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ABSTRACT 
 

This paper describes research in modelling train 
timetable and route generation as a constraint-
satisfaction problem (CSP).  The key objective of this 
research is to design a constraint-based scheduling 
algorithm that can be used to generate a train 
timetable given headway requirements at different 
times of the day.  The key constraint is to avoid track 
circuit or route contentions while maximising train 
utilisation.  The objective of the scheduling 
algorithm is to determine how service levels can be 
increased without jeopardising passenger safety.  
This research investigated traffic at a train terminus 
where two types of trains are competing for the use 
of the same tracks; trains that are reversing and 
trains that are being dispatched from the depot.  The 
contention problem is particularly serious during 
the rush hour train build-up.  The current timetable 
and train routing are generated using two separate 
rule-based systems.  However, due to the complexity 
of constraints involved, the current systems cannot 
generate a plan that can meet the desired service 
levels. 
 
 
INTRODUCTION 
 

This paper describes a constraint-based model 
and algorithm for a train timetable and route 
generation program.  This program determines how 
trains can be efficiently dispatched from a depot to 
meet rush hour service requirements while 
satisfying resource constraints.  Our research 
focused mainly on generating a timetable and 
routing for the building up of train services.  
However, it can also be applied to the reverse case of 
breaking down the service after rush hour ends.  The 
research was performed using data from one of the 
world’s busiest subway systems.  The constraint-
based algorithm described in this paper was tested 

on one of the busiest lines within this subway 
system. 

The subway authority currently uses a rule-
based expert system to generate the train timetable 
based on headway requirements, i.e., the time 
between the arrival of two consecutive trains.  The 
routing is then generated using a separate semi-
automatic system which is based on heuristics.  This 
routing program determines how each train should 
travel to get to its destination.  Subway trains 
normally travel in a cyclic manner from one final 
terminus to other and back.  The key problem is 
what happens when the train reaches the final 
terminus and needs to reverse while at the same 
time trains are being dispatched from the depot to 
the terminus.  There is a tremendous amount of 
contention for the same set of tracks during the rush 
hours.  The timetable and route generation is 
currently performed by separate systems.  The 
timetable generation system must therefore ensure 
there is enough slack or buffer for the routing 
system to be able to generate the routes.  This extra 
time buffer causes inefficiency.  The route 
generation program, on the other hand, is confined 
to work within the timetable that is given.  The 
subway authority cannot see how service levels can 
be increased without increasing the efficiency of the 
scheduling algorithm.  This paper proposes a 
constraint-based algorithm that combines timetable 
and route generation into one process.  Headway 
constraints for timetable generation are considered 
at the same time as resource constraints for route 
generation.  

Our research focuses on designing and 
developing a constraint-based resource allocation 
algorithm [DUNC94, PUGE94b] that can assist the 
human scheduler by generating different “what-if” 
scenarios or timetables based on different sets of 
criteria, such as headway requirements and train 
speeds.  The resources to be allocated in this study 
are the track circuits and the routes. 
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Our constraint-based scheduling algorithm 
performs three main scheduling tasks - (1) generate 
a train timetable, (2) generate the route sequence 
each train must travel, and (3) determine the travel 
time within turnaround and headshunt interlocking 
area.  The most important concern for the subway 
authority is the ability to increase service levels 
during rush hours.  The scheduling algorithm must 
be able to generate a timetable and route sequence 
that can maximise the utilisation of the track circuit 
resources in order to meet the service level 
demands. 
 
 
PHYSICAL CONSTRAINTS  
 

Figure 1 is a simplified diagram of the track 
circuits and signals within the turnaround and 
headshunt interlocking area that are used within the 
study.  There are two platforms at the final terminus 
-- an “Arrival Platform” for trains arriving from the 
other terminus and the “Departure Platform” for 
trains travelling to the other terminus.  The study 
only involved this terminus since there is no depot 
at the other terminus and hence no track-circuit 

resource contention.   
The track circuits within the turnaround and 

headshunt interlocking area allow trains to reverse 
from the Arrival Platform to the Departure Platform.  
Subway trains can travel in both directions and have 
a driver compartment at each ends of the train.  As 
part of the reversing process, the train driver must 
walk from one end of the train to the other.  In some 
cases, there may be an additional driver at the other 
end to reduce the amount of time needed to reverse 
a train.  While trains are using the tracks to reverse, 
other trains may be dispatched from the depot 
through “Depot Track 1” and “Depot Track 2.”  
Furthermore, all tracks within the turnaround and 
headshunt interlocking area can be used for train 
travel in either directions.   

The tracks in the turnaround and headshunt 
interlocking area are divided into routes.  Routes are 
further divided into track circuits.  Figure 1 shows 
the names of the track circuits.  A route is defined to 
be a set of track circuits between two signals.  Since 
trains can travel in either direction on the same 
tracks, there are signals for both direction of travel.  
The relevant signal is on the right hand side of the 
direction of train travel. 
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Fig. 1  Track circuits and signals within the turnaround and headshunt interlocking area. 
 
 
n Track Circuits.  For the purpose of our 

research, a “track circuit” is the smallest 
piece of railway track that can be uniquely 
identified.  However, the length of each 
track circuit may be different.  The state of a 
track circuit may either be “down” 
indicating that a train is currently over this 
piece of track circuit or “up” indicating that 

the track circuit is free.   The track circuits in 
Figure 1 are drawn roughly to proportions.  
A total of 33 track circuits are included into 
the study.  The same track numbers are used 
to identify tracks branching out from track 
circuits, such as the crossover tracks, and 
their parent branches. 
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n Signals.  Figure 1 illustrates all the signals 
that were used in our research.  There are a 
total of 16 signals that will define the 
starting point for 42 possible routes that a 
train may take.  However, several routes end 
at the Departure Platform, which does not 
have a signal after track circuit T26b.  For 
uniformity, the Departure Platform will be 
considered as a “pseudo-signal.” 
 

n Routes.  For this study, a “route” is defined 
as a sequence of track circuits that starts 
and ends at a signal (including the pseudo-
signal).  Before a train enters a route, it 
must first “call” and “set” the route.  Setting 
a route reserves a section of track so that no 
other train will use the same track resource.  
A set of Boolean equations or constraints 
defines when a route can be set.  The 
equations ensure that the route is safe to 
enter. 
 
Our scheduling system differentiates routes 
that span two immediate signals as “basic 
routes.”  Routes that are composed of more 
than one “basic routes” are called 
“composite routes.”  The scheduling 
algorithm considers a total of 22 basic 

routes and 20 composite routes.  To travel 
from a start signal to the target destination 
signal may require the train to traverse a 
sequence of basic routes.  This sequence is 
referred to as a “route sequence.” 
 

n Train Lengths.  To determine track circuit 
occupancy, the length of the train is needed.  
The length of the trains used in this research 
is 177 metres from axle to axle, while the 
end to end length is 182.5 metres. 

 
 
TIMING CONSTRAINTS 
 

Several different types of timing data were used 
by our scheduling algorithm.  This includes the run 
times of the train, the signal timing, the time to 
change the crew, and the transmission time. 
 

n Run Times.  Only the nominal run times 
are used in this study.  The scheduling 
algorithm used the run times to determine 
when routes will be freed up for other trains 
to use.  The run times are defined as the 
travel time needed between any two signals 
without stopping. 
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Fig. 2  The representation of a route sequence and its timing. 
 

n Signal Timing.  It takes about 7 seconds to 
set a route if point movement is required.  It 
takes about 3 seconds to set a route if point 
movement is not required. 
 

n Double-ended Timing.  Double-ended 
crew is the case where there is a driver at 
both ends of a train.  This technique is used 
to reduce the time needed to reverse a train.  
Normally, to reverse a train, the driver 
should stop the train and walk from the one 

end to the other to restart the train.  The 
time required for the whole process is 
around 4 minutes.  With double-ended 
crew, the additional driver will restart the 
train after the current driver stops it.  
Reversing, in this case, only takes about 15 
seconds to finish but requires a larger crew 
size to operate.   
 

n Transmission Delay.  A 2-second 
transmission delay from issuing the route 
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setting command (by computer or operator) 
to actuation of the route setting activity is 
required. 

 
Figure 2 is a Gantt chart that shows the type of 

timing information that is represented and used by 
our scheduling algorithm.  Each row, along the 
vertical axis, represents one particular route and the 
different types of timing involved when a train 
travels in that route.  The complete sequence of rows 
represents the sequence of routes a train takes from 
the start signal, e.g. the depot, to the end signal, e.g. 
the Departure Platform. 
 
 
THE CONSTRAINT-BASED MODEL AND 
ALGORITHM 
 

To solve this problem, we represented the 
timetable and route generation problem as an 
object-oriented [LEPA93] constraint-satisfaction 
problem (CSP) [KUMA92].  Although CSP or 
constraint-programming has a relatively long 
history [STEE80], with constraint language 
extensions found in Prolog [COLM90, VANH89], 
and Lisp [SISK93], it is only recently that 
constraint-programming became more popular with 
the availability of the ILOG’s C++ class libraries 
[PUGE94a].  This library provided a very efficient 
and clean implementation of constraint-based 
programming features in a conventional language.  
Our scheduling algorithm was implemented using 
the ILOG C++ class libraries.  
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Fig. 3  The UML class diagram of the constrained 
variables. 

 
 
In general, any scheduling and resource 

allocation problems can be formulated as a 
constraint-satisfaction problem (CSP) which 
involves the assignment of values to variables 
subjected to a set of constraints.  CSP can be defined 

as consisting of a finite set of n variables v1, v2, ..., vn, 
a set of domains d1, d2, ..., dn, and a set of constraint 
relations c1, c2, ..., cm.  Each di defines a finite set of 
values (or solutions) that variable vi may be 
assigned.  A constraint cj specifies the consistent or 
inconsistent choices among variables and is defined 
as a subset of the Cartesian product: cj ⊆ d1 x d2 x ... 
x dn.  The goal of a CSP algorithm is to find one tuple 
from d1 x d2 x ... x dn such that n assignments of 
values to variables satisfy all constraints 
simultaneously. 

When the train timetable and route generation 
problem is formulated as a CSP, the problem is 
represented as a set of constrained variables.  The 
first type of constrained variable represents entries 
in a train timetable.  There are two timetables in our 
problem – a timetable for the Arrival Platform (T1) 
and a timetable for the Departure Platform (T2).  
Each timetable is a list of constrained variables.  The 
domain of the variables will depend on the desired 
headway values requested by the user. 

Each timetable entry also contains a “route 
assignment.”  Each “route assignment” represents a 
sequence of “train activity.”  Each train activity 
represents the selection of a particular route, at a 
particular start time, with a particular delay.  The 
route, start time, and delay are all represented as 
constrained variables.  The domain of the route 
variable is all routes that can start from the current 
location of a train.  The domain of the start time is 
related to the previous route’s end time.  The 
domain of the delay represents the amount of time a 
train might need to wait at a signal.  Figure 3 is a 
simplified Unified Modelling Language (UML) class 
diagram that shows the essential classes in our 
design. 

This constraint-based formulation was designed 
from the requirement that the input to the 
scheduling algorithm will be a table of desired 
headway values at the Departure Platform.  
Therefore the schedule algorithm will schedule a 
time for the arrival of a train at the Departure 
Platform.  However, we will need to work backward 
to figure when the train departs from the depot and 
how long the train waits at each intermediate signal.  
On the other hand, this train might be a reversing 
train from the Arrival Platform.  In this case, the 
scheduling algorithm works forward from when the 
train leaves the Arrival Platform until it reaches the 
Departure Platform.  This combination of searching 
backwards and forwards at the same time 
complicates the algorithm, but is a necessity given 
the subway authority’s input requirement.  Figure 4 
illustrates this combined search. 

Although the search is a combined backward 
and forward search, the scheduling of the timetable 
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entries is a forward process; timetable entries are 
instantiated from the earliest entries first.  In other 
words, the timetable is generated from the first train 
to arrive at the T2 Departure Platform to the last 
train of the desired scheduling period. 

During the constraint-based search, the 
algorithm predicts when a train leaving the 
Departure Platform will return back to the Arrival 
Platform from the other terminus using nominal 
turnaround times.  In addition, the algorithm 
merges the time a train leaves the Arrival Platform 
with the timetable entry for the arrival of that same 
train at the Departure Platform.  This merging 
operation is the major source of backtracking for the 
scheduling algorithm.  The time a train arrives at the 
Departure Platform from the Arrival Platform might 
not match exactly the headway required for the 

Departure Platform and the train must wait inside 
the turnaround area for the next departure time slot. 

For each time value that the algorithm assigns to 
the timetable, the algorithm also selects a route 
sequence that will lead the train to arrive/depart at 
the desired time.  The route sequence with the 
shortest total runtime that does not interfere with 
any other previously made route assignments will be 
selected first. 

For each potential route sequence that is 
selected, the algorithm also determines how much 
time the train should wait at each signal for signal 
clearance.  The minimum amount of waiting time 
will be used.  This is equivalent to “stretching” the 
route sequence as shown in Figure 5 (the arrows 
highlight the “stretching” action and not the 
temporal evolution). 
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Fig. 4  The combined backward and forward search. 
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Fig. 5  “Stretching” a route sequence by adjusting the waiting time. 
 
 



 

 
 

Fig. 6  The graphic simulator used to display the 
scheduling results. 

 
 

If the proposed route sequence generated by the 
scheduling algorithm does not conflict with any 
other previously assigned routes, then that route will 
be assigned to the train.  On the other hand, if no 
feasible routes can be found, the algorithm will try 
to adjust the waiting times at the signals.  If no 
solution can be found, the algorithm then adjusts 
the arrival/departure times at the station.  If still no 
solution can be found, then the algorithm tries to 
assign a different route sequence to the previous 
timetable entry.  This “undoing” of previously made 
assignments is performed automatically by the 
backtracking mechanism provided by constraint 
programming.  This backtracking will continue until 
a solution is found or when all possible solutions 
have been tried.  Once the timetables and route 
sequences have been generated, graphic simulation 
software is used to display and visualise the 
resulting schedule (see Figure 6). 
 
 
 
 
ADVANTAGES OF CONSTRAINT 
PROPAGATION 
 

To illustrate the problem complexity, for the 3 
hours of morning train dispatch there are around 70 
choice points for just the timetable generation - each 
with potentially over 100 possible values.  For route 
selection, there are a total of 130 route sequence 
combinations within the interlocking and headshunt 
area, each with an average of 4 routes, each route 
with possibly 60 timing variations.  The total 
complexity of just the morning dispatching is far too 
much for any rule-based approach. 

The constraint-based approach, proposed in this 
paper, was able to generate timetables and route 
sequences within a reasonable time because of 
constraint propagation.  Constraint propagation 
eliminated invalid choices before they can be 
selected for search.  In the case of timetable 
generation, routes that conflict with assigned routes 
will be eliminated and timetable entries that violated 
headway requirements will not be selected.  The 
constraint-based approach makes use of arc 
consistency [MACK77] and constraint propagation 
[WALT72] to reduce the domain size of each 
constrained variable before search.  Smaller domain 
size means smaller and more focused search space.  
 
 
RESULTS FROM TEST CASES 
 

The constraint-based scheduling algorithm was 
tested on many test cases.  The algorithm was 
designed to minimise changes in the desired 
headway value as much as possible.  However, 
minimising headway changes in early morning 
forces the headway at the final target to fluctuate 
slightly. 

 
 
 
The following table lists test cases that achieved 

the desired 105-second headway values, i.e., roughly 
34 trains per hour.  Currently, the trains operate at 
roughly 112 or 113-second headway values.  Also 
listed is the number of trains that were dispatched 
from 6am to 8:40am, the number of trains that had 
a headway value of exactly 105 or 106 seconds, and 
the average deviation from 105 seconds within the 
7:40am to 8:40am peak. 
 
 
Table 1.  Summary of Testing Results 

Test 
Case 
No 

Total trains 
since 6am 

No. of 105 or 
106 trains 

Avg. 
Deviation 

from 105 sec. 
2 66 29 1.4 
5 72 22 4.7 

10 73 21 4.8 
13 73 22 4.7 
14 73 23 4.7 
15 73 23 4.7 

 
 

As an example, Test Case 15 was produced with 
the following input headway table. 
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Table 2.  The Headway Table Used for Test Case 15 
Station Start End Headway No Trains 
TSW2 6:00 6:30 240 8 
TSW2 6:30 7:00 180 10 
TSW2 7:00 7:25 120 13 
TSW2 7:25 7:40 112 8 
TSW2 7:40 8:40 105 34 

 
 

Out of these test cases, the best result was 
obtained in Test Case 2 where trains were 
dispatched for the 105-second headway with an 
average deviation of only 1.4 seconds.  The current 
rule-based systems can at most dispatch up to 112-
second headway values. 
 
 
SYSTEM IMPLEMENTATION 
 

The object-oriented constraint-based [LEPA93] 
allocation system was implemented in C++ using 
the ILOG Solver class library [PUGE94a] and the 
RTL Scheduling Framework developed by Resource 
Technologies Limited [CHUN96a, CHUN96b].  The 
graphic user interface that simulates the generated 
schedule was developed using C++ graphic 
components provided by ILOG Views.  The system 
was developed using platform independent coding 
and can execute within Windows 95/NT or Unix 
environment. 
 
 
CONCLUSIONS 
 

This paper documents our research in modelling 
train timetable and route generation as a constraint-
satisfaction problem.  The constraint-based 
scheduling algorithm was tested using data from one 
of the busiest subway systems in the world.  The 
results showed that the scheduling algorithm was 
able to generate timetables and routes that had a 
higher service level than that was previously 
possible with a rule-based approach. 
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