

A key challenge to achieve accurate packet-based classifi-
cation is that packet rates differ significantly across differ-
ent applications (e.g., data transfer, audio, and keystroking,
etc.), and may vary with time depending on the traffic dy-
namics in the target piconet. To address this challenge, we
leverage the fact that, as required by FCC, Bluetooth Classic
uses at least 20 subchannels for frequency hopping [32]. As a
result, the 20 subchannels that have the highest packet rates
can be used as a reference to estimate the current packet
rate of the target piconet. Driven by this observation, the
packet-based classifier identifies bad subchannels using the
following algorithm.

• Step 1: Initially, the 20 subchannels that have the highest
packet rates are classified as good. LetRg = {ri1 , ..., ri20}
be the set of their packet rates.

• Step 2: In remaining unclassified subchannels, the clas-
sifier searches for the one with the highest packet rate.
Denote this subchannel as i, and its packet rate as ri.

337



 0
 0.1
 0.2
 0.3
 0.4
 0.5

P
ac

ke
t R

at
e

 0.001

 0.01

 0.1

 1

 0  5  10 15 20 25 30 35 40 45 50 55 60 65 70 75

P
ro

b.
 S

co
re

Subchannel Index

Threshold

(a) Data.

 0
 0.1
 0.2
 0.3
 0.4
 0.5

P
ac

ke
t R

at
e

 0.001

 0.01

 0.1

 1

 0  5  10 15 20 25 30 35 40 45 50 55 60 65 70 75

P
ro

b.
 S

co
re

Subchannel Index

Threshold

(b) Audio.

Figure 4: Running examples of packet-based subchannel classification for data and voice traffic under in different

spectrum contexts. The packet-based classifier calculates a probability score based on Eq. (1) to determine subchannel

status. A subchannel is classified as bad if the probability score is below the pre-defined threshold.

• Step 3: The packet-based classifier determines whether
subchannel i is bad by checking if ri is an outlier of Rg.
If ri is an outlier, i and all remaining subchannels of even
lower packet rates are classified as bad. Otherwise, i is
classified as good and its packet rate ri is inserted to Rg.
The algorithm then goes back to step 2 until a bad sub-
channel is identified.

We determine if ri = pi
ni

is an outlier of Rg as follows. Let

rg be the average packet rate of Rg. Assuming subchannel
i is good, probability that the target transmits less than pi
packets after vi visits can be computed as,

ρi =

pi∑
n=0

(
vi
n

)
(1− rg)vi−nrng (1)

We identify outliers under a given confidence level, denoted
as θ. Subchannel i is classified as bad if ρi ≤ 1− θ.

Fig. 4 gives two examples of packet-based subchannel
classification for data and audio traffics in different spec-
trum contexts. The upper figure shows the packet rates
measured on 79 subchannels. Low packet rates are observed
on bad subchannels subjected to interference. The bottom
figure shows the probability scores ρi for each subchannel i
calculated using Eq. (1). As shown in the figure, the packet-
based classifier reliably identifies bad subchannels despite
the significant variation of packet rates across different ap-
plications.

Discussion. By classifying subchannels based on packet
rates, packet-based classifier offers two advantages: (i) it
works efficiently across different Bluetooth devices despite
vendor-dependent subchannel classification methods, (ii) the
classification is not affected by the disparity between the
spectrum contexts of the target and BlueEar. However,
packet-based classifier is less responsive in dynamic spec-
trum context because a subchannel cannot be classified as
good or bad before overhearing a sufficient number of pack-
ets. As a result, packet-based classifier may perform poorly
when subchannel status changes fast with time-varying in-
terference.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-100 -80 -60 -40 -20

P
ro

b.
 D

en
si

ty

Signal Power (dBm)

(a) Clean subchannel.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-100 -80 -60 -40 -20

P
ro

b.
 D

en
si

ty

Signal Power (dBm)

(b) Dirty subchannel.

Figure 5: Probability densities of interference power

measured on clean and dirty subchannels.

5.2.2 Spectrum Sensing-based Classifier
Design. Since Bluetooth piconet classifies subchannel based
on interference conditions, subchannel i is likely bad if strong
interference is measured on i. Driven by this observation,
spectrum sensing-based classifier infers subchannel status
based on interference measurements. When hopping on the
basic channel, the scout measures interference power on each
subchannel. The interference condition on a given subchan-
nel is characterized using the probability density of inter-
ference power. Fig. 5 illustrates two examples measured by
the scout on clean and dirty subchannels. On both subchan-
nels, the environment noise floor is found at -95 dBm. An
interference source whose signal power ranges from -45 dBm
and -40 dBm can be observed in Fig. 5(b). The interference
source is active in about 15% of time.

Based on interference measurement, the spectrum sensing
based classifier employs an SVM to determine subchannel
status. The SVM takes as input a feature vector obtained
by discretizing the probability density of interference power
based on Xi = {x−100,i, x−99,i..., x−20,i}, where xs,i is the
probability of observing an interfering signal power of s dBm
on subchannel i. Xi characterizes interference condition be-
tween -100 dBm and -20 dBm, which is sufficient to capture
the activities of all interfering sources in practice.

Discussion. Although spectrum sensing-based classifier is
responsive to time-varying interference conditions, achiev-

338



Interference Measurement Packet Rate Measurement

…Signal 
features

Subchannel 
status Good Good Bad…

SVM

train

Tr
ai

n
in

g 
C

as
es

Time

P
kt

ra
te

Subchannel index

Packet-based Classifier

Figure 6: Time-domain illustration of run-time train-

ing of the spectrum sensing-based classifier.

Figure 7: A prototype of BlueEar that consists of

two Ubertooths [6].

ing satisfactory accuracy is difficult because (i) depending
on the location of interference source, the spectrum mea-
sured by the scout may differ from the one observed by the
target; (ii) the subchannel classification method adopted by
the target is vendor-dependent and may differ across dif-
ferent devices. To address these limitations, the spectrum
sensing-based classifier must be trained at run-time.

5.2.3 Hybrid Classifier
For accurate and responsive classification of subchannel

status, BlueEar employs a hybrid classifier that combines
the complementary packet- and spectrum sensing-based clas-
sifiers. At run-time, the hybrid classifier uses packet-based
classification results to train a spectrum sensing-based clas-
sifier, which learns the vendor-dependent subchannel classi-
fication method of the target. After training, BlueEar fuses
the outputs of packet- and spectrum sensing-based classifiers
to infer subchannel status.

To train the spectrum sensing-based classifier, BlueEar la-
bels interference conditions measured by the scout using the
outputs of packet-based classification. Note that packet-
based classifier infers subchannel status based on packet
rates derived from the history of overheard packets, there-
fore its result may lag behind the true subchannel status.
To compensate this delay, BlueEar composes training cases
by labeling Xf using packet-based classification results ob-
tained at a later time point. Fig. 6 illustrates this training
procedure in time-domain.

For subchannel classification, the hybrid classifier fuses
the outputs of packet- and spectrum sensing-based classifier
based on the responsiveness and confidence of results. The
soft-output of SVM is utilized to characterize the confidence
of classification. The soft-output of SVM is a log-likelihood
ratio computed as λi = log ρi

1−ρi
, where ρi is the probability

that i is good, and |λi| indicates confidence. Because spec-
trum sensing-based classifier is more responsive to dynamic
spectrum context, the hybrid classifier adopts the output of
SVM as the final classification result if its confidence |λi| is
higher than a predefined threshold. Otherwise, the output
of packet-based classifier is adopted.

5.3 Selective Jamming
In the crowded 2.4 GHz frequency band, BlueEar is sub-

jected to the interference of coexisting wireless devices, es-
pecially the prevalent 802.11 based WLANs. Unlike autho-
rized Bluetooth devices that can handle such interference
by coordinating their hopping, designed as a passive packet

sniffer, BlueEar cannot coordinate with the target, which
may result in poor sniffing performance. BlueEar mitigates
the impacts of such interference using a selective jamming
algorithm. In the following, we present the algorithm design
in detail, and then discuss the impact of jamming on 802.11
devices.

When the interference causes substantial packet corrup-
tions on a subchannel i, the scout deliberately generates in-
terference on i while the target visits i. Because of adaptive
hopping, the target will be driven away from subchannels
i, resulting in implicit coordination. To this end, BlueEar
employs a loss detector to identify subchannels subjected to
hidden interference. Whenever the scout overhears a packet,
it checks packet integrity using CRC, and then sends the
result to the loss detector. For each subchannel, the loss
detector employs a moving window to compute the ratio
of corrupted packets. The scout is commanded to jam a
subchannel if the packet corruption ratio is higher than a
predefined threshold. To effectively drive the target, a class
one Bluetooth radio capable of high power transmission is
employed to implement the scout.

Despite deliberately generating interference in the 2.4 GHz
band, the impacts of selective jamming on 802.11 devices
is very limited because of two reasons. First, BlueEar only
jams a selected subchannel when the target is staying on that
subchannel during hopping. Second, 802.11 is robust against
narrow-band, short-period interference thanks to the design
of OFDM and channel coding [8]. Moreover, previous study
has shown that wireless devices are sensitive to strategically
engineered interference patterns generated using the same
communication technology [15]. By incorporating such pat-
terns to generate low-power, narrow-band interference, the
impact of selective jamming on 802.11 can be further re-
duced.

6. IMPLEMENTATION
In this section, we present the implementation of BlueEar

in detail. As shown in Fig. 7, we employ two Ubertooths [6]
to implement the scout and the snooper, and then interface
them to a controller running on a Linux laptop. Compu-
tation intensive tasks like clock acquisition and subchannel
classification are implemented on the laptop. Time-sensitive
components like basic and adaptive hop selection are imple-
mented by extending the firmware of Ubertooth. In addi-
tion, we identify critical issues in Ubertooth firmware that
severely degrade its performance during frequency hopping,

339



and present novel solutions to address these flaws. We note
that although our current prototype is built based on Uber-
tooth, the design of BlueEar is platform-independent and
can be easily ported to other systems.

6.1 Ubertooth-End Implementation
Ubertooth is an open source 2.4 GHz wireless develop-

ment board that costs around $80 per unit [6]. Each Uber-
tooth is equipped with an LPC17xx microcontroller, and
a low-power Bluetooth-compliant CC2400 transceiver con-
nected to a 4-inch 2.2 dBi antenna. Ubertooth is capable of
transmitting at 22 dBm, which assures the effectiveness of
selective jamming.

The original firmware of Ubertooth is implemented in 823
lines of C code, which implements DMA management, ba-
sic hop selection, and carrier sense, etc. Data in DMA
buffer is framed into USB packets and forwarded to the host.
However, the original firmware lacks support for adaptive
hop selection and run-time clock synchronization. In ad-
dition, we find that the firmware is poorly optimized for
real-time frequency hopping. In particular, because of re-
source contention among multiple tasks, subchannel switch-
ing may be improperly delayed (e.g., by USB packet stream-
ing, which typically takes around 50µs according to our mea-
surements). Such delay will break the hop synchronization
between BlueEar and the target.

We extend the firmware of Ubertooth using 400 lines of C
code, which implement the following functions.

(i) Run-time clock synchronization. To hop following the
basic and the adapted channel of the target, the scout and
the snooper must synchronize their native clocks with the
target’s piconet clock, i.e. their clocks must have the same
value and tick at the same time. Run-time clock synchro-
nization is imperative because the clocks of the scout, the
snooper, and the target may have clock skews [18], which
make them run at different rates, accumulating a drift that
breaks hop synchronization. The extended firmware accom-
plishes clock synchronization as follows. After clock acqui-
sition, the firmware receives a piconet clock value from the
clock acquisition component. The clock value is used as the
initial value of a native clock, which is obtained by program-
ming a 10MHz timer provided by LPC17xx into a 27-bit
counter that ticks every hop. To assure that the native clock
and the piconet clock tick at the same time, the extended
firmware leverages the fact that Bluetooth packets are al-
ways transmitted immediately after clock ticks. Therefore,
the receiving times of overheard packets can be utilized as a
clock reference to correct clock drift. To avoid packet miss
caused by remaining clock drift, the native clocks of the
scout and the snooper are programmed to tick 1 µs earlier
than the target.

(ii) Adaptive hop selection. The firmware of the snooper im-
plements a standard-compliant adaptive hop selection ker-
nel. The kernel takes three inputs, including the inferred
subchannel map, the piconet address obtained from the con-
troller, and the value of the native clock. The inferred sub-
channel map is updated every second.

(iii) Task scheduler. To assure real-time hopping perfor-
mance, the extended firmware schedules tasks based on their
time sensitivities. Hop selection and subchannel switching
are given the highest priority to assure the right hop syn-
chronization. USB packet streaming and carrier sense are

given the second and lowest priority, respectively. Tasks are
executed in the interval between subchannel switching in the
order of their priorities.

6.2 Controller implementation
The controller implements compute intensive tasks, in-

cluding packet decoding, clock acquisition, subchannel clas-
sification, and jamming subchannel selection. In addition,
it interacts with the scout and the snooper via high-speed
USB. These tasks are implemented as multiple processes,
which share a 3 KB of memory for coordination and param-
eter exchange. For packet-based subchannel classification,
the controller implements the algorithm described in Sec-
tion 5.2.1 in 53 lines of C code. A confidence level of 99%
is used to assure accurate identification of bad subchannels.
The spectrum sensing-based classifier is implemented based
on SVMlight , which is an open-source computation-efficient
SVM library [21]. The spectrum sensing-based classifier
takes about 51.2 KB of memory at run-time. To compen-
sate the delay of packet-based classification when training
the SVM (as explained in Section 5.2.2 and Fig. 6), the
controller uses packet-based classification results obtained in
t+ 4s to label the signal features measured at t. This choice
is motivated by our empirical measurements, which show
that most Bluetooth devices update subchannel map every
4s. The hybrid classifier chooses the result of SVM as out-
put if the confidence of SVM is higher than 90%. Otherwise
the output of packet-based classifier is adopted. The con-
troller is responsible for decoding the raw bit stream received
from Ubertooth. Packet integrity is examined by checking
the received CRC. A subchannel is jammed if the ratio of
corrupted packets is higher than 10%.

7. BLUEEAR PERFORMANCE
In this section, we present a thorough evaluation of BlueEar

performance. In the following, we first introduce our experi-
mental methodology, and then discuss experiment results in
detail.

7.1 Experimental Methodology
We study BlueEar performance when sniffing data trans-

fer and audio streaming, which are representative Bluetooth
traffics that have distinct packet rates. Data traffic is gener-
ated by transferring data files between two laptops equipped
with Broadcom dongles. Audio traffic is generated by play-
ing an audio file on a laptop equipped with CSR dongle,
and a Samsung Bluetooth headset is set as the audio sink.
We conduct experiments in an office building under the in-
terference of a large-scale 802.11 based WLAN, as well as
in various controlled settings to benchmark BlueEar perfor-
mance under specific interference patterns.

We evaluate the synchronization delay, the subchannel
classification accuracy, and the packet capture rate of BlueEar.
The synchronization delay is measured as the time needed to
determine the correct piconet clock. To measure subchannel
classification accuracy and packet capture rate, we log the
groundtruth subchannel map and packet rates at the target
master using a script written based on hcitool. The host of
BlueEar is connected with the target master via an Ethernet
link. The instantaneous readings of groundtruth subchan-
nel map and packet rates are transferred to the BlueEar host
using UDP.

We compare BlueEar with a set of baselines. First, we

340



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

P
ro

b.
 o

f a
cq

ui
rin

g
 a

 u
ni

qu
e 

cl
k

Listening time (sec)

Data
Audio

(a) No bad subchannels.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100
Listening time (sec)

Data
Audio

(b) 25% bad subchannels.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100
Listening time (sec)

Data
Audio

(c) 50% bad subchannels.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100
Listening time (sec)

Data
Audio

(d) 75% bad subchannels.

Figure 8: Clock acquisition delay when sniffing data and audio traffics in different spectrum contexts (characterized

by the percentage of bad subchannels at the target piconet).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

Hybrid

Pkt
SS

P
er

ce
nt

ag
e

FP

Hybrid

Pkt
SS

FN

(a) Data.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

Hybrid

Pkt
SS

P
er

ce
nt

ag
e

FP

Hybrid

Pkt
SS

FN

(b) Audio.

Figure 9: Subchannel classification accuracy in fast varying spec-

trum context.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.7  0.8  0.9  1

C
D

F

Pkt capture rate

(a) Data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.7  0.8  0.9  1

C
D

F

Pkt capture rate

Hybrid
Pkt
SS

(b) Audio.

Figure 10: Packet capture rate in fast varying

spectrum context.

compare the hybrid subchannel classifier proposed in Sec-
tion 5.2.3 with pure packet-, and spectrum sensing-based
classifiers (abbreviated as P̀kt’ and S̀S’ in figures). The
SVM of pure spectrum sensing-based classifier is trained of-
fline in a controlled setting consisting of an 802.11 access
point (AP) and a Broadcom piconet. During training, we
tune the power and temporal pattern of 802.11 transmissions
to introduce different interference conditions, which enables
extensive profiling of the adaptive hopping behavior of the
Broadcom device. We then use the trained classifier to pre-
dict the subchannel maps in data and audio tests, where
the piconets are formed using different Bluetooth devices.
Second, to evaluate the gain of selective jamming, we com-
pare BlueEar with a baseline where the selective jamming
is disabled. Third, we compare the packet capture rate of
BlueEar with that of an existing Ubertooth-based sniffer [6],
which operates in the basic hopping mode, and is oblivious
to the adaptive hopping behavior and the impacts of inter-
ference.

7.2 Synchronization Delay
We first evaluate the delay incurred when synchronizing

BlueEar with the target piconet. The dominant component
of this delay is introduced by clock acquisition, during which
the scout listens on a single subchannel until it captures
enough packets to reverse the piconet clock. We benchmark
clock acquisition delay in different spectrum contexts where
the targets exhibits diverse hopping behaviors. Our exper-
iments are conducted in a controlled setting where three
802.11 access points (APs) are deployed around the target.
Each AP occupies one of the three non-overlapping 20 MHz
channels. When all APs are active, they create a crowded
spectrum where about 75% subchannels of the target piconet
are bad.

Fig. 8 shows the probability of successfully determining
the piconet clock as the listening time of the scout increases.
We observe that clock acquisition delay when sniffing audio
traffic is higher than that when sniffing data traffic. This
is mainly because of the lower packet rate of audio traffic.
Interestingly, the delay substantially reduces when the spec-
trum becomes more crowded. This is because, when more
subchannels are occupied by 802.11 APs, the target piconet
has to use fewer subchannels for packet transmissions, re-
sulting in an increased packet rate on the subchannel mon-
itored by the scout. Specifically, when 75% of subchannels
are occupied by 802.11 APs, the clock acquisition delay is
less than 10s in both data and audio tests. The result im-
plies that Bluetooth traffic sniffers can substantially reduce
its synchronization delay using deliberately planned inter-
ference.

7.3 Fast Varying Spectrum Context
We now evaluate BlueEar in dynamic spectrum contexts

where the subchannel map of the target is modified fre-
quently. The transmission of AP is turned on/off every a
couple of seconds to create a fast varying spectrum context,
which causes the target to modify its subchannel map every
update period.

Fig. 9 evaluates subchannel classification accuracy based
on false positive (FP) and false negative (FN) rates. As
expected, the packet-based classifier performs the worst be-
cause of its poor responsiveness. In comparison, the spec-
trum sensing-based classifier offers better performance when
sniffing data traffic, but fails to maintain its accuracy when
sniffing audio. This is because the spectrum sensing-based
classifier is trained offline against Broadcom devices, and it
fails to predict the adaptive hopping of the CSR devices used
in the audio test. We also observe that the hybrid classifier

341



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  60  120  180  240

P
kt

 c
ap

tu
re

 r
at

e

Time (sec)

(a) Selective jam disabled.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  60  120  180  240
Time (sec)

(b) Selective jam enabled.

Figure 11: The gain of selective jamming in the presence

of hidden interference.

performs best among the three classifiers. In particular, the
FP and FN rates are lower than 8% in both data and audio
tests. Fig. 10 further compares the packet capture rates
when BlueEar uses the three classifiers to predict adaptive
hopping. Similar with the results shown in Fig. 9, the hy-
brid classifier is able to maintain the best packet capture
rate, which is higher than 90% in both data and audio tests.

7.4 Hidden and Exposed Interference
We now evaluate the packet capture rate of BlueEar in the

presence of hidden and exposed interference. Fig. 11 evalu-
ates the gain of selective jamming in the presence of hidden
interference, where an RF signal does not interfere with the
target, but collide with captured packets at BlueEar. The
experiments are conducted in a controlled setting where an
802.11 device generates hidden interference starting from the
100-th second. When selective jamming is enabled, BlueEar
is able to maintain high packet capture rate, despite a short
period of performance drop before the target piconet reacts
to the generated interference. In comparison, when selec-
tive jamming is disabled, BlueEar suffers substantial perfor-
mance degradation, where the packet capture rate is reduced
to about 60% from higher than 95%.

We further evaluate BlueEar in the presence of exposed
interference, where an RF signal interferes the target, but
is too weak to be measurable at the scout. Exposed inter-
ference results in significant disparity between the spectrum
contexts at BlueEar and the target. We conduct experi-
ments in a controlled setting where an 802.11 device is de-
ployed to generate exposed interference. During our exper-
iment, the 802.11 device keeps active, and interferes with
20 of 79 subchannels of the target piconet. Fig. 12 com-
pares the subchannel classification accuracy of the hybrid,
the packet-based, and the spectrum sensing-based classifiers.
Different from what we observed in Fig. 9, the spectrum
sensing-based classifier suffers high FP in both tests. This
is because spectrum sensing-based classifier relies on the in-
terference measurements of the scout to identify bad sub-
channels, which works poorly when the interference signal
cannot be detected by the scout. In comparison, hybrid and
packet-based classifiers are able to maintain extremely low
FP and FN rates and high packet sniffing performance, as
shown in Fig. 13.

7.5 Crowded Spectrum
We then evaluate the misclassification rate of the hybrid

classifier in spectrum contexts with different levels of crowd-
edness. The FPs, FNs, and overall misclassification rates
are shown in Fig. 14. We observe that the hybrid classifier
maintains high accuracy despite the increasingly crowded
spectrum. In particular, when 50% of subchannels are bad,

the overall misclassification rate is below 8% in both data
and audio tests. Fig. 15 shows the packet capture rates
measured in the same experiment. As shown in the figure,
BlueEar captures more than 90% packets in both data and
audio tests.

7.6 Ambient Interference
We further evaluates the performance of BlueEar in an

office building under the ambient interference from a large-
scale 802.11 based WLAN. Fig. 16(a) shows the packet
capture rates measured at four randomly selected locations,
where BlueEar is deployed at 10m away from the target
piconet. In all of the four locations, the number of ac-
tive 802.11 APs is higher than 20 during our experiments.
We compare BlueEar with an existing Ubertooth-based snif-
fer [6] that hops following the basic channel of the target.
Because the basic hopping sniffer is oblivious to the adap-
tive hopping behavior, it suffers 50% to 25% packet misses.
In comparison, BlueEar is able to maintain a packet capture
rate higher than 95% at all of the four locations.

Fig. 16(b) evaluates the packet capture rate at site D
when BlueEar is deployed at different distances to the target.
The disparity in spectrum contexts is expected to increase
as BlueEar moves away from the target. However, thanks to
the high-performance subchannel classifier, BlueEar is able
to capture more than 85% packets even when it is 27m away
from the target.

8. IMPLICATIONS OF BLUEEAR
In this section, we discuss the privacy implications of

BlueEar in detail.

8.1 Implications on BLE privacy
In the following, we briefly introduce the hopping protocol

of BLE, highlight the essential differences with the hopping
protocol of Bluetooth Classic, and elaborate on the impacts
of BlueEar on BLE privacy breach.

The hopping protocol of BLE defines the physical channel,
which hops over 37 data subchannels in the open 2.4 GHz
spectrum starting from 2.402 to 2.48 GHz. All subchannels
are equally spaced with 2 MHz of bandwidth. The connec-
tion state of BLE can be characterized as a set of connection
events. At initialization of a connection event, the master
defines (i) connection interval, a multiple of 1.25ms ranging
from 7.5ms to 4.0s that defines the event lifetime; (ii) trans-
mission window size, a multiple of 1.25ms that defines the
size of transmit window, i.e. packet size; and (iii) hop in-
crement inc, a random value ranges from 5 to 16. The basic
channel hopping is characterized by K(c, inc), where K(.) is
the hop selection kernel, c is the index of current subchannel,
and inc which is the hop increment. At the first connection
event, the first subchannel is defined to be zero [32], and we
note that the basic channel sequence repeats itself whenever
subchannel zero is visited. On the other hand, BLE defines
adapted channel hop mode just as Bluetooth Classic. BLE
might modify the basic channel to adapt spectrum use in
the presence of ambient interference. The adaptive channel
is defined by a subchannel map, which classifies the data
subchannels into good and bad. If the basic kernel K(c, inc)
selects a bad subchannel, a remapping procedure is invoked
to calculate a remapped subchannel index. The master main-
tains the subchannel map and it notifies slave(s) about any
updates [32].

342



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

Hybrid

Pkt
SS

P
er

ce
nt

ag
e

FP

Hybrid

Pkt
SS

FN

(a) Data.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

Hybrid

Pkt
SS

P
er

ce
nt

ag
e

FP

Hybrid

Pkt
SS

FN

(b) Audio.

Figure 12: Subchannel classification accuracy under exposed in-

terference.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.7  0.8  0.9  1

C
D

F

Pkt capture rate

Hybrid
Pkt
SS

(a) Data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.7  0.8  0.9  1

C
D

F

Pkt capture rate

(b) Audio.

Figure 13: Packet capture rate under exposed in-

terference.

 0

 0.1

 0.2

 0.3

Overall

FP FN

P
er

ce
nt

ag
e

Data

Overall

FP FN

Audio

(a) No bad subchannels.

 0

 0.1

 0.2

 0.3

Overall

FP FN

P
er

ce
nt

ag
e

Data

Overall

FP FN

Audio

(b) 25% basd subchannels.

 0

 0.1

 0.2

 0.3

Overall

FP FN

P
er

ce
nt

ag
e

Data

Overall

FP FN

Audio

(c) 50% bad subchannels.

Figure 14: Subchannel classification accuracy in crowded spectrum (characterized by the percentage of bad subchan-

nels at the target piconet).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.7  0.8  0.9  1

C
D

F

Pkt capture rate

0%
20%
50%

(a) Data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.7  0.8  0.9  1

C
D

F

Pkt capture rate

(b) Audio.

Figure 15: Packet capture rates in crowded spectrum

(characterized by the perctange of bad subchannels at

the target piconet)

The hopping protocol of BLE is different from the hopping
protocol of Bluetooth Classic in the following ways. First,
basic channel sequence of BLE is characterized by a random
value of the hop increment inc. In contrast, basic chan-
nel sequence of Bluetooth Classic is characterized by the
piconet address. The second difference between BLE and
Bluetooth Classic, is hopping phase, which is not defined
in BLE hopping protocol. Unlike Bluetooth Classic basic
channel sequence, which repeats itself every about 23 hours,
BLE basic sequence repeats itself whenever subchannel zero
is visited. Due to power constraints, the hopping protocol of
BLE is much simpler than that of Bluetooth Classic, making
BLE basic sequence easier to compromise.

As BLE becomes pervasive, the privacy leakage of BLE
devices has been an increasing concern. Although BlueEar
is designed for Bluetooth Classic, it has significant impacts

on the privacy leakage of BLE devices and this calls for
research to further investigate and enhance the privacy of
BLE. In particular, the key components of BlueEar system,
including subchannel classification and selective jamming,
are independent of the hopping protocol. These techniques
can be directly ported to BLE as well as other adaptive
hopping systems without modifications. Unfortunately, the
clock acquisition component, the hop selection subsystem,
and the packet decoder of our prototype are specifically engi-
neered for Bluetooth classic, which make the current version
of BlueEar incompatible with BLE.

8.2 Impacts on privacy breach
Previous research has shown the possibilities of cracking

Bluetooth encryption and compromising user privacy [17]
[10] [24] [26] [25] [28] [9]. A prerequisite of these attacks is
to passively sniff Bluetooth traffic. Existing attacks [28] [9]
employ prohibitively expensive commodity sniffers, which
limits their widespread distribution. The BlueEar system
we demonstrated in this paper may unleash such attacks,
making them a real issue for off-the-shelf Bluetooth devices.

We conduct an experiment to further understand the im-
pacts of BlueEar on privacy leakage. In particular, we study
if the packet capture rate of BlueEar can result in successful
eavesdropping on speech conversation, which is known to be
challenging because audio streams are extremely sensitive
to packet loss. This experiment precedes as follows: (1) We
collect real traces of packet loss rates. Bluetooth piconet is
first established to stream speech. BlueEar is then deployed
to sniff the speech stream and we obtain a detailed packet
loss trace, which logs the locations of all packets missed by
BlueEar. (2) We write a computer script to simulate the

343



 0

 0.2

 0.4

 0.6

 0.8

 1

A B C D

P
kt

 c
ap

tu
re

 r
at

e

Site

BlueEar Basic

(a) Different locations in a building.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 6 9 12 15 18 21 24 27

P
kt

 c
ap

tu
re

 r
at

e

Distance (meters)

Data Audio

(b) Different distances to the target.
Figure 16: Packet capture rate under the ambient interference at: (a)

different locations in an office building under the interference of a large-

scale 802.11 based WLAN; (b) different distances to the target.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Packet capture rate

Countermeasure Standard

Figure 17: The packet capture rate of

BlueEar with and without the counter-

measure.

 0
 10
 20
 30
 40
 50
 60

 0  100  200  300

P
S

N
R

Time (sec)

(a) PSNR.

 1

 2

 3

 4

 5

 0  100  200  300

M
O

S

Time (sec)

(b) Mean opinion score.

Figure 18: Subchannel classification accuracy in fast

varying spectrum context.

 0
 10
 20
 30
 40
 50
 60

 0  100  200  300

P
S

N
R

Time (sec)

(a) PSNR.

 1

 2

 3

 4

 5

 0  100  200  300

M
O

S

Time (sec)

(b) Mean opinion score.

Figure 19: Audio quality when the target piconet im-

plements the countermeasure approach.

audio stream without encryption. (3) We then synthesize
the real packet loss trace with the simulated audio stream.
If a packet is found loss in the real trace, the equivalent
packet is dropped from the simulated audio stream. For
each dropped packet, the previous packet (in the simulated
audio stream) is replayed for loss concealment. (4) We use
the peak signal to noise ratio (PSNR) to quantify the quality
of the simulated audio stream, which should be equivalent
to an eavesdropped audio file by BlueEar. As shown in Fig.
18(a), the PSNR is calculated every 2 seconds time window.
(5) Finally, we map the PSNR values to mean opinion scores
(MOS), as shown in Fig. 18(b), using the method proposed
by [27] [16]. As in Fig. 18, MOS is categorized into five voice
qualities, including excellent, good, fair, poor, and bad. We
find that BlueEar can maintain a voice quality equal to or
higher than fair in 81% of time.

8.3 Practical countermeasure
To counteract sniffing systems like BlueEar, we discuss

a practical countermeasure, which can be implemented as
a user-space script on the Bluetooth master, and requires
no modifications to existing slaves. The key idea is to flip
the status of a set of randomly selected good subchannels,
thereby interfering the subchannel classifier, making it hard
for the sniffer to learn the adaptive hopping sequence. Specif-
ically, to comply with the FCC rule that requires Bluetooth
to use at least 20 subchannels for hopping, the countermea-
sure randomly selects n−20 good subchannels to flip, where
n is the total number of good subchannels. The subchan-
nel map is updated every 200ms using the user-space script,
which is composed using the interface provided by BlueZ
–the open source Bluetooth stack. To evaluate the perfor-

mance of the proposed countermeasure, we conduct the fol-
lowing experiment. The setup of this experiment is similar
to the setup of the previous experiment presented in section
8.2 except that the target piconet implements the counter-
measure approach.

Fig. 17 and 19 evaluate the effectiveness of the counter-
measure. As expected, the average PSNR is about 15 due
to high packet loss rate caused by the countermeasure, as
in Fig. 19(a). As a result, the lower PSNR rates degrade
the quality of the eavesdropped audio to poor in 95% of the
time, as shown in Fig. 19(b).

9. CONCLUSION
This paper presents BlueEar, the first Bluetooth packet

sniffer that only uses cheap, Bluetooth-compliant radios.
Bluetooth has a dual-radio architecture, where two radios
are coordinated by a suite of novel algorithms to eavesdrop
on an indiscoverable Bluetooth device, relieving the need
of expensive specialized radios adopted by commodity snif-
fers. Extensive experiments show that BlueEar can main-
tain a high packet capture rate higher than 90% in dynamic
settings. We discuss the privacy implications of BlueEar,
and propose a practical countermeasure that can reduce the
packet capture rate of the sniffer to 20%.

10. ACKNOWLEDGMENTS
This work was supported in part by U.S. National Sci-

ence Foundation under grant CNS1423221. We would like
to thank the anonymous reviewers and our shepherd, Jeremy
Gummeson, for their insightful feedback.

344



11. REFERENCES
[1] Android auto. https://www.android.com/auto/.

[2] Bluetooth technology website.
https://www.bluetooth.com/.

[3] Busting the bluetooth myth – getting raw access.
http://www.remote-exploit.org/content/busting
bluetooth myth.pdf.

[4] Carplay – apple. http://www.apple.com/ios/carplay/.

[5] Gnuradio. https://gnuradio.org/.

[6] Ubertooth. http://ubertooth.sourceforge.net/.

[7] Adafruit. Bluefruit le sniffer.
https://www.adafruit.com/products/2269.

[8] A. Cidon, K. Nagaraj, S. Katti, and P. Viswanath.
Flashback: Decoupled lightweight wireless control. In
Proceedings of the ACM SIGCOMM 2012 Conference
on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM
’12. ACM, 2012.

[9] A. K. Das, P. H. Pathak, C.-N. Chuah, and
P. Mohapatra. Uncovering privacy leakage in ble
network traffic of wearable fitness trackers. In
Proceedings of the 17th Internation Workshop on
Mobile Computing Systems and Applications,
HotMobile ’16. ACM, 2016.

[10] S. R. Fluhrer and C. S. Inc. Improved key recovery of
level 1 of the bluetooth encryption system. Cambridge
University Press, 2002.

[11] FTE. Frontline test equipments. http://www.fte.com/.

[12] FTE. Fte comprobe bpa 600.
http://www.fte.com/products/BPA600.aspx.

[13] FTE. Fte comprobe sodera.
http://www.fte.com/products/sodera.aspx.

[14] S. Gollakota, F. Adib, D. Katabi, and S. Seshan.
Clearing the rf smog: Making 802.11n robust to
cross-technology interference. In Proceedings of the
ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
pages 170–181, New York, NY, USA, 2011. ACM.

[15] R. Gummadi, D. Wetherall, B. Greenstein, and
S. Seshan. Understanding and mitigating the impact
of rf interference on 802.11 networks. In Proceedings of
the 2007 Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, SIGCOMM ’07. ACM, 2007.

[16] C. heng Ke, C. kuen Shieh, W. shyang Hwang, and
A. Ziviani. An evaluation framework for more realistic
simulations of mpeg video transmission. Journal of
INFORMATION SCIENCE AND ENGINEERING
24, 425-440 (2008), 2008.

[17] M. Hermelin and K. Nyberg. Correlation properties of
the bluetooth combiner generator. In Proceedings of
the Second International Conference on Information
Security and Cryptology, ICISC ’99. Springer-Verlag.

[18] J. Huang, W. Albazrqaoe, and G. Xing. Blueid: A
practical system for bluetooth device identification. In
INFOCOM, 2014 Proceedings IEEE, 2014.

[19] J. Huang, G. Xing, G. Zhou, and R. Zhou. Beyond
co-existence: Exploiting wifi white space for zigbee
performance assurance. In Network Protocols (ICNP),
2010 18th IEEE International Conference on, pages
305–314, Oct 2010.

[20] T. Instruments. Sniffer firmware of cc2540.

https://e2e.ti.com/support/wireless connectivity/f/
538/t/197748.

[21] T. Joachims. Making large-scale SVM learning
practical. In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vector
Learning, chapter 11, pages 169–184. MIT Press,
Cambridge, MA, 1999.

[22] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis.
Surviving wi-fi interference in low power zigbee
networks. In Proceedings of the 8th ACM Conference
on Embedded Networked Sensor Systems, pages
309–322. ACM, 2010.

[23] Logitech. Logitec advanced 2.4 ghz technology.
http://www.logitech.com/images/pdf/roem/Logitech
Adv 24 Ghz Whitepaper BPG2009.pdf.

[24] Y. Lu, W. Meier, and S. Vaudenay. The conditional
correlation attack: A practical attack on bluetooth
encryption. In Proceedings of the 25th Annual
International Conference on Advances in Cryptology,
CRYPTO’05. Springer-Verlag, 2005.

[25] Y. Lu and S. Vaudenay. Cryptanalysis of bluetooth
keystream generator two-level e0. In in Advances in
Cryptology-ASIACRYPT 2004, Lecture Notes in
Computer Science. Springer, 2004.

[26] Y. Lu and S. Vaudenay. Faster correlation attack on
bluetooth keystream generator e0. In Advances on
Cryptography - CRYPTO 2004, Lecture Notes in
Computer Science, 2004.

[27] A. N. Moldovan, I. Ghergulescu, and C. H. Muntean.
A novel methodology for mapping objective video
quality metrics to the subjective mos scale. In
Broadband Multimedia Systems and Broadcasting
(BMSB), 2014 IEEE International Symposium on,
pages 1–7, June 2014.

[28] X. Pan, Z. Ling, A. Pingley, W. Yu, N. Zhang, and
X. Fu. How privacy leaks from bluetooth mouse? In
Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12. ACM, 2012.

[29] E. Researches. Ettus research. https://www.ettus.com.

[30] M. Ryan. Bluetooth: With low energy comes low
security. In Proceedings of the 7th USENIX
Conference on Offensive Technologies, WOOT’13.
USENIX Association, 2013.

[31] Y. Shaked and A. Wool. Cracking the bluetooth pin.
In Proceedings of the 3rd International Conference on
Mobile Systems, Applications, and Services, MobiSys
’05. ACM, 2005.

[32] B. SIG. Bluetooth core specification v4.0.
https://www.bluetooth.org/.

[33] D. Spill and A. Bittau. Bluesniff: Eve meets alice and
bluetooth. In Proceedings of the First USENIX
Workshop on Offensive Technologies, WOOT ’07.
USENIX Association, 2007.

[34] Y. Yubo, Y. Panlong, L. Xiangyang, T. Yue, Z. Lan,
and Y. Lizhao. Zimo: Building cross-technology mimo
to harmonize zigbee smog with wifi flash without
intervention. In Proceedings of the 19th Annual
International Conference on Mobile Computing &#38;
Networking, MobiCom ’13, pages 465–476, New York,
NY, USA, 2013. ACM.

345

https://www.android.com/auto/
https://www.bluetooth.com/
http://www.remote-exploit.org/content/busting_bluetooth_myth.pdf
http://www.remote-exploit.org/content/busting_bluetooth_myth.pdf
http://www.apple.com/ios/carplay/
https://gnuradio.org/
http://ubertooth.sourceforge.net/
https://www.adafruit.com/products/2269
http://www.fte.com/
http://www.fte.com/products/BPA600.aspx
http://www.fte.com/products/sodera.aspx
https://e2e.ti.com/support/wireless_connectivity/f/538/t/197748
https://e2e.ti.com/support/wireless_connectivity/f/538/t/197748
http://www.logitech.com/images/pdf/roem/Logitech_Adv_24_Ghz_Whitepaper_BPG2009.pdf
http://www.logitech.com/images/pdf/roem/Logitech_Adv_24_Ghz_Whitepaper_BPG2009.pdf
https://www.ettus.com
https://www.bluetooth.org/

	Introduction
	Related Work
	Bluetooth Background
	BlueEar Overview
	Objectives and Challenges
	System Architecture

	Design of BlueEar
	Clock Acquisition
	Brute Force Clock Acquisition
	Probabilistic Clock Matching

	Subchannel Classification
	Packet-based Classifier
	Spectrum Sensing-based Classifier
	Hybrid Classifier

	Selective Jamming

	implementation
	Ubertooth-End Implementation
	Controller implementation

	BlueEar Performance
	Experimental Methodology
	Synchronization Delay
	Fast Varying Spectrum Context
	Hidden and Exposed Interference
	Crowded Spectrum
	Ambient Interference

	Implications of BlueEar
	Implications on BLE privacy
	Impacts on privacy breach
	Practical countermeasure

	Conclusion
	Acknowledgments
	References



