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Abstract

The widening gap between processor and memory per-
formance is the main bottleneck for modern computer sys-
tems to achieve high processor utilization. In this paper, we
propose a new loop scheduling with memory management
technique, Iterational Retiming with Partitioning (IRP),
that can completely hide memory latencies for applications
with multi-dimensional loops on architectures like CELL
processor [1]. In IRP, the iteration space is first partitioned
carefully. Then a two-part schedule, consisting of proces-
sor and memory parts, is produced such that the execution
time of the memory part never exceeds the execution time
of the processor part. These two parts are executed simul-
taneously and complete memory latency hiding is reached.
Experiments on DSP benchmarks show that IRP consis-
tently produces optimal solutions as well as significant im-
provement over previous techniques.

1 Introduction

With the constant reduction in feature size, multi-core
processors and system-on-chip(SoC) designs have gain
popularity in recent years. One of the main limitations
of modern microprocessor performance is memory latency,
which is increasing along with the increasing CPU speed.
Maintaining cache consistency and minimize power con-
sumption are also big challenges to multi-core processors
and SoC designs. As a result, many researches have turned
to software managed memory techniques for solutions.
A well planned data prefetching scheme may reduce the
memory latency by overlapping processor computations
with memory access operations to achieve high through-
put computations. In this paper, we develop a method-
ology called Iterational Retiming with Partitioning (IRP)
which generates schedules with full parallelism at iteration
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level and hides memory latency completely with software
prefetching technique.

IRP algorithm takes memory latency into account while
optimizing schedules for multi-dimensional loops. It can
be used in computation intensive applications (especially
multi-dimensional applications) when two-level memory
hierarchy exists. These two levels of memory are ab-
stracted as local memory and remote memory. We assume
each processor has multiple cores and multiple memory
units. The processing cores work on computations, while
the memory units are special hardwares that perform op-
erations like prefetching data from the remote memory to
the local memory. One real world example of this type of
architecture is the CELL processor [1]. It has 9 process-
ing cores, and software managed local memories that can
prefetch data from the remote memory.

The partitioning (tiling) technique is incorporated into
the IRP algorithm. We partition the entire iteration space
and then execute one partition at a time. Iterational retim-
ing [2] is used in conjunction with partitioning technique.
Iterational retiming first partitions the iteration space into
basic partitions, and then retiming is performed at iteration
level so that full parallelism is reached and all the itera-
tions in each partition can be executed in parallel. With this
nice property, each core can execute an iteration in parallel
and no communication overhead is needed among cores.
Scheduling for the processing cores becomes an easy task.
We analyze the legal partition shape and provide mech-
anism to determine the right partition size to guarantee
an optimal two-part schedule where memory latency is
hidden completely. Furthermore, we estimate the require-
ment of the local memory size for executing each partition.
The estimation gives designers a good indication of the lo-
cal memory requirement.

Prefetching schemes based on hardware [3, 4], software
[5], or both [6, 7] have been studied extensively. In hard-
ware prefetching schemes, the prefetching activities are
controlled solely by the hardware. In contrast, software
prefetching schemes rely on compiler technology to ana-
lyze a program statistically and insert explicit prefetch in-
structions into the program code. One advantage of soft-



ware prefetching is that a lot of the compile-time infor-
mation can be explored to effectively issue prefetching in-
structions.

Various techniques have been proposed to consider both
scheduling and prefetching at the same time. Fei Chen et
al. [8, 9] show the successful usage of the partitioning idea
in improving loop schedules. They presented the first avail-
able technique that combines loop pipelining, prefetch-
ing, and partitioning to optimize the overall loop schedule.
Zhong Wang et al. [10, 11] took it one step further in find-
ing the optimal partition under memory constraints. How-
ever, their techniques only explore instruction level paral-
lelism and are not able to take advantage of all the hard-
ware resources available in multi-core processors. To the
author’s knowledge, the IRP technique proposed in this pa-
per is the first available technique that generates optimal
two-part schedules and hides memory latency completely
on multi-core processors.

Experiments are done on DSP benchmarks for IRP
algorithm and comparisons have been drawn with other
scheduling algorithms, such as list scheduling and PSP al-
gorithm [8]. In the experiments, we calculate the lower
bounds of average schedule length based on the hardware
resources limitation without considering memory latencies.
For all of our test cases, IRP algorithm always reaches this
lower bound. The average schedule length obtained by IRP
is 46.1% of that derived using list scheduling and 65.5% of
that from PSP. The result of our experiments shows that
careful partitioning the iteration space is very important
for optimizing the overall schedule. IRP algorithm always
work correctly to produce optimal schedules no matter how
big the speed gap between the processor and the remote
memory access time is.

The remainder of this paper is organized as follows. A
motivating example is shown in Section 2. Section 3 in-
troduces basic concepts and definitions. The theorems and
algorithms are proposed in Section 4. Experimental results
and concluding remarks are provided in Section 5 and 6,
respectively.

2 Motivating Examples

In this section, we provide a motivating example that
shows the effectiveness of the IRP technique. In the exam-
ple, we compare the schedules generated by list scheduling,
rotation scheduling, PSP and IRP respectively. For sim-
plicity, we only show the results of these four techniques
without going into details on how each result are generated.
The multi-dimensional loop used in this section is shown
in Figure 1(a). There are two levels, i and j, in this loop.
The MDFG representation of this two-level loop is shown
in Figure 1(b). MDFG stands for Multi-dimensional Data
Flow Graph. A node in MDFG represents a computation,
and an edge in MDFG represents a dependence relation be-
tween two nodes. Each edge is associated with a delay that
helps to identify which two nodes are linked by this edge.

In this example, we assume that in our system, there are

for i=0 to n  do

for j=0 to m do

end for

end for

A[i,j] = C[i+1,j−1] + D[i−1,j−1];

B[i,j] = A[i,j] + 7;

C[i,j] = B[i,j] * 5;

D[i,j] = B[i,j] − 9;

A

B

D

(−1,1) (1,1)

(b)(a)

C

Figure 1. (a) Example program. (b) MDFG.

2 memory units and 2 processing cores in the processor,
and there are 2 ALUs inside each core. We also assume
that it takes 1 clock cycle to finish each computation node,
3 clock cycles to finish a data fetch, and 2 clock cycles to
write back data.

Based on the dependency constraints in the MDFG
shown in Figure 1(b), a list scheduling generated sched-
ule is shown in Figure 2(a). For simplicity, one iteration
is shown to represent a schedule. The notation A(0) in the
figure represents the computation of node A in iteration 0,
and the notation fA0 represents the data fetch operation for
node A in iteration 0. Two fA0 are needed because node A
needs two input data. As we can see, it takes 6 clock cy-
cles for the schedule generated by list scheduling to finish
one iteration, 3 clock cycles for the fetch operations and 3
clock cycles for the computations. After we apply rotation
scheduling, which implicitly uses retiming, the resulting
schedule is shown in Figure 2(b). The schedule length is
now reduced to 5 clock cycles. The rotation technique ex-
plores instruction level parallelism, reduces processor part
of schedule by redistributing instructions between different
iterations. However, since no consideration is given to the
memory, the long memory fetch time still dominates the
total execution time.
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Figure 2. (a) List sch. (b) Rotation sch.

In order to hide memory latency, we apply PSP algo-
rithm [8] which takes into account the balance between
computation and memory access time. A much better per-
formance is obtained in Figure 3(a). There are 4 fetch op-
erations in the memory part of schedule. Operation fA3
represents fetch operation for computation A in iteration
3. Both fA3 operations finish before computation A(3) is
scheduled at step 5, so A(3) is ready to execute without
waiting for the data. In this schedule, 4 iterations are sched-
uled at a time as a partition, and it takes 10 clock cycles to
finish all 4 iterations because of the overlapping execution
of processor and memory parts. As a result, the average
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time to complete one iteration is 2.5 clock cycles. How-
ever, because of the dependency constraints presented both
inside each partition and between partitions, we can not
take full advantage of all the hardware resources available.
Only one core of the processor is used.
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Figure 3. (a) PSP sch. (b) IRP Sch.

To take full advantage of all the hardware resources,
we generate a schedule using our proposed IRP algorithm.
The result is shown in Figure 3(b). It takes 6 clock cy-
cles for 6 iterations to complete. Hence the average time to
complete one iteration is 1 clock cycles. This huge perfor-
mance improvement is generated by exploring iterational
level parallelism so that all the iterations in a partition could
be scheduled in parallel, and both processor cores can be
utilized. In fact, the performance gain achieved by IRP
algorithm scales linearly with the amount of hardware re-
sources available. For example, if there are 10 cores in each
processor instead of 2, we can achieve an average execution
time of 0.2 clock cycle to complete an iteration, which is a
huge gain compared to all the previous techniques.

3 Basic Concepts and Definitions

In this section, we introduce basic concepts which will
be used in the later sections. First, we discuss the archi-
tecture model used in this paper. Second, we introduce
the model and notions that we use to analyze nested loops.
Third, loop partitioning technique is introduced. Fourth, it-
erational retiming technique is presented. In this paper, our
technique is presented with two dimensional notations. It
can be easily extended to multi-dimensions.

���� ������������������ ��!�#"%$'&��)(

We assume that there are multiple processing cores and
special hardwares called memory units inside each proces-
sor. Associated with each processor is a small local mem-
ory. Accessing this local memory is fast. There is also a
large multi-port remote memory. However, accessing it is
slow. The goal of our technique is to prefetch the operands
of all computations into the local memory before the ac-
tual computations take place. These prefetching operations
are performed by the memory units. Two types of memory

operations, prefetching and write back, are supported by
the memory units. The prefetching instruction prefetches
data from the remote memory to the local memory; The
write back instruction writes data back to the remote mem-
ory for future accessing. Both of these instructions are
issued to ensure those data will be referenced soon will
appear in the local memory. Here we are not concerned
with the load/store operations, which are scheduled in the
processing cores to load or store data from local memory.
They are not operations scheduled in the memory units.

Processor

Remote
Memory

Core

Core

Core

Local
Memory

Memory
Units

Core

Figure 4. Architecture diagram.

Our architecture is a general model. A real implemen-
tation was done in CELL processor [1]. Inside each CELL
processor, there are 9 processing cores. There are 256k lo-
cal memory called local store inside each core. This local
memory is not a cache, and prefetching operations on these
local memories are done by special memory units. A total
of 16 concurrent memory operations is possible at one time
for each core. The compiler and software design for CELL
processor need to generate schedule for both the process-
ing cores and memory units. With this type of architecture,
CELL processor gains more than 10 times the performance
of a modern top of line CPU.

'��* "%$'&+�,(-�-.�/102�)34�5�)&768$'$:9�3

Multi-dimensional Data Flow Graph is used to
model nested loops and is defined as follows. A Multi-
dimensional Data Flow Graph (MDFG) ;=<?>�@�ACBDAFEGAIHFJ is
a node-weighted and edge-weighted directed graph, where
@ is the set of computation nodes, BLKM@ � @ is the set of
dependence edges, d is a function and d(e) is the multi-
dimensional delays for each edge NPOQB which is also
known as dependence vector, and t is the computation time
of each node. We use d(e) = ( ESR , EST ) as a general formula-
tion of any delay shown in a two-dimensional DFG (2DFG
). An example is shown in Figure 5. In Figure 5(a), there
is a two-dimensional loop program. In this loop program,
there are two computations, that computes A[i,j] and B[i,j]
respectively. Figure 5(b) shows the corresponding MDFG.
In this MDFG, there are two nodes, A and B, representing
the two computations in the original loop program. There
are two edges from node B to node A, which means the
computation of A depends on two instances of data from
node B.
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A B

(1,−1)

(1,0)

(0,1)

end for

end for

B[i,j] = A[i,j] + A[i−1,j+1];

A[i,j] = B[i,j−1] + B[i−1,j];

for j=0 to m do

for i=0 to n  do

1

2

3

2 30 1

i

j

X

Y

(a) (b) (c)

Figure 5. (a) A nested loop. (b) Its MDFG. (c)
Its iteration space.

An iteration is the execution of each node in V exactly
once. The computation time of the longest path without de-
lay is called the iteration period. For example, the iteration
period of the MDFG in Figure 5(b) is 2 from the longest
zero-delay path, which is from node A to B. If a node v at
iteration j, depends on a node u at iteration i, then there is
an edge e from u to v, such that d(e) = j - i. An edge with
delay (0,0) represents a data dependence within the same
iteration. A legal MDFG must not have zero-delay cycles.
Iterations are represented as integral points in a Cartesian
space, called iteration space , where the coordinates are
defined by the loop control indexes. Figure 5(c) shows a
representation of the iteration space for the MDFG pre-
sented in figure 5(b). For simplicity, we will always show
a small section of the iteration space with respect to our
examples. A schedule vector s is the normal vector for a
set of parallel equitemporal hyperplanes that define a se-
quence of execution of an iteration space. By default, a
given nested loop is executed in a row-wise fashion, where
the schedule vector � < ��� A���� .

Retiming [12] can be used to optimize the cycle period
of a MDFG by evenly distributing the delays in it. Given
a MDFG ; < > @ A BDA EGA H J , retiming r of G is a function
from V to integers. For a node � O @ , the value of 	 � �
�
is the number of delays drawn from each of its incoming
edges of node � and pushed to all of its outgoing edges.
Let ;�� < > @ A B� AFE���A H J denote the retimed graph of ; with
retiming 	 , then E�� � N�� <?E � N�����	 � ������	 ��� � for every edge
N � ��� � �'O B � in ; � .

Rotation Scheduling presented in [13] is a loop
scheduling technique used to optimize loop scheduling
with resource constraints. It transforms a schedule to a
more compact schedule iteratively. In most cases, the node
level minimum schedule length can be obtained in polyno-
mial time by rotation scheduling. In each step of rotation,
nodes in the first row of the schedule are rotated down. By
doing so, the nodes in the first row are rescheduled to the
earliest possible available locations. From retiming point
of view, each node gets retimed once by drawing one delay
from each of incoming edges of the node and adding one
delay to each of its outgoing edges in the DFG. The detail
of rotation scheduling can be found in [13].

'�  ��� �5��� ����$D.+�-.+/ �!���=� �5����� ����$D. 3 9�� ���

Instead of executing the entire iteration space in the or-
der of rows and columns, we can first partition it and then
execute the partitions one by one. The two boundaries of
a partition are called the partition vectors. We will denote
them by �,R and � T . Due to the dependencies in the MDFG,
partition vectors cannot be arbitrarily chosen. For example,
consider the iteration spaces in Figure 6. Iterations are now
represented by dots and inter-iteration dependencies. Parti-
tioning the iteration space into rectangles, with � T < � �SA � �
and � R < ��� A ��� , as shown in Figure 6(a), is illegal be-
cause of the forward dependencies from �"!#	 H%$ H%$'&�(*),+.- +�/
to �"!#	FH%$ H%$'&�(0),+.-21%/ and the backward dependencies from
�"!#	FH%$ H%$'&3(0)�+.-21%/ to �"!�	FH%$ H%$'&�(0),+.- +./ . Due to these two-way
dependencies between partitions, we cannot execute either
one first. This partition is therefore not implementable and
is thus illegal. In contrast, consider the alternative partition
shown in Figure 6(b), with �GT�< � �SA � � and �,R < �,� A � � � .
Since there is no two-way dependency, a feasible partition
execution sequence exists. For example, �"!#	FH%$ H%$'&3(*),+.- +�/ is
executed first, then �"!#	FH%$ H%$'&3(4)�+5-61%/ , and so on. Therefore,
it is a legal partition.
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2 3 4 50 1
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Partition (0,0)Partition (0,1)

j

B

A

1

2

3

4

5

2 3 4 50 1

i

Partition (0,0) Partition (0,1)

j

(a) (b)

Figure 6. (a) An illegal partition of the itera-
tion space. (b) A legal partition.

Iteration Flow Graph is used to model nested loop par-
titions and is defined as follows. An Iteration Flow Graph
(IFG) ; R < > @ RIACB)R AFE�R A HFR J is a node-weighted and edge-
weighted directed graph, where @ R is the set of iterations
in a partition. The number of nodes 7 @ R 7 in an IFG ; R is
equal to the number of nodes in a partition. B R K @ R � @ R is
the set of iteration dependence edges. E R is a function and
E R � N�� is the multi-dimensional delay for each edge N O B R .
H R is the computation time for each iteration. An iteration
flow graph ; R < > @ R ACB R AFE R A H R J is realizable if the repre-
sented partition is legal. An example of IFG of the legal
partition in Figure 6(b) is shown in Figure 7. Edges with
(0,0) delay are shown in thicker line, which represents data
dependencies within the same partition. For the edge be-
tween iteration A and iteration B in the Figure 7, shown in
dashed line, it has delay d(e) of (0,1), which represents iter-
ation B in partition (0,1) depends on iteration A in partition
(0,0).'�98 : �5����� ����$D.;� (4<������>= �-.+/

Iterational retiming [2] achieves full parallelism for iter-
ations in a partition. It is carried out in the following steps.
Given a MDFG as input, first a basic partition is obtained
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B

A

Figure 7. IFG for the partition in Figure 6 (b).

by identifying the directions of legal partition vectors and
determining the partition size. then, iterational retiming is
applied to create the retimed partition.

First, we will find a basic partition. Among all the de-
lay vectors in a MDFG, two extreme vectors, the clockwise
(CW) and the counterclockwise (CCW), are the most im-
portant vectors for deciding the directions of the legal parti-
tion vectors. Legal partition vector cannot lie between CW
and CCW. In other words, they can only be outside of CW
and CCW or be aligned with CW or CCW. For example, for
the nested loop in Figure 5, there are three non-zero delay
vectors, (0,1), (1,0), and (1,-1). (0,1) is the CW vector and
(1,-1) is the CCW vector. If partition vectors are chosen to
be � T < � ��A � � and � R < ��� A���� , as shown in Figure 6(a),
it is an illegal partition because partition vector (2,0) lies
between CW and CCW and causes cycles in the partition
dependency graph as shown in Figure 6(b). we choose � T
to be aligned with j-axis, and � R to be aligned with CCW
for the basic partition. This is a legal choice of partition
vectors because the i elements of the delay vectors of the
input MDFG are always positive or zero, which allows the
default row-wise execution of nested loops.

After basic partition is identified via � R and � T , an IFG
; R <%> @ R , B R , E R , H R J can be constructed. An iterational
retiming r is a function from @ R to ��� that redistributes
the iterations in partitions. A new IFG ; R - � is created, such
that the number of iterations included in the partition is still
the same. The retiming vector r(u) of an iteration �1O=; R
represents the offset between the original partition contain-
ing u, and the one after iterational retiming. When all the
edges N O#B)R have non-zero delays, all the nodes

� O @ R
can be executed in parallel, which means that all the itera-
tions in a partition can be executed in parallel. We call such
a partition a retimed partition.

After the iterational retiming transformation, the new
program can still keep row-wise execution, which is an ad-
vantage over the loop transformation techniques that need
to do wavefront execution and need to have extra instruc-
tions to calculate loop bounds and loop indexes. Algo-
rithms and theorems for iterational retiming is presented
in detail in [2].

���� : < � � (�/:$ � � ����=�� ��� = ��� $ �
	

IRP generates a schedule consisting of two parts: the
processor part and the memory part. The original MDFG
usually contains inter-iteration dependencies and intra-

iteration dependencies. This causes difficulty to generate
efficient code for the processor part because little paral-
lelism exists among iterations. For example, CELL pro-
cessor [1] have 9 processing cores. Most of the cores will
be sitting idle if using the original MDFG to schedule. In
order to increase parallelism, iterational retiming [2] is ap-
plied to achieve full parallelism to take advantage of all the
available processing cores.

Memory Units

Write_back for
Last Partition

Prefetch for
Next Partition

Next partition

Other Partition

Current Partition

One Iteration

(b)(a)

Processor

C
ur

re
nt

 P
ar

ti
ti

on

Last partition

Figure 8. (a) A representation of last par-
tition, current partition, next partition, and
other partitions. (b) An IRP Schedule.

We call the partition just finished execution the last par-
tition, the partition that is currently being executed the
current partition, and the partition that will be executed
next the next partition. Any other partition which has not
been executed are called other partition ( see Figure 8(a)
). When scheduling the memory part, if a non-zero delay
edge passes from the current partition into an other par-
tition, a prefetch and a write back operation are needed,
shown by a solid vector in Figure 8(a). Each directed edge
from the current partition to the next partition corresponds
to a store operation, shown by a dashed vector in the figure.
When scheduling the memory part, we wish to prefetch
all the operands needed by the next partition into the lo-
cal memory at the same time the processor computations
are being performed for the current partition.

Figure 8(b) gives an example of our overall schedule —
the processor part as well as the memory part. There are
16 iterations in one partition. In the processor part, the
IRP scheduling generates a 4-control-step (CS) processor
schedule for one iteration and four iterations are executed
at the same time by four processing cores. This schedule is
then duplicated 4 times for all the iterations inside the parti-
tion. In contrast, the partition boundaries are not preserved
in the memory part of the schedule. All the write back op-
erations for the last partition are scheduled first, then all
the prefetch operations for the next partition are scheduled
next. As we can see, in the overall schedule, 16 itera-
tions are finished in 16 control steps. That is, on average,
ave len(overall) = 16/16 = 1 control step per iteration. The
framework of our algorithm is illustrated in Algorithm 4.1.
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4 IRP Scheduling

IRP scheduling consists of two parts, the processor part
and the memory part. The processor part of the schedule
for one iteration is generated by using the rotation schedul-
ing algorithm. Rotation scheduling is a loop pipelin-
ing technique which implicitly uses retiming heuristic for
scheduling cyclic graphs. Rotation scheduling is described
in detail in [13]. In IRP scheduling, one-dimensional ro-
tation is applied instead of multi-dimensional(MD) rota-
tion [14]. This is because multi-dimensional(MD) rotation
will implicitly change the schedule vector and the execu-
tion sequence of the iterations. Since we wish to maintain
row-wise execution, only one-dimensional rotation is used.

Algorithm 4.1 Iterational Retiming with Partitioning (IRP)
Input: MDFG ���������
	��������� , number of cores C
Output: A retimed partition that hides memory latency

/* based on the input MDFG, find the initial schedule for an
iteration */��� rotation scheduling(MDFG) ;��� � get schedule length(s) ;
/* find basic partition size and shape */����� ����� ���! ;��" � � CCW vector of the all delays;# �

= $ k % ��� �'&( is smallest ��� ��)* delays + ;
Obtain

# "
based on inequalities in Theorem 4.2;��" � # "-,.��" �

;� � � # � ,/� �0�
;

Obtain basic partition with
��"

,
� �

;
/* transform the basic partition into a retimed partition */
Call Step 2 of the iterational retiming algorithm;
/* produce the overall schedule */
Number the iterations;
Processor part scheduling;
Memory part scheduling;

Scheduling of the memory part consists of several steps.
First, we need to decide a legal partition. Second, partition
size is calculated to ensure an optimal schedule. Third,
iteration retiming is applied to transform the basic parti-
tion into a retimed partition so that all the iterations can
be scheduled in parallel. Fourth, iterations are numbered
and both the processor part and memory part of schedule
are generated. We will explain these steps blow in greater
detail.

A partition is identified by two partition vectors, �GR and
� T , where �,R < �,R +2143 R and � T�< � T +2143 T . While �,R +
and � T + determine the direction and shape of a partition,
3 R and 3 T determine the size of a partition. How to choose
the vectors �,R + and � T + to identify the shape of the legal
basic partition is discussed in detail in section 3.4. How to
choose 3 T is shown in Algorithm 4.1. We will pay special
attention to how 3 R is chosen to achieving the goal of com-
plete memory latency hiding, which means the schedule
length of the memory part will always be equal or smaller
than the schedule length of the processor part. How and
why 3 R is chosen is discussed in detail in Section 4.2.

After obtaining the basic partition directions and size,

we apply the step 2 of the iteration retiming algorithm [2]
to transform the basic partition into a retimed partition, so
that all the iterations inside the retimed partition can be ex-
ecuted in parallel. After a retimed partition is identified, we
can begin to construct both the processor and the memory
part of the schedule.

8��-� 5D���+��&  +(��76L�).+�)��� �!� $D.

For each partition, the processor part of schedule is gen-
erated in the default order. The memory part of the sched-
ule is generated in a pipelining fashion. Write back opera-
tions for the last partition are scheduled at the beginning as
the data has already been generated and no data dependen-
cies are pending. Then, all the prefetch operations for the
next partition are scheduled. Because the way that the par-
tition size is chosen, we can always get a memory schedule
that is not longer than the processor schedule, hence mem-
ory latency is hidden and optimal schedule is reached. An
example is shown in Figure 9. In this example, current par-
tition includes iterations numbered from 0 to 7. While iter-
ations 0 to 7 are executed in the processor, prefetching for
iterations 8 and 9 is done in the memory units. Write back
operations of iteration 6 and 7 are done in the memory units
during the execution of next partition, when iterations 8
and 9 are processed in the processor. As we can see, at
the same time that processor is executing iterations inside
current partition, memory units are executing write back
for the last partition and prefetching operations for the next
partition. Partitions are executed in a pipelining fashion.
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Figure 9. (a) Iteration space. (b) IRP Sch.
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In this section, we will show how to determine the par-

tition size, so that complete memory latency hiding can
always be achieved. First we will define the number of
prefetching operations given a partition size of 3 R and 3 T .
The number of prefetch operations can be approximated by
calculating the shaded area, as shown in Figure 10, with re-
spect to every inter-iteration delay vector d O D. Consider
a delay vector E < � E R AFE T � , in Figure 10, all of its dupli-
cate vectors originating in the region PQRS will enter other
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partitions, which is when the write back and prefetch oper-
ations are needed. Let the area of PQRS be ��������� ���	��
 �� .

Pj

Pi

j

i

d=(di, dj)

R

Q
P

S

di

|Pj| = fj

j

i
P

S

Q

R

Figure 10. Calculating the number of delay
edges crossing the boundary of the current
partition.

Lemma 4.1. Given a delay vector E < � E�R A EST � ,��������� ������
��� � E � < 3 T E�R .
Proof. Shown as the shaded area in Figure 10, we have��������� ������
��� � E � < !#	 N ! � ������� � < 3 T E�R .

Summing up all of these areas for every distinct delay
vector d O D, we obtain the total number of prefetch oper-
ations as:������� ��
 <! #"$� � E � <! %" � 3 T E�R � A'&DE < � E�R A EST'�

From this definition of number of prefetch operations, we
know that it is proportion to the size of 3 T . However, it
does not change related to 3 R . In order to hide the memory
latency, we will try to have the least number of prefetch
operations. So we will keep 3 T fixed and find the right 3 R to
achieve an optimal schedule where memory latencies are
hidden completely.

Theorem 4.1. The number of prefetching remains un-
changed before and after iterational retiming.

Proof. Because iterational retiming only use 	 < � �SA � � as
the retiming vector, all the delays E < � E�R A EST'� after retim-
ing still have the same ESR , and the size of the partition does
not change, hence the number of prefetching operations������� �(
 does not change after iterational retiming.

From the above theorem, we know that the number of
prefetching remains the same. So we do not need to cal-
culate the number of prefetching operations after the it-
erational retiming transformation. The following theorem
shows how we can use the above lemma and theorem to
find the right partition factor of 3 R .
Theorem 4.2. Assume that

��) � �(
�* ��+ 
 + , and the fol-
lowing inequality is satisfied:,.-0/01�243�5-760586:9 1<; � �(
 � , -7/01�= 3?>A@	5-760586 9 1<;�B *DC � 1FE >(G E�H-<I	J	3�5

The length of the memory part of the schedule is at most
the same as that of the processor part.

Proof. In the memory part of the schedule, the length of the

prefetch part is

,.-7/01 243�5- 6K5?6 9 1L; � �(
 , and the length of the

write back part is

, -0/01 = 3?>A@	5-76K5?6 9 1�;�B . Therefore, the left-

hand side is the worst-case schedule length of the mem-
ory part. In the right hand side, C � represents the schedule
length of one iteration, and E >�G EMH- I�J	3�5

represents the number of
iterations to be executed by each core. Hence the right hand
side represents the length of the processor part of schedule.
By requiring the worst-case schedule length of the mem-
ory part to be less then the processor part, we guarantee
that the memory part of the schedule is not longer then the
processor part at any time.

The number of write back operations equals the num-
ber of prefetch operations. This is because we only write
back those data that we will ever need to fetch from re-
mote memory. We know how to calculate the number of
prefetch operations, so we know how to calculate the num-
ber of write back operations as well. Solving the above
inequality, we get the right 3 R to ensure an optimal memory
latency hiding schedule. It is important to note that since
3 T is already determined beforehand, 3 R can always be cal-
culated easily.

5 Experiments

In this section, the effectiveness of the IRP algorithm
is evaluated by running a set of simulations on DSP
benchmarks. The following DSP benchmarks with two-
dimensional loops are used in our experiments: WDF
(Wave Digital Filter), IIR (the Infinite Impulse Response
Filter), 2D (the Two Dimensional filter), Floyd (Floyd-
Steinberg algorithm), and DPCM (Differential Pulse-Code
Modulation device).

Table 1 shows our scheduling results. The first col-
umn gives the benchmarks’ names. The second and third
columns are the parameters of the input MDFG, showing
the processing core and memory unit resource constraints.
The partition generated by the IRP algorithm is shown in
the fourth to sixth columns. The final schedule is shown
in the next three columns. Column “L” gives the length
of the overall schedule and Column “ CON�P � ” is the average
length ( Q- >R@�583 ). In order to compare our results with the
lower bound, as well as the results from other algorithms,
we calculated the lower bounds of the schedule length,S -7T J(U45�V- I�J	3�5 G -XW�Y[Z�\ 1F; N�]_^ , and put them in Column “LB”.
Here, the lower bound is caused by limitation in hardware
resources. We also ran the same set of benchmarks us-
ing list scheduling and partition scheduling with prefetch-
ing(PSP) [9]. The results are shown in Columns “List”
and “PSP”, respectively, where the sub-column “len” is
the schedule length and sub-column “ratio” compares the
IRP schedule length with that of list scheduling and PSP
scheduling, i.e., ratio = Q W	`4a] 
 � .
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Benchmark Parameters Partition IRP List PSP [9]��) ����
 � + 
 + 3 T 3 R � RR��
�� L C N(P � LB len ratio len ratio
IIR 2 2 1 4 4 16 4 4 8 50% 6.08 65.8%
WDF 2 2 1 4 4 12 3 3 6 50% 4.25 70.6%
FLOYD 2 2 1 4 4 16 4 4 11 36.4% 6 66.7%
DPCM 2 2 1 4 4 16 4 4 7 57.1% 4.08 98%
2D(1) 2 2 1 4 4 34 9 9 16 56.3% 12 75%
2D(2) 2 2 1 4 4 4 1 1 4 25% 2.25 44.4%
MDFG1 2 2 1 4 4 4 1 1 7 14.3% 4.25 23.5%
MDFG2 2 2 1 4 4 32 8 8 10 80% 10.04 79.7%

Average Ratio - 46.1% - 65.5%

Table 1. Experiment results on DSP filter benchmarks when ; N�]A^ =1, ; � �(
 =2 and ; B �IR =2.

In Table 1, we assume that each processor operation
takes 1 time unit, each prefetch takes 2 time units, and each
write back takes 2 time units. And assume that inside each
processing core, there are 2 ALU units available to exe-
cute computations. As we can see, list scheduling rarely
achieves the optimal schedule length; the schedules are of-
ten dominated by a long memory part. In other words, the
list schedules are not well balanced. Although PSP is bet-
ter then list scheduling by generating a balanced schedule,
it is not able to fully take advantage of all the hardware re-
sources available by exploring higher level of parallelism.

IRP algorithm consistently produces optimal schedules,
as shown by the bold figures in the table. All of the result-
ing schedules reach the optimal schedule length. In Table
1, the average ratio of the schedule length from the IRP al-
gorithm to those from list scheduling and PSP are 46.1%
and 65.5%, respectively.

6 Conclusion

In this paper, we propose a new loop scheduling with
software prefetching technique. An algorithm, Iterational
Retiming with Partitioning(IRP), is presented. IRP can
achieve complete memory latency hiding for multi-core
architectures. Experimental results show IRP is a very
promising technique.
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