
High-level Synthesis for DSP Applications using Heterogeneous Functional Units
�

Zili Shao
�

Qingfeng Zhuge
�

Chun Xue
�

Bin Xiao
�

Edwin H.-M. Sha
�

�
Department of Computer Science

�
Department of Computing

University of Texas at Dallas Hong Kong Polytechnic University
Richardson, Texas 75083, USA Hung Hom, Kowloon, Hong Kong

Abstract— This paper addresses high level synthesis for real-
time digital signal processing (DSP) architectures using heteroge-
neous functional units (FUs). For such special purpose architec-
ture synthesis, an important problem is how to assign a proper
FU type to each operation of a DSP application and generate a
schedule in such a way that all requirements can be met and the
total cost can be minimized. In the paper, we propose a two-phase
approach to solve this problem. In the first phase, we propose
an algorithm to assign proper FU types to applications such that
the total cost can be minimized while the timing constraint is sat-
isfied. In the second phase, based on the assignments obtained
in the first phase, we propose a minimum resource scheduling al-
gorithm to generate a schedule and a feasible configuration that
uses as little resource as possible. The experimental results show
that our approach can generate high-performance assignments
and schedules with great reduction on total cost compared with
the previous work.

I. INTRODUCTION

Most previous work on the synthesis of special purpose ar-
chitectures for real-time DSP applications focuses on the archi-
tectures that only use homogeneous FUs (same type of opera-
tions will be processed by same type of FUs). With more and
more different types of FUs available, same type of operations
can be processed by heterogeneous FUs with different costs,
where the cost may relate to power, reliability,etc. Therefore,
an important problem arises: how to assign a proper FU type to
each operation of a DSP application and generate a schedule in
such a way that the requirements can be met and the total cost
can be minimized. We call this problem heterogeneous assign-
ment and scheduling problem.

A ILP (Integer Linear Programming) model that gives op-
timal solutions for the assignment problem considering het-
erogeneous functional units is proposed in [2]. However, the
exponential run time of the algorithm limits its applicability.
In [1], a heuristic approach is proposed to solve heterogeneous
assignment and scheduling problem, and it can can produce a
solution with one or two orders of magnitude less time com-
pared with the previous ILP model. This approach, however,
may not produce a good result in terms of the total cost, since
the resource configuration is fixed in the early phase. In the

�
This work is partially supported by TI University Program, NSF EIA-

0103709, Texas ARP 009741-0028-2001, NSF CCR-0309461, USA , and HK
POLYU A-PF86 and COMP 4-Z077, HK.

circuit design field, the problem of selecting an implementa-
tion of each circuit module from a cell library is studied in [3].
Basic circuit implementation problem is only a special case
of the heterogeneous assignment problem in which each node
must have the same execution time; therefore, their solutions
can not be directly applied. In [5], we prove heterogeneous
assignment problem is NP-complete and propose several algo-
rithms to obtain optimal (when given DFG (Data Flow Graph)
is path or tree) or near-optimal solution (for general problem).
However, the computation time of the algorithms for general
problem is related to the size of the tree extracted from a DFG.
So it takes longer time when the tree is larger. Therefore, we
design a more efficient algorithm that directly works on DFGs
in this paper.

We propose a two-phase approach to solve the problem. In
the first phase, we propose an algorithm to solve heterogeneous
assignment problem. In our algorithm, we first assign each
node with the minimal cost type and then iteratively change
the type of the node in the critical path such that the timing
constraint can be satisfied with the minimal cost increase. In
the second phase, based on the obtained assignment, a min-
imum resource scheduling algorithm is proposed to generate
a schedule and a configuration. We experiment with our as-
signment algorithms on a set of benchmarks. We compare our
algorithms with the greedy algorithm in [3] and the ILP model
in [2]. The experimental results show that our algorithm gives
a reduction of 23.6% on the system cost compared with the
greedy algorithm. Our algorithm gives a near-optimal solution
with much less time compared with the ILP model. While the
given DFGs become too big for the ILP algorithm to solve, our
algorithm can still efficiently give results.

The remainder of this paper is organized as follows: In Sec-
tion II, we give the basic definitions and concepts. The algo-
rithms for heterogeneous assignment problem are presented in
Section III. The minimum resource scheduling algorithm are
presented in Section IV. Experimental results and concluding
remarks are provided in Section V and Section VI respectively.

II. DEFINITIONS

In our work, Data-Flow Graph (DFG) is used to model a
DSP application. A DFG

�����
	���������
is a node-weighted di-

rected graph, where
	������������������ ���!����"#�

is the set of nodes,%$&	(')	
is the edge set that defines the precedence re-

lations among nodes in
	

, and
�������

represents the number of
delays for an edge

�
. A DFG may contain cycles to model

a DSP application with loops. The intra-iteration precedence
relation is represented by the edge without delay and the inter-
iteration precedence relation is represented by the edge with
delays. Given an edge,

� � ���	�
,
�
�����

means the data used
as inputs in node

�
are generated by node

� �
�����
iteration be-

fore. A static schedule of a cyclic DFG is a repeated pattern
of an execution of the corresponding loop. And a static sched-
ule must obey the precedence relations of the directed acyclic
graph (DAG) portion of a DFG that is obtained by removing all
edges with delays from the DFG. In this paper, the DAG part of
a DFG is considered when we do assignment and scheduling.

A special purpose architecture consists of different types of
FUs. Assume there are different FU types in a FU library,� � � � � � ��� ��� ���

. � �������
is used to represent the execution times

of each node
� ��� 	

for different FU types: � � � � �
= ��� �������!�

� ������� � � ����� � � �������
where � � ���!�

denotes the execution time of
� �

for type
� � . " ��� � �

is used to represent the execution costs of
each node

� �#� 	
for different FU types: " � � � �

= ��$ ������� � $ �%�����!���� ��� $ � �����&�
where $�� ����� denotes the execution cost of

� �
for

type
� � . An assignment for a DFG is to assign a FU type to

each node. Given an assignment of a DFG, we define the sys-
tem cost to be the summation of execution costs of all nodes
because it is easy to explain and useful. Please note that our
algorithms presented later will still work with straightforward
revisions to deal with any function that computes the total cost
such as ' � $ � �����

�
as long as the function satisfies “associativ-

ity” property.
We define heterogeneous assignment problem as follows:

Given different FU types:
� �

,
� �

,
� ���

,
� �

, a DFG� � �
	��� ��� �
where

	
=
��� � � ����� � ��� � � " �

, � ��� � � �
�(� �)����� � � �%�����!����� ��� � � �������

and " ��� � �
= ��$ ������� � $ ������� � �������

$ � �������
for each node

� �*� 	
, and a timing constraint + , find

an assignment for
�

such that the system cost is minimized
within + .

III. THE HETEROGENEOUS ASSIGNMENT ALGORITHM

The heterogeneous assignment problem is NP-complete [5].
In this section, we propose a heuristic algorithms, HAA (Het-
erogeneous Assignment Algorithm), to solve this problem.
The basic idea is first to assign each node with the best cost
type and then iteratively change the type of the node in the crit-
ical path such that the timing constraint can be satisfied with
the minimal cost increase.

In Algorithm HAA, we first assign the best cost type to each
node and mark the type to denote that this type has been as-
signed. We then find a critical path, CP, based on the current
assigned types for DFG G, where a critical path is the path
that has the maximum execution time among all possible paths.
Next, if the execution time of the critical path is greater than
TC, the given timing constraint, we reduce it by selecting a
node from the critical path and changing its type. The node is
selected from the critical path, since only the nodes in the crit-
ical path can influence the longest execution time of a DFG.
For all other nodes that are not in the critical path, we want to

keep their current types since they have been assigned the best
types initially.

We select the node in the critical path base on a ratio. Ra-
tio is calculated for each node and its each unmarked type as
follows:

,.- � �!/1032�4 $&5 � -76 ��� " / 6 �98 , � � � $ ��� � �;:<�

Given node
�=�

in the critical path and its unmarked type > , Re-
ducedTime and IncreasedCost are the corresponding reducing
time and the increasing cost if

�=�
is changed from its current

assigned type to type > . This ratio is used to represent the av-
erage increasing cost per reducing time unit. Since we want to
reduce the execution time with the minimal cost increase, we
pick up the node with the minimal ratio among all nodes with
all possible unmarked types in the critical path. We keep the
record of the node and its type that has the minimal ratio during
the processing. After the node and the type have been found,
we change the node to this type and mark this type as assigned.
The procedure is repeated until the timing constraint is satis-
fied or we can not reduce the execution time of the critical path
any more.

Given a DFG
�

, let ? ? and ? 	 ? be the number of edges
and the number of nodes, respectively. It takes @ � ? ? � to
find a critical path for a given DFG using the clock period
computation algorithm in [4]. In our algorithm, in each iter-
ation, it takes at most @ � ? 	 ? � �

to calculate ratios, select
a node from the critical path and change its type, where is
the number of FU types. And the algorithm iterates at most
? 	 ? � times, since each type of a node is only assigned
one time. Therefore, the time complexity of our algorithm is
@ � ? 	 ? � � � ? ?�AB? 	 ? � �9�

. Considering is a constant,
our algorithm takes @ � ? 	 ? � ? ?(AB? 	 ?

� �
.

IV. THE MINIMUM RESOURCE SCHEDULING

In this section, we propose minimum resource scheduling al-
gorithms to generate a schedule and a configuration. Algorithm
Lower Bound RC is used to produce an initial configuration
with low bound resource. And Algorithm Min RC Scheduling
is used to refine the initial configuration and generate a sched-
ule to satisfy the timing constraint.

In Algorithm Lower Bound RC, the total number of FUs for
each FU type in each control step is counted in the ASAP and
ALAP schedule, respectively. Then the lower bound for each
FU type is obtained by the maximum value that is selected
from the average resource needed in each time period. Using
the lower bound of each FU as an initial configuration, Algo-
rithm Min RC Scheduling generates a schedule that satisfies
the timing constraint and get the finial configuration. In the
algorithm, we first compute ALAP(

�
) for each node

�
, where

ALAP(
�
) is the schedule step of

�
in the ALAP schedule. Then

we use a revised list scheduling to perform scheduling. In each
scheduling step, we first schedule all nodes that have reached
to the deadline with additional resource if necessary and then
schedule all other nodes as many as possible without increas-
ing resource. Due to limited space, the detailed algorithms are
omitted.

V. EXPERIMENTS

In this section, we experiment with our algorithms on a set
of benchmarks including 4-stage lattice filter, 8-stage lattice
filter, voltera filter, differential equation solver, elliptic filter
and RLS-laguerre lattice filter. Three different PE types are
used in the system. The execution costs and times are ran-
domly assigned. For each benchmark, the first time constraint
we use is the minimum execution time. We compare our HAA
algorithm with the greedy algorithm in [3] and the ILP model
in [2]. The experiments are performed on a Dell PC with a P4
2.1 G processor and 512 MB memory running Red Hat Linux
7.3. All experiments are finished in less than 1 second.

TC GHD[3] ILP[2] HAA
cost cost cost %

4-stage Lattice Filter
31 286 191 193 32.5%
35 210 159 162 22.9%
40 201 149 151 24.9%
45 192 140 145 24.5%
50 189 133 133 29.6%

8-stage Lattice Filter
55 490 325 325 33.7%
60 369 291 296 19.8%
65 350 273 296 15.4%
70 340 252 254 25.3%
75 329 237 241 26.7%

Voltera Filter
37 324 243 245 24.4%
40 324 214 219 32.4%
45 233 191 211 9.4%
50 219 175 177 19.2%
55 211 155 166 21.3%

Differential Equation Solver
21 132 111 111 15.9%
25 128 91 107 16.4%
30 91 63 76 16.5%
35 74 54 60 18.9%
40 74 45 45 39.2%

RLS-laguerre Lattice Filter
23 204 155 156 23.5%
25 188 139 146 22.3%
30 156 117 120 23.1%
35 137 104 104 24.1%
40 112 98 100 10.7%

Elliptic Filter
57 399 318 320 19.8%
60 395 279 297 24.8%
65 371 247 249 32.9%
70 328 231 231 29.6%
75 296 215 215 27.4%

TABLE I
COMPARISON OF THE SYSTEM COSTS FOR VARIOUS BENCHMARKS WHEN

THE TIMING CONSTRAINT VARIES.

The experimental results are shown in Table I. In the table,
Column ”TC” presents the given timing constraint. The system
costs are obtained from different algorithms: Algorithm GHD
(Column “GHD”) is the greedy algorithm from [3]; Algorithm
ILP (Column “ILP”) is the ILP model from [2]; and Algorithm
HAA (Column ”HAA”) is our assignment algorithm. Columns
“%” under “HAA” present the percentage of reduction on sys-
tem cost compared to Algorithm GHD. The experimental re-
sults show that our HAA algorithm obtains the near-optimal
solution compared with the optimal results obtained by the ILP

model. Compared to the greedy algorithm in [3], our algo-
rithm can greatly reduce system cost and achieves an average
improvement of 23.6%.

Benchmark Node TC ILP HAA
Num cost time (s) cost time (s)

4-Lat-IIR 78 45 482 2 489 0
8-Lat-IIR 126 55 1009 22 1013 0.03
Voltera 81 100 658 12 660 0.02
Dif.-Eq.-Slover 33 55 263 1 265 0
RLS-Laguerre 57 80 380 360 383 0
Elliptic 102 165 - - 976 0.05

TABLE II
COMPARISON OF THE SYSTEM COST AND TIME FOR THE ILP ALGORITHM

[2] AND OUR HAA ALGORITHM.

Although the ILP algorithm from [2] can give an optimal
solution for heterogeneous assignment problem, it is NP-hard
problem to solve the ILP model. Therefore, the ILP model
may take very long time to get results even when a given DFG
is not very big. We unfold each benchmark three times and per-
form the tests for the ILP algorithm and our HAA algorithm.
The experimental results are shown in Table II. From the ex-
perimental results, we can see the ILP algorithm takes much
bigger time to get results compared with our HAA algorithm.
For the Elliptic filter, it can not give a result after 3 days. Our
HAA algorithm can obtain near-optimal solution in all cases in
very short time.

VI. CONCLUSION

We have proposed a two-phase approach for real-time digi-
tal signal processing applications to perform high-level synthe-
sis of special purpose architectures using heterogeneous func-
tional units. In the first phase, we solved heterogeneous as-
signment problem. In the second phase, we proposed a mini-
mum resource scheduling algorithm to generate a schedule and
a feasible configuration that uses as little resource as possible.
The experimental results show that our approach can generate
high-performance assignments and schedules with great reduc-
tion on total cost compared with the previous work.

REFERENCES

[1] Y.-N. Chang, C.-Y. Wang, and K. K. Parhi. Loop-list scheduling for
heterogeneous functional units. In 6th Great Lakes Symposium on VLSI,
pages 2–7, March 1996.

[2] K. Ito and K. Parhi. Register minimization in cost-optimal synthesis of
DSP architecture. In Proc. of the IEEE VLSI Signal Processing Work-
shop, Oct. 1995.

[3] W. N. Li, A. Lim, P. Agarwal, and S. Sahni. On the circuit implemen-
tation problem. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 12:1147–1156, Aug. 1993.

[4] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algo-
rithmica, 6:5–35, 1991.

[5] Z. Shao, Q. Zhuge, Y. He, C. Xue, M. Liu and E. H.-M. Sha. Assign-
ment and Scheduling of Real-time DSP Applications for Heterogeneous
Functional Units. 18th International Parallel and Distributed Processing
Symposium, CD-ROM Proceeding, Santa Fe, Apr. 2004.

