
Proceedings of the Tenth International Conference on Industrial & Engineering Applications of Artificial Intelligence
& Expert Systems, Atlanta, June, 1997.

TRAIN TIMETABLE AND ROUTE GENERATION USING
A CONSTRAINT-BASED APPROACH

Hon Wai Chun
Department of Electronic Engineering, City University of Hong Kong

Tat Chee Avenue, Kowloon, Hong Kong
Email: eehwchun@cityu.edu.hk

ABSTRACT

This paper describes research in modelling train
timetable and route generation as a constraint-
satisfaction problem (CSP). The key objective of this
research is to design a constraint-based scheduling
algorithm that can be used to generate a train
timetable given headway requirements at different
times of the day. The key constraint is to avoid track
circuit or route contentions while maximising train
utilisation. The objective of the scheduling
algorithm is to determine how service levels can be
increased without jeopardising passenger safety.
This research investigated traffic at a train terminus
where two types of trains are competing for the use
of the same tracks; trains that are reversing and
trains that are being dispatched from the depot. The
contention problem is particularly serious during
the rush hour train build-up. The current timetable
and train routing are generated using two separate
rule-based systems. However, due to the complexity
of constraints involved, the current systems cannot
generate a plan that can meet the desired service
levels.

INTRODUCTION

This paper describes a constraint-based model
and algorithm for a train timetable and route
generation program. This program determines how
trains can be efficiently dispatched from a depot to
meet rush hour service requirements while
satisfying resource constraints. Our research
focused mainly on generating a timetable and
routing for the building up of train services.
However, it can also be applied to the reverse case of
breaking down the service after rush hour ends. The
research was performed using data from one of the
world’s busiest subway systems. The constraint-
based algorithm described in this paper was tested

on one of the busiest lines within this subway
system.

The subway authority currently uses a rule-
based expert system to generate the train timetable
based on headway requirements, i.e., the time
between the arrival of two consecutive trains. The
routing is then generated using a separate semi-
automatic system which is based on heuristics. This
routing program determines how each train should
travel to get to its destination. Subway trains
normally travel in a cyclic manner from one final
terminus to other and back. The key problem is
what happens when the train reaches the final
terminus and needs to reverse while at the same
time trains are being dispatched from the depot to
the terminus. There is a tremendous amount of
contention for the same set of tracks during the rush
hours. The timetable and route generation is
currently performed by separate systems. The
timetable generation system must therefore ensure
there is enough slack or buffer for the routing
system to be able to generate the routes. This extra
time buffer causes inefficiency. The route
generation program, on the other hand, is confined
to work within the timetable that is given. The
subway authority cannot see how service levels can
be increased without increasing the efficiency of the
scheduling algorithm. This paper proposes a
constraint-based algorithm that combines timetable
and route generation into one process. Headway
constraints for timetable generation are considered
at the same time as resource constraints for route
generation.

Our research focuses on designing and
developing a constraint-based resource allocation
algorithm [DUNC94, PUGE94b] that can assist the
human scheduler by generating different “what-if”
scenarios or timetables based on different sets of
criteria, such as headway requirements and train
speeds. The resources to be allocated in this study
are the track circuits and the routes.

TRAIN TIMETABLE AND ROUTE GENERATION

Our constraint-based scheduling algorithm
performs three main scheduling tasks - (1) generate
a train timetable, (2) generate the route sequence
each train must travel, and (3) determine the travel
time within turnaround and headshunt interlocking
area. The most important concern for the subway
authority is the ability to increase service levels
during rush hours. The scheduling algorithm must
be able to generate a timetable and route sequence
that can maximise the utilisation of the track circuit
resources in order to meet the service level
demands.

PHYSICAL CONSTRAINTS

Figure 1 is a simplified diagram of the track
circuits and signals within the turnaround and
headshunt interlocking area that are used within the
study. There are two platforms at the final terminus
-- an “Arrival Platform” for trains arriving from the
other terminus and the “Departure Platform” for
trains travelling to the other terminus. The study
only involved this terminus since there is no depot
at the other terminus and hence no track-circuit

resource contention.
The track circuits within the turnaround and

headshunt interlocking area allow trains to reverse
from the Arrival Platform to the Departure Platform.
Subway trains can travel in both directions and have
a driver compartment at each ends of the train. As
part of the reversing process, the train driver must
walk from one end of the train to the other. In some
cases, there may be an additional driver at the other
end to reduce the amount of time needed to reverse
a train. While trains are using the tracks to reverse,
other trains may be dispatched from the depot
through “Depot Track 1” and “Depot Track 2.”
Furthermore, all tracks within the turnaround and
headshunt interlocking area can be used for train
travel in either directions.

The tracks in the turnaround and headshunt
interlocking area are divided into routes. Routes are
further divided into track circuits. Figure 1 shows
the names of the track circuits. A route is defined to
be a set of track circuits between two signals. Since
trains can travel in either direction on the same
tracks, there are signals for both direction of travel.
The relevant signal is on the right hand side of the
direction of train travel.

T2
3

T8

T11

22

T9

24a

Track Circuits and Signals Included
in Study

T7 T9 T11 T15T13 T17 T21 T23 T25 T27 T29

T38

T31

T36

T10
T14

T10 T8 T6 T4 T2T22 T20 T14T16 T12T1824a24
bT26b T26a

T2
1

12

S
2

S
8

S
12

S
10 S
6

S
4

S
32

S
35

S
5

S
11

S
9

S
23

S
25

S
21S

17

Arrival

Departure

Headshunt 1

Headshunt 2

Crossover Tracks

Depot Track 1

Depot Track 2

Fig. 1 Track circuits and signals within the turnaround and headshunt interlocking area.

n Track Circuits. For the purpose of our

research, a “track circuit” is the smallest
piece of railway track that can be uniquely
identified. However, the length of each
track circuit may be different. The state of a
track circuit may either be “down”
indicating that a train is currently over this
piece of track circuit or “up” indicating that

the track circuit is free. The track circuits in
Figure 1 are drawn roughly to proportions.
A total of 33 track circuits are included into
the study. The same track numbers are used
to identify tracks branching out from track
circuits, such as the crossover tracks, and
their parent branches.

TRAIN TIMETABLE AND ROUTE GENERATION

n Signals. Figure 1 illustrates all the signals
that were used in our research. There are a
total of 16 signals that will define the
starting point for 42 possible routes that a
train may take. However, several routes end
at the Departure Platform, which does not
have a signal after track circuit T26b. For
uniformity, the Departure Platform will be
considered as a “pseudo-signal.”

n Routes. For this study, a “route” is defined
as a sequence of track circuits that starts
and ends at a signal (including the pseudo-
signal). Before a train enters a route, it
must first “call” and “set” the route. Setting
a route reserves a section of track so that no
other train will use the same track resource.
A set of Boolean equations or constraints
defines when a route can be set. The
equations ensure that the route is safe to
enter.

Our scheduling system differentiates routes
that span two immediate signals as “basic
routes.” Routes that are composed of more
than one “basic routes” are called
“composite routes.” The scheduling
algorithm considers a total of 22 basic

routes and 20 composite routes. To travel
from a start signal to the target destination
signal may require the train to traverse a
sequence of basic routes. This sequence is
referred to as a “route sequence.”

n Train Lengths. To determine track circuit
occupancy, the length of the train is needed.
The length of the trains used in this research
is 177 metres from axle to axle, while the
end to end length is 182.5 metres.

TIMING CONSTRAINTS

Several different types of timing data were used
by our scheduling algorithm. This includes the run
times of the train, the signal timing, the time to
change the crew, and the transmission time.

n Run Times. Only the nominal run times
are used in this study. The scheduling
algorithm used the run times to determine
when routes will be freed up for other trains
to use. The run times are defined as the
travel time needed between any two signals
without stopping.

A Route Sequence Diagram
Using Our Graphic Notation

Run time

Reverse time

Wait time

Run time
Safety margin

Target
Arrival Time

Start

Signal clearing & transmission delay

Fig. 2 The representation of a route sequence and its timing.

n Signal Timing. It takes about 7 seconds to
set a route if point movement is required. It
takes about 3 seconds to set a route if point
movement is not required.

n Double-ended Timing. Double-ended
crew is the case where there is a driver at
both ends of a train. This technique is used
to reduce the time needed to reverse a train.
Normally, to reverse a train, the driver
should stop the train and walk from the one

end to the other to restart the train. The
time required for the whole process is
around 4 minutes. With double-ended
crew, the additional driver will restart the
train after the current driver stops it.
Reversing, in this case, only takes about 15
seconds to finish but requires a larger crew
size to operate.

n Transmission Delay. A 2-second
transmission delay from issuing the route

TRAIN TIMETABLE AND ROUTE GENERATION

setting command (by computer or operator)
to actuation of the route setting activity is
required.

Figure 2 is a Gantt chart that shows the type of

timing information that is represented and used by
our scheduling algorithm. Each row, along the
vertical axis, represents one particular route and the
different types of timing involved when a train
travels in that route. The complete sequence of rows
represents the sequence of routes a train takes from
the start signal, e.g. the depot, to the end signal, e.g.
the Departure Platform.

THE CONSTRAINT-BASED MODEL AND
ALGORITHM

To solve this problem, we represented the
timetable and route generation problem as an
object-oriented [LEPA93] constraint-satisfaction
problem (CSP) [KUMA92]. Although CSP or
constraint-programming has a relatively long
history [STEE80], with constraint language
extensions found in Prolog [COLM90, VANH89],
and Lisp [SISK93], it is only recently that
constraint-programming became more popular with
the availability of the ILOG’s C++ class libraries
[PUGE94a]. This library provided a very efficient
and clean implementation of constraint-based
programming features in a conventional language.
Our scheduling algorithm was implemented using
the ILOG C++ class libraries.

TrainActiv ity

Constrained
Variable

Constrained
Variable

_start
1

1

_delay

1

1

TableEntry

Constrained
Variable

Timetable

_entries

1

n

Route
Assignment

_time

1

1

_route_asgn
1

1

_route

1

n
Constrained

Variable_route
1 1

Fig. 3 The UML class diagram of the constrained
variables.

In general, any scheduling and resource

allocation problems can be formulated as a
constraint-satisfaction problem (CSP) which
involves the assignment of values to variables
subjected to a set of constraints. CSP can be defined

as consisting of a finite set of n variables v1, v2, ..., vn,
a set of domains d1, d2, ..., dn, and a set of constraint
relations c1, c2, ..., cm. Each di defines a finite set of
values (or solutions) that variable vi may be
assigned. A constraint cj specifies the consistent or
inconsistent choices among variables and is defined
as a subset of the Cartesian product: cj ⊆ d1 x d2 x ...
x dn. The goal of a CSP algorithm is to find one tuple
from d1 x d2 x ... x dn such that n assignments of
values to variables satisfy all constraints
simultaneously.

When the train timetable and route generation
problem is formulated as a CSP, the problem is
represented as a set of constrained variables. The
first type of constrained variable represents entries
in a train timetable. There are two timetables in our
problem – a timetable for the Arrival Platform (T1)
and a timetable for the Departure Platform (T2).
Each timetable is a list of constrained variables. The
domain of the variables will depend on the desired
headway values requested by the user.

Each timetable entry also contains a “route
assignment.” Each “route assignment” represents a
sequence of “train activity.” Each train activity
represents the selection of a particular route, at a
particular start time, with a particular delay. The
route, start time, and delay are all represented as
constrained variables. The domain of the route
variable is all routes that can start from the current
location of a train. The domain of the start time is
related to the previous route’s end time. The
domain of the delay represents the amount of time a
train might need to wait at a signal. Figure 3 is a
simplified Unified Modelling Language (UML) class
diagram that shows the essential classes in our
design.

This constraint-based formulation was designed
from the requirement that the input to the
scheduling algorithm will be a table of desired
headway values at the Departure Platform.
Therefore the schedule algorithm will schedule a
time for the arrival of a train at the Departure
Platform. However, we will need to work backward
to figure when the train departs from the depot and
how long the train waits at each intermediate signal.
On the other hand, this train might be a reversing
train from the Arrival Platform. In this case, the
scheduling algorithm works forward from when the
train leaves the Arrival Platform until it reaches the
Departure Platform. This combination of searching
backwards and forwards at the same time
complicates the algorithm, but is a necessity given
the subway authority’s input requirement. Figure 4
illustrates this combined search.

Although the search is a combined backward
and forward search, the scheduling of the timetable

TRAIN TIMETABLE AND ROUTE GENERATION

entries is a forward process; timetable entries are
instantiated from the earliest entries first. In other
words, the timetable is generated from the first train
to arrive at the T2 Departure Platform to the last
train of the desired scheduling period.

During the constraint-based search, the
algorithm predicts when a train leaving the
Departure Platform will return back to the Arrival
Platform from the other terminus using nominal
turnaround times. In addition, the algorithm
merges the time a train leaves the Arrival Platform
with the timetable entry for the arrival of that same
train at the Departure Platform. This merging
operation is the major source of backtracking for the
scheduling algorithm. The time a train arrives at the
Departure Platform from the Arrival Platform might
not match exactly the headway required for the

Departure Platform and the train must wait inside
the turnaround area for the next departure time slot.

For each time value that the algorithm assigns to
the timetable, the algorithm also selects a route
sequence that will lead the train to arrive/depart at
the desired time. The route sequence with the
shortest total runtime that does not interfere with
any other previously made route assignments will be
selected first.

For each potential route sequence that is
selected, the algorithm also determines how much
time the train should wait at each signal for signal
clearance. The minimum amount of waiting time
will be used. This is equivalent to “stretching” the
route sequence as shown in Figure 5 (the arrows
highlight the “stretching” action and not the
temporal evolution).

T2

T1

T2
Search backwards from T2

Search forward from T1

departure time must
match T2 timetable

these times are
scheduled

Fig. 4 The combined backward and forward search.

"Stretching" a Potential
Route Sequence

Anchor at desired
arrival time

Stretch route
sequence

Fig. 5 “Stretching” a route sequence by adjusting the waiting time.

Fig. 6 The graphic simulator used to display the
scheduling results.

If the proposed route sequence generated by the
scheduling algorithm does not conflict with any
other previously assigned routes, then that route will
be assigned to the train. On the other hand, if no
feasible routes can be found, the algorithm will try
to adjust the waiting times at the signals. If no
solution can be found, the algorithm then adjusts
the arrival/departure times at the station. If still no
solution can be found, then the algorithm tries to
assign a different route sequence to the previous
timetable entry. This “undoing” of previously made
assignments is performed automatically by the
backtracking mechanism provided by constraint
programming. This backtracking will continue until
a solution is found or when all possible solutions
have been tried. Once the timetables and route
sequences have been generated, graphic simulation
software is used to display and visualise the
resulting schedule (see Figure 6).

ADVANTAGES OF CONSTRAINT
PROPAGATION

To illustrate the problem complexity, for the 3
hours of morning train dispatch there are around 70
choice points for just the timetable generation - each
with potentially over 100 possible values. For route
selection, there are a total of 130 route sequence
combinations within the interlocking and headshunt
area, each with an average of 4 routes, each route
with possibly 60 timing variations. The total
complexity of just the morning dispatching is far too
much for any rule-based approach.

The constraint-based approach, proposed in this
paper, was able to generate timetables and route
sequences within a reasonable time because of
constraint propagation. Constraint propagation
eliminated invalid choices before they can be
selected for search. In the case of timetable
generation, routes that conflict with assigned routes
will be eliminated and timetable entries that violated
headway requirements will not be selected. The
constraint-based approach makes use of arc
consistency [MACK77] and constraint propagation
[WALT72] to reduce the domain size of each
constrained variable before search. Smaller domain
size means smaller and more focused search space.

RESULTS FROM TEST CASES

The constraint-based scheduling algorithm was
tested on many test cases. The algorithm was
designed to minimise changes in the desired
headway value as much as possible. However,
minimising headway changes in early morning
forces the headway at the final target to fluctuate
slightly.

The following table lists test cases that achieved

the desired 105-second headway values, i.e., roughly
34 trains per hour. Currently, the trains operate at
roughly 112 or 113-second headway values. Also
listed is the number of trains that were dispatched
from 6am to 8:40am, the number of trains that had
a headway value of exactly 105 or 106 seconds, and
the average deviation from 105 seconds within the
7:40am to 8:40am peak.

Table 1. Summary of Testing Results

Test
Case
No

Total trains
since 6am

No. of 105 or
106 trains

Avg.
Deviation

from 105 sec.
2 66 29 1.4
5 72 22 4.7

10 73 21 4.8
13 73 22 4.7
14 73 23 4.7
15 73 23 4.7

As an example, Test Case 15 was produced with
the following input headway table.

TRAIN TIMETABLE AND ROUTE GENERATION

Table 2. The Headway Table Used for Test Case 15
Station Start End Headway No Trains
TSW2 6:00 6:30 240 8
TSW2 6:30 7:00 180 10
TSW2 7:00 7:25 120 13
TSW2 7:25 7:40 112 8
TSW2 7:40 8:40 105 34

Out of these test cases, the best result was
obtained in Test Case 2 where trains were
dispatched for the 105-second headway with an
average deviation of only 1.4 seconds. The current
rule-based systems can at most dispatch up to 112-
second headway values.

SYSTEM IMPLEMENTATION

The object-oriented constraint-based [LEPA93]
allocation system was implemented in C++ using
the ILOG Solver class library [PUGE94a] and the
RTL Scheduling Framework developed by Resource
Technologies Limited [CHUN96a, CHUN96b]. The
graphic user interface that simulates the generated
schedule was developed using C++ graphic
components provided by ILOG Views. The system
was developed using platform independent coding
and can execute within Windows 95/NT or Unix
environment.

CONCLUSIONS

This paper documents our research in modelling
train timetable and route generation as a constraint-
satisfaction problem. The constraint-based
scheduling algorithm was tested using data from one
of the busiest subway systems in the world. The
results showed that the scheduling algorithm was
able to generate timetables and routes that had a
higher service level than that was previously
possible with a rule-based approach.

ACKNOWLEDGEMENTS

The author would like to thank the Hong Kong
Mass Transit Railway Corporation for the
cooperation received and for making actual data
available for this research. Part of this research was
performed in cooperation with Resource
Technologies Limited (http://www.rtl.com.hk/~rtl)
in Hong Kong and with assistance from ILOG
(http://www.ilog.com) in Singapore.

REFERENCES

[CHUN96a] H.W. Chun, K.H. Pang, and N. Lam,

“Container Vessel Berth Allocation
with ILOG SOLVER,” The Second
International ILOG SOLVER User
Conference, Paris, July, 1996.

[CHUN96b] H.W. Chun, M.P. Ng, and N. Lam,
“Rostering of Equipment Operators in
a Container Yard,” The Second
International ILOG SOLVER User
Conference, Paris, July, 1996.

[COLM90] A. Colmerauer, An Introduction to
Prolog III, Communications of the
ACM, 33(7), pp.69-90, 1990.

[DUNC94] T. Duncan, “Intelligent Vehicle
Scheduling: Experiences with a
Constraint-based Approach,” ILOG
Technical Report 94-04.

[KUMA92] V. Kumar, “Algorithms for Constraint
Satisfaction Problems: A Survey,” In
AI Magazine, 13(1), pp.32-44, 1992.

[LEPA93] C. Le Pape, “Using Object-Oriented
Constraint Programming Tools to
Implement Flexible “Easy-to-use”
Scheduling Systems,” In Proceedings
of the NSF Workshop on Intelligent,
Dynamic Scheduling for
Manufacturing, Cocoa Beach,
Florida, 1993.

[MACK77] A.K. Mackworth, “Consistency in
Networks of Relations,” In Artificial
Intelligence, 8, pp.99-118, 1977.

[PUGE94a] J.-F. Puget, “A C++ Implementation
of CLP,” In ILOG Solver Collected
Papers, ILOG SA, France, 1994.

[PUGE94b] J.-F. Puget, “Object-Oriented
Constraint Programming for
Transportation Problems,” In ILOG
Solver Collected Papers, ILOG SA,
France, 1994.

[SISK93] J.M. Siskind and D.A. McAllester,
“Nondeterministic Lisp as a Substrate
for Constraint Logic Programming,”
In Proceedings of the Eleventh
National Conference on Artificial
Intelligence, Washington, DC, pp.133-
138, July, 1993.

TRAIN TIMETABLE AND ROUTE GENERATION

[STEE80] G.L. Steele Jr., The Definition and
Implementation of a Computer
Programming Language Based on
Constraints, Ph.D. Thesis, MIT, 1980.

[VANH89] P. Van Hentenryck, Constraint
Satisfaction in Logic Programming,
MIT Press, 1989.

[WALT72] D.L. Waltz, “Understanding Line
Drawings of Scenes with Shadows,” In
The Psychology of Computer Vision,
McGraw-Hill, pp.19-91, 1975.

