CS2312 Problem Solving and Programming
2020-2021 Semester B

Department of Computer Science, City University of Hong Kong

Instructor: Dr. Helena WONG

Your Attention, Pleasel

% Not a pure programming course.

M Your first programming course and your coming software design coursehas a

large gap in terms of the level of abstraction required.

B This course is to help you to raise the level of abstraction from pure
programming to a logical organization of software code based on the

requirements of the targeted applications to be developed.

[Borrowed from Dr. Ricky CHAN’s notes in Spring 2013]

Related Courses:

CS2310 Computer Programming

CS2312 Problem Solving and Programming
CS3342 Software Design

CS3343 Software Engineering Practice

Java Programming and OO

% [Teaching Focus #1] Java Programming

= Crash introduction of basics
you have learnt C++ already, we can move fast onto java

= Intensive study of key and advanced techniques
target: pave the way for Part 2

8 [Teaching Focus #2] Doing the OO

= Object Oriented - concepts/design/principles/practices

Intended Learning Outcomes - Briefly:

1. [O0] Understand OO concepts

2. [OOD] Design OO solutions

3. [OOP] Implement the OO solutions in Java

4. [Practices] Apply the best practices in Java programming

5. [Review] Evaluate and review OO design and code

Python and Functional Programming

8 [Teaching Focus #3]

Python and Functional Programming

= Given in week 12-13

Textbook and Materials

% [Focus #1] Java Programming

Textbook: C.S. Horstmann, and 6. Cornell, Core Java™ Volume I, Prentice Hall.

Other books on my desk:
- Walter Savitch, Absolute Java, Addison-Wesley.

- Y.D. Liang, Intro. to Java™ Programming Comprehensive Version, Pearson.

Official site of Java, tutorial: http://docs.oracle.com/javase/tutorial/index.html

% [Focus #2] OO concepts/design/principles/practices

- Materials from Dr. Sam NG for his teaching of a previous course: 52332 OQP in ¢+
Sam is also the author of the current syllabus of CS2312.

- Materials from Dr. Ricky CHAN [€52312 / Spring 2013, €53342] Dp_Jacky KEUNG [€53342]

- More.. [Check out at our courseweb]

% Acknowledgments:

"Some of the material for this course was influenced by and, in some cases, directly borrowed
from, materials available on the web for similar courses at other universities. I thank the
instructors who POSTed their materials on the web.” [Borrowed from http://www.cse.ohio-state.edu/~neelam/courses/45923/]

www.cs.cityu.edu.hk/~helena Intro 5

http://docs.oracle.com/javase/tutorial/index.html
http://www.cse.ohio-state.edu/%7Eneelam/courses/45923/

Sample OO Program

Consider a Library System which allows:

« Register a new member. A member may be a child,
adult or senior.

« Cancel, search for an existing member.
* Add a new book.

« Remove the record of a book.

« Search for the details of a book.

« A member borrows / returns a book.

« A member pays fine. Fine rate is $3/day for children,
$10/day for adult and $5/day for senior.

« Undo the last action performed by the user.

Procedural approach and OO approach are very different!!
Which would be our approach for even larger problems?

Sample rundown:

=1
Member created!
=1
Member created!
>

ID Name Cutstanding Fine
gel sam 2.8

ga2 phoebe 0.0

-

ID Name Outstanding Fine
2a2 phoebe .0

-

Member remowved!

-

Faillll! Member not exist!

-3
Book arriwed!
-3

Book arriwed!

-
CallMo TAitle Authors
B1 Bookl Authorl
B2 Book2 Authorz2

CS2310 [Procedural approach]: Specify what tasks to do in each step
CS2312 [Object-oriented approach]: Specify who performs what tasks in each step.

“Object-oriented design has been widely adopted by businesses around the world. When
done properly, the approach leads to simpler, concrete, robust, flexible and modular

software. “ -- Robert C. Martin (Uncle Bob)

Topic 01 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Topic 01 - Java Fundamentals

I. Introducing JAVA

II. Compiling and launching from Command-Line, IDE

A simple JAVA program

Ill. How does JAVA work

IV. Review - Programming Style, Documentation, Syntax error /

Runtime error / Logic error

I. Introducing JAVA

= The White Paper for Java was announced in May 1996
James Gosling , Henry McGilton - Sun engineers

= Javais designed to achieve:

= Simple

% Java is partially modeled on C++, but simplified and improved.

1 Java was designed from the start to be object-oriented.

= Object oriented

Java is designed to make distributed computing easy with
L networking capability. Writing network programs is like sending
* Distributed and receiving data to and from a file.

= Multithreaded —% Multithread programming is smoothly integrated.

Designed to adapt to an evolving environment. Libraries can
= Dynamic freely add new methods and instance variables without effecting
clients. Straightforward to find out runtime type information.

Portable platform without being recompiled.

® Architecture neutraI% With a Java Virtual Machine (JVM), one program can run on any

bytecodes to machine code.

= High performance ﬁ High performance of interpreted bytecodes, efficient translation of

= Robust

<J| Java compiler, modified program constructs, runtime exception-handling |

» Secure ﬁ Security mechanisms to protect against harm caused by stray programs. |

= The Java platform is available as different packages:

= JRE (Java Runtime Environment) — For consumers to run Java programs.

= JDK (Java Development Kit) — For programmers to write Java programs.

Includes JRE plus tools for developing, debugging, and monitoring Java

applications.

Last modified: 3-Sep-2020

https://www.oracle.com/java/
moved-by-java/

https://www.oracle.com/java/techn
ologies/language-environment.html

1/6

Topic 01 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

= Once installed, the Java Virtual Machine
(Java VM) is launched in the computer.

= During runtime, the Java VM interprets
Java byte code and translates into OS calls.

Java programs
(*.class that stores Java byte code)

JAVA Virtual Machine
oS

(Windows, Linux etc..)

4

Hardware
(Intel, AMD, etc..)

= Java Versions:

Version 1.0 (1995) Version 1.5 (2004) a. k. a. Java 5
Version 1.1 (1996) Version 1.6 (2006) a. k. a. Java 6
Version 1.2 (1998) Version 1.7 (2011) a. k. a. Java 7
Version 1.3 (2000) .

Version 1.4 (2002) Version 7?

https://www.oracle.com/java/
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html

= Editions for different development purposes:

 Java Standard Edition (J2SE)

J2SE can be used to develop client-side standalone applications or applets.

« Java Enterprise Edition (J2EE)
Server-side applications such as Java servlets, Java ServerPages, and Java
ServerFaces.

+ Java Micro Edition (J2ME)

Applications for mobile devices such as cell phones.

Last modified: 3-Sep-2020 2/6

https://www.oracle.com/java/
https://www.oracle.com/java/
https://www.oracle.com/java/
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html

Topic 01 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Il. Compiling and Launching from Command-Line, IDE, A Simple JAVA Program

With JDK installed, you can compile and run Java programs in this way:

1. Create the source file: Welcome. java
| Welcome java - Naii v - =] S |

.« (052311 Exercizes » demol - |+
| File Edit Format View Help L —
i MName Type Size
//This program prints Welcome to Java! B ll N
| Welcome,java JAVA File 1KB

public class Welcome {
public static woid main(Stringl] args) {

System.out.println{"Welcome to Java!"});

I }
1

2. At the command prompt, set path to JDK and then compile to give Welcome.class

C:\Windows\system32\cmd.exe -
(c4.) WSy o X | .« (52311 Exercises » demol

. , . T Ty
C:\CS2311_Exercises\demol>set path=C:\Program Files\Java\jdk1.7.0 25\bin 1 e vee

. . . | Welcome,java JAVA File
C:\CS2311_Exercises\demol>javac Welcome.java [Welcome.class ~ CLASS File

3. Runit:

C:\Windows\system32\cmd.exe

C:\CS2311_Exercises\demol>java Welcome
Welcome to Java!

Explanation of the program:

In JAVA, everything is inside a class, including the main () method

By convention, class names start with an uppercase I_féT‘rer‘.

File name (Welcome.java) mﬁsj match class name (c_l:ass Welcome)
: String[] args is

e N"i‘ h | ~ [=l=J| the argument for
File Edit “Format View Help 4| running the
/' Thias prof;"r.‘am printa 'Ir(!,';:lc:ome to Javal pr‘ogr‘am.

The static modifier
is added to tell that: | ;

(See next slide.)
we can run main public static void main (Stringl] arg.a! 1

wn.hou.'. Cr‘ea‘hng an System.out.printlf‘x("'h‘elcome to Javal™):
object first. I ! :

(Learn in Lab01_Q1)

In JAVA, we have System.out.print, which is just like
cout << in C++

System.out.println: newline is added after the output.

Last modified: 3-Sep-2020

Size

3/6

1KE
1KE

Topic 01

52312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Arguments can be supplied tomain() asan array of strings:

Example:

.'.‘ B
| Welcome java - Not —— R =1 =
| Welcome java epad
File Edit Format Miew Help s |
//This preogram prints welcome to Java!l & -~

public class wWelcome {

system.out.println{™Hi

public static wold main(string[] args) {

+ args[e] + ", welcoms to

+ args[1]};

¥
¥ B Select C:\Windows\System32\cmd.exe
| C:\(C52311_Exercises\demo2>java Welcome Helena CityU
L Hi Helena, Welcome to CityU
i
Run-time exception: &Y C:\Windows\System32\cmd.exe

The program code

expects 2 arguments. §C:\C52311 Exercises\demo2>java Welcome Helena
But the only one is Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 1
at Welcome.main(Welcome.java:7)

given.

= Integrated Development Environments (IDE):

e NetBeans

e Eclipse
o repl.it
e Vs Code

Last modified: 3-Sep-2020

4/6

Topic 01 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

I1l. How does JAVA work

Compiling and Running Programs

B Source files (.java) are compiled into [@ « CS2311 Exercises » demol =
.class files by the javac compiler. : :
i Mame Type Size
BY C\Windows\system32\cmd.exe
| Welcome java JAVA File 1 KB
C:\C52311_Exercises\demol>javac Welcome.java || Welcome.class CLASS File 1 KB

B A .class file does not contain code that is native to the computer:
It contains bytecodes — in machine language of Java Virtual Machine (Java VM).

B The JRE runs .class with an instance of the Java Virtual Machine.

% Compiler % . 0100101... |]
/ . P / 1 N / [Java ‘
// // v |
l% - <
Welcome

Welcome.java Welcome.class
program

&y C\Windows\system32\cmd.exe

C:\C52311_Exercises\demol>java Welcome

Welcome to Java!

How are JAVA Programs “Architecture neutral”, “Portable” ?

J Welcomejava—NW = | B |
[File Edit Format View Help

The role of Java VM

//Thia program prints Welcome to Jawva!
public class Welcome {

B Java VM is available on many

public static wveid main(Stringl] args) {

I }
}

different operating systems.

System. out.println{"Welcome to Javal™);

B Once you install JRE or JDK,

Welcome.java l
Java VM is ready in your p—
=> Welcome.cl
computer. /ﬁ‘iw\

B The same .class file is capable of
running on Microsoft Windows,

the Solaris™, Linux, or Mac OS.

Last modified: 3-Sep-2020 5/6

Topic 01

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

IV. Review - Programming Style, Documentation,

Programming Style and Documentation

Syntax error / Runtime error / Logic erro

public class Day {
private int year;
private int month;

B Appropriate Comments private int day;
public Day(int y, int m, int d) {
B Naming Conventions this.year = y;
this.month = m;
e Choose meaningful and descriptive names. this.day = d;
B Proper Indentation and Spacing Lines public String toString() {
return day + "-" + month + "-" + year;
e Tabs, tidy spacing) ¥
e Use blank line to separate segments of the code. Poor! Hard to read!
Please add line breaks before methods
B Block Styles
Next-line public class Test
style T {
(()K) public static void main(String[] args)

{
System.out.println(
}

"Block Styles");

System.out.println ("Block Styles");

End-of-line
— e
public class Test { 46—_——_——__——_—7
public static void main(String[] args) {é{ (()K)

}
}

Three types of programming errors

E Syntax Errors

= Detected by the compiler

& Runtime Errors

= Causes the program to abort

B Logic Errors

= Produces incorrect result

Debugging

public class ShowSyntaxErrors {
public static main(String[] args) {
System.out.println("Welcome to Java) ;
}
}

public class ShowRuntimeErrors {
public static void main(String[] args) {
System.out.println(l / 0);
}
}

public class ShowLogicErrors {
public static void main(String[] args) {
System.out.print("Five plus six is ");
System.out.println("5"+"6") ;

(1) A video on Canvas => CS2312 => https://www.cs.cityu.edu.hk/~helena/cs231220... :

debugger in VS Code (Tracing Lec01 Q12 Fib and Lab01 Q02 Day)

(2) https://code.visualstudio.com/docs/java/java-debugging

6/6

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Topic 02 - Java Fundamentals

L A simple JAVA Program VIII. Conversion and type casting
— access modifier (eg. public), static, ..

IX. Parentheses, Operator Hierarchy,
II. Packages and the Import statement, Java API Precedence levels, Associativity

(java.lang, java.util, Math,..)

) X. Strings, StringBuilder
III. Creating Packages and “Default Package”

XI. Input (console, file, input from string)
IV. Comments and Javadoc

XII. Output (System.out.printf,

V. Data types and Variables String.format, PrinterWriter)
VL. Constants (the final keyword) XIIL Control flow
VII. Arithmetic Operators, Relational Operators, XIV. Arrays

Boolean (logical) Operators, Bitwise Operators

I. A Simple Java Program

FirstSample.java

public class FirstSample

{

public static void main(String[] args)

{
System.out.println("Hello!");

}

}

Access Modifier: public

e The keyword public is one of the access modifiers, that states how other parts can get the access.
For example, here public is applied to class FirstSample meaning that outsiders can use the class.

o Except public, we also have other modifiers: private, protected, etc., We will cover them in next topic.

JAVA classes and .java files

e Classes are the building blocks for Java programs.

By convention: start with an uppercase letter

¢ A javafile cannot have 2 or more public classes.

The name of a public class has to be the same as the file name

e Case sensitive. FirstSample.java matches with class name FirstSample

The main method in Java

e main() does not return anything, thus void

e main() has to be inside a class; as a static method (ie. A method that does not operate on objects.).

Strin args

e Arguments can be supplied to main() as an array of strings. (Ref. Topic01)

Last modified: 9-Sep-2020 1/14

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

print(..), println(..)

e General syntax to invoke a method: object.method(parameters)

e Use the System.out object and call its println method.

o System.out.println("Hello!");
prints “Hello!” + terminate the line (newline character \n')

e Can be without argument: simply a blank line

o System.out.println();

e .print() method

o System.out.print("Hello!"); € not terminating the line (x “\n”)

I1. Packages and the import statemen

e Packages are groups of classes.

e The standard Java library is distributed over a number of packages
e.g. java.lang, java.util,

e java.util
o java.util contains the Scanner class (and many other classes)

o We can use it like: |java.util.Scanner|

o If we import java.util.*, then we can simply write:

¢ The import statement: 7] Mainjava 52

import java.util.*;
o import java.util.*;
We can use all classes in E“bllc class Main
java.util

public static woid main(String[] args]

i
System.out.print("Please enter thg
scannerDbj = new Scanner(:
int v, m, dj
y=scannerObj.nextInt();

o import java.util.Scanner;
We can use Scanner

e java.lang - Java fundamental classes
o No need to import java.lang (assumed already for all programs)

o Jjava.lang provides the System class , Math class, and many more..

e Use of the java.lang.System class: public class FirstSample {

public static void main(String[] args) {

out. println("Hello!");

}
}

Ref: JAVA APl Documentation https://docs.oracle.com/en/java/javase/1 1/docs/api/java.base/module-summary.html

Last modified: 9-Sep-2020 2/14

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/module-summary.html

Topic 02

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

I11. Creating Packages and “Default Package”

e We can group our source files into packages

o Aclass not grouped into package is in "default package"

] File Edit Selection

~ LAB01.Q03

@ Controllerjava [~~~

O Day.java

~<

AAoi; e

o Aclass grouped into package is in the package folder and has the package statement:

Proiect folder in VS Code

File explorer

<

Calendar package

File Edit

Selection Lec02 DemoP ™ Mame

s LEC02_DEMOP Calendar

J Day.java
“ Calendar

o Day.java

/@ Mainjava

Package name must
match folder name

contains Day . java

Source code

[J] Dayjava 2
package Calendar;

public class Day {

private iﬁ;t year;

pl‘:!.\.'a1.:e 1nt njonth;
Add package statement
to the top of file

To use the class, type calendar.pay or add import Calendar.*

e Unluckily PASS doesn’t compile packages at this moment.

IV. Comments|

Three ways of marking Comments

o LikeC++:/,/*.. .7

e For automatic
documentation
generation: /**...*

/**
Just print them
tl - 1st thing to be
t2 - 2nd thing to be

done
done
=Y
static void doTwoThings(String
{
System.out.println(t1);
System.out.println(t2);
}

t1, String t2)

automatic documentation generation
(by the javadoc program from JDK)

Some IDEs add * in front of
every line, for visual style only.

/**

* Just print them

* @param t1 - 1st thing to be
* @param t2 - 2nd thing to be
*/

done
done

Last modified: 9-Sep-2020

&° void TwoThings.doTwoThings(String t1, String t2)

lust print them

Parameters:
t1 - Lt thing to be done
t2 - !nd thing to be done

3/14

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

V. Data Types and Variables

Overview of Data types

There are two kinds of types in the Java: Primitive types and Reference types
. Primitive types: Java has 8 primitive types: boolean, byte, short, int, long, float, double, char
Il. Reference types ("pointersinCi+),

- The values of a reference type are references to objects.
An object is an instance of a class.
Note: The word “object” is often used interchangeably with “instance”.

- Examples of built-in Java classes: String, Math, Scanner
Examples of user-defined classes (Lab01): Main, Day, Model, View, Controller

We can create objects of these classes, using the new operator. After creation, we get the object reference.

We often use a variable to hold the object reference; /\
Then we can use the variable to access the object. e.g. Day dayObj = new Day(2013, 12, 31);
System.out.printin(dayObj.toString());
- Anarray is also a special kind of object

Variables

We have seen that there are 2 types of data: Primitive and Reference types.

These data can be stored in variables: primitive values and reference values:

Types of variables in JAVA Information stored Examples
(i) Variables of Primitive Types The variables hold the exact int x;
values X = 689;
(ii) Variables of Reference Types | The variables hold the references Day d;
to objects (Like pointers in C++) d = new Day(2016,1,20);"

#1: Use of a class: We use a class name as variable type, and use the class to create ("new") an object of its kind.

Data Types — Integers

e Integer types int 4 bytes -2,147,483,648 to 2,147,483, 647 (just over 2 billion)

short 2bytes -32,768 to 32,767

Tong 8 bytes —9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

byte 1 byte -128 to 127

e Java has no unsigned types

e lLonginteger numbers have a suffix L //suffix 'L' is required for 2,223,123,123
System.out.println("Testing: " + 2223123123L); //Testing: 2223123123
long x;

X = 2223123123L;
System.out.println("x is: " + x); //xis: 2223123123

e To provide numbers in Binary, we need prefix: Ob int x;
X = 9b11111111;

e To provide numbers in Hexadecimal, we need prefix: Ox System.out.print(x); //shows 255
X = OxFF;
System.out.print(x); //shows 255

Last modified: 9-Sep-2020 4/14

Topic 02

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Data Types — Floating Point Types

e Floating Point Types

o For numbers with fractional parts, (ie. not whole numbers, e.g. 1.1), and

o For very large numbers (e.g. 5 x 1023)

e The precision is limited (ie. keep a few significant digits).

e 2Types: float 4bytes Approximately +3.40282347E+38F
(6-7 significant decimal digits)
double 8 bytes Approximately +1.79769313486231570E+308
(15 significant decimal digits)

o Suffix:
o float-F
o double — D (optional)

float x1 = ©.98765987659876598765F ;
System.out.println(x1); //Shows ©.9876599

double x2=0.98765987659876598765D; //'D' is optional
System.out.println(x2); //Shows ©.987659876598766

double x3=0.98765987659876598765; //'D’ is optional
System.out.println(x3); //Shows ©.987659876598766

double x4=98765987659876598765D; //'D' is optional
System.out.println(x4); //Shows 9.87659876598766E19

¢ Roundoff errors

System.out.println(2.0 - 1.1);

//0.8999999999999999

Reason of Roundoff errors:

computer uses binary number system; and there is no precise binary representation of a lot of

fractions (e.g. 1/10)

Solution: use the BigDecimal class (Example is in the given code of this topic)

Data Types — char and Escape Sequence

e Primitive type for characters: char

o Escape Sequence for special char values:

Data Types — Boolean

e Boolean type: true, false

Escape sequence Name Unicode value
\t Tab w0009
\n Linefeed \u000a
\" Double quote 1u0022
\' Single quote \u0027
W\ Backslash \u005c¢

o We cannot convert between integers and Boolean values

boolean b=true;
int i = 3;

b = i; //Error!! Type mismatch - cannot convert from int to boolean
i = b; //Error!! Type mismatch - cannot convert from boolean to int

Last modified: 9-Sep-2020

5/14

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Declaration of Variables

o Every variable has a type:
o double salary;
o 1int vacationDays;
o long earthPopulation;
o boolean done;

e Common ways to name: start with lowercase letter
o Box box; //Box is a class type and box is the variable.
o Box aBox; //using “a” as prefix
o Box bxJewels, bxCoins;

e Must explicit initialize before use int x:
3

System.out.println(x); // ERROR--variable not initialized

int x = 12;
System.out.println(x); //12

int x;
x= 28;
System.out.println(x); //28

1. Constants

Constants: Java keyword is final
final: the value is set once and for all.

Common ways to name a constant: all in uppercase
Often given as Method constants or Class constants

public class MyApp public class MyApp

public static void main(String[] args) public static final double CM_PER_INCH = 2.54;

final double CM_PER_INCH = 2.54; public static void main(String[] args)

}
}
} }

VII. Operators: Arithmetic Operators, Relational Operators, Boolean (logical) Operators, Bitwise Operators

(I) Arithmetic Operators: +, -, *, /, %, +=, -=, *=, [=, %=

xly
e If both x and y are integers, denotes integer division, e.g. 3/4is @

e Otherwise floating-point division, eg. 3.0/4 is 0.75

x/0
e If x isinteger => division by zero exception (run-time error)
e Otherwise, ie. x is floating point => NaN Notanumber or 1£ipity

System.out.println(e/e); = java.lang.ArithmeticException: / by zero
System.out.println(0%e); = java.lang.ArithmeticException: / by zero
System.out.println(12.0/0); = gives Infinity
System.out.println(0.0/0); = gives NaN

System.out.println(12.0%0); = gives NaN
System.out.println(0.0%0); =2 gives NaN

Last modified: 9-Sep-2020 6/14

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

(I1) Relational Operators: ==, I=, >, <, >=, <=

(1) Boolean (logical) operators: &&ANP, ||OR

e Evaluated in “Short circuit” fashion
l.e., The second argument is not evaluated if first argument already determines the value.

Example 1: if ((isMember==true) || (calculateAge(..)>=65))
System.out.print("Gift");

if isMember is true, then calculateAge doesn't need to (will not) run.

Example 2: if (totCourses>0 && totalMarks/totCourses >=90)

System.out.print("Well done!!");

if totCourse is 9, then totalMark/totCourses will not be calculated
(avoid run-time error "Division-by-zero®)

(IV) Bitwise Operators:
& (“AND”) | (“OR”) ~ (“XOR”) ~ (“NOT”) << (left-shift) >> (right-shift)

Example:
int n1, n2, n3;

nl = OxFE; (ie. ©b11111110)
n2 = nl ~ OxFF; //set n2 to ©beEEEEGA1 (©b11111110 XOR ©b11111111)
n3 = n2 << 4; //set n3 to 0b@OO1000O (left-shift @beEEGEOG1 by 4 bits)

VIII. Conversion between numbers, type casting

Legal conversions: 2 bytes
Case 1: Without information loss, or
—_
1byte 2 bytes J 4 bytes 8 bytes
Case 2: Just to lose precision [byte]—“[short]_"I i]_"
______ b._ E "’4 E
double d; float f; int i=2147483647; L A
g
System.out.println(f); //output: 2.14748365E9 4bytes 8 bytes

System.out.println(d); //output: 2.147483647E9
System.out.println(i); //output: 2147483647

Case 3: Though legal, but may lose information. For these cases explicit type casting is needed:

int i=97; char c;
c=(char)i;

System.out.println(i); //output: 97
System.out.println(c); //output: a

Q: Why int->char may cause information lost?
A: int is 4 bytes, can hold big range of values
But char is 2 bytes only

Last modified: 9-Sep-2020 7/14

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

IX. Parentheses and Operator Hierarch

When one expression contains 2 or more operators, then

The order of Evaluation depends on precedence level and associativity.

E.g.)
int x = 12345 / (4 + 5 * 7 - 2);

® @ o 6

- The precedence level of / and * are higher than the precedence level of + and -

- To override the above ordering, we add () for grouping.
)

the precedence level of () is high

Operators Associativity
(9] Left to right
/% Left to right
+ - Left to right
< <= > >= Left to right

== = Left to right

&& Left to right

I Left to right

= 4= -= *= /= %= Right to left

| precedence level >

Exercise:
Q1. For each underlined expression below, mark the steps with @, @:
(i). System.out.println(1234 / 100 / 10) ;

(i) System.out.println(1234 * 60 % 24); (note: * and % have the same precedence)

(iii). int a,b; a = b = 10;

Q2. Delete the wrong items below (*):

1 " e . Note:
In * (i) / (i) / (iii), we say that the associativity is left-to-right. When operators have the same precedence level,
then the associativity rules of the operators decide
In * (i) / (ii) / (iii), we say that the associativity is right-to-left. the order of evaluation.

Last modified: 9-Sep-2020 8/14

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

X. Strings & StringBuilder

Strings (java.lang.String)

e A String object contains a sequence of Unicode characters (code units in UTF-16 encoding)

e String variables are references to string objects
String s = new String("Hello"); or| String s = "Hello"; ‘ € Shorthand

e .length method yields number of characters

e "" isthe empty string of length 0, different from null
if (s!= null && s.length() != @) ‘(— Check for non-null and non-empty

e .charAt method yields char:

’ char ¢ = s.charAt(i); ‘

e .substring method yields substrings:
String greeting = "Hello"; |'H'|'e'|‘] 110"
String s = greeting.substring(1,3); 0 1 2 3 4

It means from position 1 inclusive to position 3 exclusive el

e + String greeting = "Hello"; String s;
s 1000 + " " + greeting; // "1000 Hello"
s = 1000 + ' ' + greeting; //

e Use .equals to compare string contents:

String greeting = "Hello";
String part = greeting.substring(1, 3);

if (part == "el") {..} //NO! €« ferstothe sam
if (part.equals("el")) {..} //OK S

e Converting Strings to Numbers: Integer.parseint

String input = "7";
int n = Integer.parseInt(input); //ngets7

e Strings are immutable:
o No method can change a character in an existing string
o To turn greeting from “Hello” to “Help!”, it is not so convenient:

greeting = greeting.substring(e,3)+"p!"; € actually a new string object

For the original string object which was previously referred by greeting, Java has the Garbage Collection
mechanism to recycle the unused memory.

StringBuilder (java.lang.StringBuilder) StringBuilder sb = new StringBuilder();
sb.append("Hello ");

e If more concatenation work is needed, sb.append(name); //suppose name is "Peter

using + for string concatenation is inefficient ® String result=sb.toString(); //gives "Hello Peter"
reason: it actually creates new string objects

e StringBuilder object — can manipulate characters within itself. ©

e Other StringBuilder methods for handling character contents: setCharAt, insert, delete

Last modified: 9-Sep-2020 9/14

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

1. Input (Console, File, Input from String)

(1) Reading input from Console
e Construct Scanner from input stream (e.g. System.in)
Scanner in = new Scanner(System.in);

e .nextInt, .nextDouble reads nextint or double
int n = in.nextInt();

e .next reads next string (delimited by whitespace: space, tab, newline;
discard leading whitespace)

e .nextline reads until newline and removes newline from the stream.
Sometimes we need .nextline to remove extra line break (Learn from Lab03)

e .close closes the stream

Scanner in = new Scanner(System.in);
String si1,s2;

sl = in.next(); //type " Today is a good day." Today is a good day.
s2 = in.nextLine(); Today
System.out.println(sl); //"Today" is a good day.
System.out.println(s2); //" is a good day* Rundown

in.close();

(2) Reading input from a file

e Construct Scanner from a File object
o Scanner inFile = new Scanner(new File("c:\\datal\casel.txt"));

e .hasNext() checks whether there is still “next string” in the file.

Scanner inFile = new Scanner(new File(fileName));

while (inFile.hasNext()) {
String line = inFile.nextLine();

inFile.close();

(3) Reading input from another string

Scanner inData = new Scanner(str); //where str is a String
//.. apply .hasNext(), .next(), .close() etc..

Example: Read a of words and show them line by line:

Output
System.out.print("Enter a line of words: "); Enter a line of words: Have a good day!
Have
Scanner scannerConsole = new Scanner(System.in); g
String str = scannerConsole.nextLine();
good
Scanner scannerStr = new Scanner(str); day!

while (scannerStr.hasNext())
System.out.println(scannerStr.next());

scannerStr.close();
scannerConsole.close();

Last modified: 9-Sep-2020 10/14

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

XII. Output (System.out.printf, String.format, PrinterWriter)

Formatted Output — using System.out.printf()

Using .print, .printin for floating-point values (problem):

double x = 10000.0 / 3.0;

System.out.println(x); //prints 3333.3333333333335

e Using .printf — formatted output (solution)

double x = 10000.0 / 3.0;

Field width of 8 characters

System.out.printf("%8.2f", x);//prints _3333.33 Precision of 2 characters

=> Result has a leading space and 7 characters

e Using .printf — multiple parameters

System.out.printf("Hi %s. Next year you'll be %d\n", name, (age+l));

e Conversion characters (%f, %d, %s):

Conversion Type Example
character

d Decimal integer 159

X Hexadecimal integer 9f

0 Octal integer 237

f Fixed-point floating-point 15.9

e Exponential floating-point 1.5%+01
s String Hello

4 Character H

b boolean true

% The percent symbol %

¢ Similar method to create a string

String msg = String.format(“Hi %s.

Next year you'll be %d", name, age+l);

e Output to a file (Create a PrinterWriter object, then apply .print etc..)

out.println("My GPA is 4.0");
out.close();

PrintWriter out = new PrintWriter("c:\\report\\myfile.txt");

Last modified: 9-Sep-2020

11/14

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

II1. Control flow]

e Control structures (similar to C++):
if if.else switch-case while do-while for

e Block Scope (compound statement inside {})

e Cannot declare identically named variables in 2 nested blocks:

public static void main(String[] args)
{
int n;
{
int k;
int n; // ERROR--can't redefine n in inner block
¥
¥

e Declaring a variable in a for-loop:

for (int i = 1; i <= 10; i++)
{

¥

// i no longer defined here

for (int i = 11; i <= 20; i++) // OK to define another variable named i

{
.

for and while

e Using break and continue:
break
means "immediately halt execution of this loop"
Continue
means "skip to next iteration of this loop."

We Shou\d use thz;‘go::jicftv \ break cphntinusa
ghat improves € l
// Find x in an array A // read in 10 numbers
// and handle only the positive ones
bFound=false; for (i=0; i<10; i++)
for (i=0;i<n;i++) {
{ x=scannerObj.nextInt();
if (A[i]==x) if (x<0)
{ {
bFound=true; System.out.println("Wrong");
break; continue;
} }
} .
Or // No need to use break } -« // processing of x
bFound=false;
for (i=0;i<n && !bFound;i++)

if (A[i]==x)
bFound=true;

}

Last modified: 9-Sep-2020 12/14

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

XIV. Arrays

e An array is a collection of elements of the same type

® Index is zero-based int[] arr; // int[] is the array type; arr is the array name

// int arr[]; is also okay, but not welcome by Java fans

arr = new int[5]; //create the array; <
arr[0] = 3;
arr[1] = 25;

for (int i=0;i<arr.length;i++) //use .length to tell the array size
System.out.println(arr[i]);

Output .
Once created, cannot change size

3 Initialized values If extension is needed, make arr to referto a

05 For number elements : 0 new larger array and copy the old contents.

0 For boolean elements: false;

0 For object elements: null

arrrg ;
e Array variable is a reference [0]=3

[1]1=25

e Styles of array declaration:

(int[] arr; (2 int[] arr = new int[5]; 3 int[] arr = {3,5,90,0,0};
arr = new int[5]; arr[0] = 3;
arr[0] = 3; arr[1] = 25;
arr[1] = 25;

QharthanAd - Nacrlaratinn with initializare

¢ Reinitializing an array variable int[] arr = {3,5,0,0,0};
arr = new int[] {1,2,3,4,5,6,7,8}; € anew array

For the original array which was previously referred by arr, Java has a Garbage
Collection mechanism to recycle the unused memory.

e The “for each” loop:

o Syntax: for (variable : collection) statement

o Example: for (int x: arr) € "for each" loop - goes through each element as x
System.out.println(x);

1
Practice: Use more “for-each” loop from now on : ©

e Arrays.toString
o Provided by the java.util.Arrays class
o Returns a string representation of the array

int[] arr = {3,5,0,0,0}; Output
System.out.println(Arrays.toString(arr)); [3,5,0,0,0]

e Sorting with Arrays.sort

Arrays.sort(arr); Output

System.out.println(Arrays.toString(arr)); [0,0,0,3,5]

Last modified: 9-Sep-2020 13/14

Topic 02

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

e Array copying

(1) Copying reference — not really creating new array

arrl

new int[] {3,25,0,0,0};
arr2 = arrl;

(2) Copying as a new array: Arrays.copyOf

Syntax: Arrays.copyOf(originalArray, newSize);

arrl
> [0]=3
arr2 22 [1]1=25

arrl

arr3
int[] arrl, arr2, arr3, arr4, arrs; =7 [(])_]igg S$ lglfis
arrl = new int[] {3,25,0,0,0}; // 5 elements arr2 [11= [11=
arr2 = arrl;
arr3 = Arrays.copyOf(arrl, 4); // only want 4 elements
arril[1]=99; Output
[3,99,0,0,0]
System.out.println(Arrays.toString(arrl)); [3,99,0,0,0]
System.out.println(Arrays.toString(arr2)); [3,25,0,01
System.out.println(Arrays.toString(arr3));
Arrays.copyOfRange is another useful method. Learn it in Lab03.
¢ Multidimensional array 5 rows -, 10 columns Output
N '3

2D array:
- Is a 1D array of

some 1D arrays

Ragged Array:
- Different rows

have different
lengths

It is easy to do
so in Java.

Last modified: 9-Sep-2020

int[][] table = new int[5][10];

table[3][5]=1234; // set 4th row, 6th column to 1234

for (int[] arrlD: table)

System.out.println(Arrays.toString(arriD));

table =

table[0]=

table[4]=

[0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,1234,0,0,
[0,0,0,0,0,0,0,0,0,0]

0,0]

Each element in
the 2D array is a

1D array !

Output

String[][] helpers = {

{"Helena", "Kit", "Jason"},
{"Helena", "Kit", "Jason"},

{"Kit", "Jason"},
{"Helena", "Kit"},
{"Helena"}

s

System.out.println("Helpers for TO1-T05:");

System.out.println("

for (String[] arrlD: helpers)
System.out.println(Arrays.toString(arriD));

")s

Helpers for T01-T05:

[Helena, Kit, Jason]
[Helena, Kit, Jason]
[Kit, Jason]
[Helena, Kit]
[Helena]

14/14

Topic 03

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

O Contents

VL.
VII.
VIII.

XI.
XIl.
XII.
XIV.
XV.

Casual Preview
Introduction to OOP
Objects,Object variables
Implicit Parameters

Day - Change of implementation
Mutator, Accesor Methods
public vs private

Benefits of Encapsulation
The Final keyword

The Static keyword
Method Parameters
Default field initialization

Topic 03 - Objects and Classes

Day, Employee, Initializing fields, Array of objects, toString

Terminologies: Instance, Instance fields, Methods, Object state, Encapsulation
Constructor, new, reference to object, null

Calling obj, this, Using this to call another constructor

Using integer data int yyyymmdd;

getXX, setXX

Encapsulation issue, mutable/immutable, avoid unnecessary accessors/mutators

Method constant, Class constant, Final Instance Fields
Class constant (used with final), Static Method, Static Fields
Java uses "call by value"

(not for local variables) Numbers:9; Boolean: false; Object references: null

Overloading methods, Signature

Default Constructor

Class Design Hints

Constructors with zero argument - designed and automatic generated

I. Classes and Objects — Casual Preview zlass CLassName
. field,
A. Simple Class Example 1 - Day (See Lab01 Q1) field,
Add one more method to the Day class: EZEZZEEZCI
2
- . lic class Day ° o o
(1) Fill'in the blank according to the comment: ‘EUb method,
X method,
Il advance the current day object by 1 day private int year; .
public void advance() private int month; }

if (isEndOfAMonth())
if (month==12)
{

year= B

private int day;

//Constructor

public Day(int Y, int m, int d)

= 5 this.year=y;
gg;:h - this.month=m;
- this.day=d;
else | }
{ Add this method
: " " of
: // create and return the next day” O
i // the current day object
{ public Day next()
} {
! if (isEndOfAMonth())
if (month==12) (year+1, 1,13
return new Day ye yis4)
Note: some methods return a result, some do not o '
els th+1,1)
return new Day (year,mon s4)
E15etur-n new Day(year,month,day+1);
re
(2) Both .advance() and .next() calculate the next day. .
Complete the code below based on the comments. }
Day d1 = new Day(2014, 1, 28);
System.out.println(dl.toString()); //Show28Jan2014
_____.advance(); //Advance one day
____.next(); //Advance one day

System.out.println(dl.toString()); //Show30Jan2014

Last modified: 24-Sep-2020

1/16

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

B. Simple Class Example 2- Employee class Employee
{
- Consider a simplified Employee // instance fields
class used in a payroll system: private String name;

private double salary;
private Day hireDay;

// constructor
public Employee(String n, double s, int year, int month, int day)

{

name = n;

salary = s;

hireDay = new Day(year,month,day);
¥

public String getName() {return name;}
public double getSalary() {return salary;}
public Day getHireDay() {return hireDay;}

public void raiseSalary(double percent)

{
double raise = salary * percent /100;
salary += raise;
¥
}
- Alternatively: class Employee
{

// instance fields
private String name;
~_—~ private double salary=0;
Initialization can be private Day hireDay;
done for instance
fields.

) }

- We can even do some method call and computation:
private double salary = Math.random()*10000;

- Using the Employee class in a program: | public class Main_EmployeeTest
{
public static void main(String[] args)
{
// fill the staff array with three Employee objects
Employee[] staff = new Employee[3];
staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);
// raise everyone's salary by 5%
for (Employee e : staff)
e.raiseSalary(5);
// printing
Output for (Employee e : staff)
name=Carl Cracker,salary=78750.0,hireDay=15 Dec 1987 System.out.println(
name=Harry Hacker,salary=52500.0,hireDay=1 Oct 1989 "name=" + e.getName() +
name=Tony Tester,salary=42000.0,hireDay=15 Mar 1990 ",salary=" + e.getSalary() +
",hireDay=" + e.getHireDay());
¥
}

Last modified: 24-Sep-2020 2/16

Topic 03

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

C. Array of objects

public class Main_EmployeeTest
{
public static void main(String[] args)
{
// fill the staff array with three Employee objects
Employee[] staff = new Employee[3];
staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);
}
}
. 1D array of
Array variable Employee object Employee object
staff= (references) String object
staff[0]=] nmes[L >
staff[1]= T salary =[75000 —
staff[2]= -. \
Y . hireDay =
\ \
\ X Day object
\ \ _

D. .toString()

If an object’s text representation is needed, Java automatically looks for its .toString() method.

public class Main_EmployeeTest class Employee
{ {
public static void main(String[] args) // instance fields
{ private String name;
50 private double salary;
// printing private Day hireDay;
for (Employee e : staff) ..
System.out.println(public Day getHireDay()
"name=" + e.getName() + {
",salary=" + e.getSalary() + return hireDay;
",hireDay=" + e.getHireDay()); }
} 5
} }
Output: \\§4
name=Carl Cracker,salary=78750.0,hireDay=15 Dec 1987
name=Harry Hacker,salary=52500.0,hireDay=1 Oct 1989
name=Tony Tester,salary=42000.0,hireDay=15 Mar 1990

Explanation:

public class Day

{
private int year;
private int month;
private int day;

/I Return a string for the day (dd MMM yyyy)
public String toString()

final String[] MonthNames = {
"Jan", "Feb”, "Mar", "Apr","May", "Jun",
"Jul", "Aug”, "Sep”, "Oct", "Nov", "Dec"} ;

return day+" "+
MonthNames[month-1] +
" "+ year;

The reference of a Day object is returned by | e.getHireDay ()

However, a string is needed at] ",hireDay=" + e.getHireDay()) ;\

e .toString() returnsastring. Donel

Last modified: 24-Sep-2020

JAVA automatically looks for a .toString () method of the Day class and invoke it for the Day object

3/16

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

I1. Introduction to OOP|

OO Programs

e An O-O program is made up of objects

Each object has
- a specific functionality exposed to its users
- A hidden implementation

e Basically, as long as an object satisfies your specifications, you don’t care how the functionality is
implemented

- E.g., consider Scanner objects: .nextInt, .hasNext

e Traditional Structured Programming vs OOP

- Structured Programming: Designing a set of procedures to solve a program
Usually top-down (starting from main())

- OOP: Puts data first, then looks at the algorithms to operate on the data
There is no “top”.
Begin by studying a description of the application, and
identifying classes (often from nouns) and then add methods (often as verbs).

e OOP: More appropriate for larger problems:
- Because of well-organized code around data
- E.g., Easier to find bugs which causes faults on a piece of data

Classes
e\
o Aclass is the template / blueprint from which objects are made. b w. ?_f “Ba
- Like cookie cutters from which cookies are made t*-% \t ‘f
L o
e Classes in Java program
- Provided by the standard Java library
- Created by ourselves for our application’s problem domain . wtance
> _ «object insta

. . C e ipstance
e Terminologies: «objec '

- Instance of a class : an Object created from a class
o E.g., Scanner s; s = new Scanner(..); // s is an instance of the Scanner class
o E.g., Day d; d = new Day(2014,1,19); // d is an instance of the Day class

- Instance fields: Data in an object (e.g., day, month, year)

- Object state: The set of values in the instance fields of an object
Or “how does the object react when its method runs”

- Methods: procedures which operate on the data.

- Encapsulation (sometimes called information hiding)
o Combine data and behavior in one package, consider as implementation details
o Implementation details are hidden away from the users of the objects

o E.g., We use Scanner objects, but their implementation details are encapsulated in the Scanner
class.

Last modified: 24-Sep-2020 4/16

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

I11. Objects and Object variables - The Constructors and the new operato

o Work with objects - we often:

- First: construct them and specify initial state
(give values for instance fields like day, month, year)

- Then:apply methods to the objects.

e Constructors:
- We use constructors to construct new instances
- A constructor is a special method
¥ Purpose: construct and initialize objects
* Named the same as the class name, no return value

v Always called with the new operator
e.g. new Day(2014,1,3)

¥ A class can have more than one constructor

eg. Add the second constructor to the Day class:

public Day (int y, int m, int d) {..}
public Day (int y, int nth_dayInYear) {..}

Usage of such a constructor:

dl=new Day(2014,45); //The 45th day in 2014
System.out.println(dl); //14 Feb 2014

o Examples of Constructors

class Employee public class Day
{ {
// instance fields
private String name;
private double salary;
private Day hireDay;

private int year;
private int month;
private int day;

B I //Constructor
public Employee(String n, double s,

int year, int month, int day) ?Ubhc Day(int y, int m, int d)
{ this.year=y;

rslzrlﬂg: TSS. this.month=m;
a-ary = 35 this.day=d;
hireDay = new Day(year,month,day); }
1
// ... more methods //.. more methods
} b

e More notes on Constructors

- Recall: constructors must be called with the new operator
We CANNOT apply it solely for resetting the instance fields like:

[birthday.Day(2014,1,27); // Willing to change the instance fields in birthday?
“Error: The method Day(int, int, int) is undefined for the type Day”

Last modified: 24-Sep-2020 5/16

Topic 03

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

o When an object is created, we may:

1. Pass the object to a method:

System.out.println(new Day(2014,1,15)); // ¥ Note: actually .toString() is called.

2. Apply a method to the object just constructed:

3. Hang on to the object with the use of an object variable:

System.out.print((new Day(2014,1,15)).next());
System.out.print(new Day(2014,1,15).next());

Or simply

Reason: constructor is always called with the new operator

Which style to write?

Suggestion: Choose the one you feel comfortable to read.
But you should be able to understand both styles

[Core Java Chp 3.5.7)

when you read others’ code.

Operators
1 . O (method call)

Assaciativity

Left to right

2

|+ + (unary) - (unary) (CaStGeD

Right to left

/%

Left to right

Left to right

Left to right

< <= > >= instanceof

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

precedence level

Left to right

Right to left
Right to left

Day birthyday; //This variable, birthday, doesn'’t refer to any object yet

birthday = new Day(2014,1,15); //Now, initialize the variable to refer to a new object
Or, combined as:
Day birthday = new Day(2014,1,15);

Day object variable

birthday = E\Dayobject

month =|I|

e An object variable:

Y Doesn’t actually contain an object.

% The value of any object variable is “a reference to an object that is stored separately”.

¥ We set a variable to refer to an existing object of the matching type:

Day birthday, deadline;
birthday = new Day(2014,1,15);

deadline = birthday;

birthday

deadline

Day object variable

Day object

Day object variable >

year =[2014 |
month =[__1_]
day =

- For convenience, we often verbally say “object” instead of “object variable”.
But we need to bear in mind the actual picture.

- Note: The return value of the new operator is also a reference.

- Special value: null (means nothing)
We can set an object variable to null to mean that it refers to no object.
E.g., Day di=null; //later checking: if (dil==null) ..

- Local variables (ie. variables defined in a method) are not automatically initialized.

To initialize an object variable: we can set it to null, or refer to an existing object, or use new

Last modified: 24-Sep-2020

6/16

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

class Day
{ An exercise:

private int year Consider this simplified Day class.
private int montﬁ;

private int day; Your task: Match @ - ® with the descriptions:

public Day(int y, int m, int d)
{ a. Error: d1 may not have been initialized
this.year=y;

this. ronthen; [This is a compilation problem in Java.

, this.day=d; If not fixed, we cannot run the program.]
public String toString() b. Runtime exception: java.lang.NullPointerException
. final String[] MonthNames = { C. print: 15 Jan 2014
"Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jul", "Aug", . .
”58']” N "Oct" 3 "Nowv " 3 ”DEC”}; d‘ prlnt. null
return day+" "+ MonthNames[month-1] + " "4 year;
H
3
public class Main
{
private static void testingl() private static void testing2() private static void testing3()
{ { {
Day di; Day d1 = null; Day dl1 = new Day(2014,1,15);
System.out. printn(dl); @ System. out.printin(dl); [E System.out. println(dl); [
System.out. printIn(dl.toString()); @ System.aut.println(dl. tostring()); @ System.out. printin(dl.tostring()); ©®
} } }

public static void main{(String[] args)

testing_(); //Change this line to testingl(), testing2(), or testing3() for testing

Last modified: 24-Sep-2020 7/16

Topic 03

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

IV. The Implicit Parameter (calling ob

¢ Implicit and Explicit Parameters

{

Suppose the raiseSalary method
is called like this:

/* inside the main() method */

Employee numberee?;

S | numbere@7 = new Employee(..);
B- | numberee7.raisesalary(5); //1s% 5
< [7 9.8
E 2E
Argument for Argument for .o
© the Implicit the Explicit £
parameter parameter 2

—

We say that the method has 2 parameters:

o Implicit parameter:
“Implicit: not stated directly” also called “Ca/[ing Object”

ect), and the this ke

class Employee

/ instance fields

private String name;

pr':!.va:e SOUbﬁ? sglar:'y; Explicit
private Day hireDay; parameter

public void raiseSalary(double percent)
{

double raise = salary * percent/100;
salary += raise;

e

For the object that the method is invoked on. (Here: numbereo?7)

o Explicit parameter: The parameter listed in the method declaration. (Here: percent)

e The this keyword

class Employee

In every method, the keyword this refers to the
implicit parameter.

private String name;
private double salary;

private Day hireDay;

- E.g. we can rewrite .raiseSalary:

{
Some programmers prefer this style
(clearly distinguishes between instance\%)
fields and local variables) }

public class Day

X

- When method A invokes
method B to handle the
implicit parameter (calling
object),
the implicit parameteris : 3
either omitted or specified
using the this keyword.

public Day next()

if (this.isEndOfAMonth())

else

- We have seen this in

public Day(int y, int m, int d)
the constructor of

public boolean isEndOfAMonth()

bhblic void raiseSalary(double percent)

double raise = this.salary * percent /100;
this.salary += raise;

{

public boolean isEndOfAMonth()

= T
| 1 public Day next()
* {

if (isEndOfAMonth())

else

public Day(inty, intm, int d)

if — : ; .
the Day class. T PubiicDaylinkaYea inkaMarthint dhay) this.yearsy; | Public Day(int year, int month, int day)
More equivalent versions: | monthei { car=aYear \ﬁ @:’v"’ ‘ this.month=m; | {
i day=d, BN (082 rdt® this. day=d; this.year=year, _
month=aMonth; \|P~9‘ﬁe 93‘“253, } this.month=month; €~—~_ Sge\\‘“%
day=aDay; gt et | thisday=day, e
@™ } wo
public class Day
- We can use this to call {
another constructor. U)))
public Day(int y, int m, int d) {
Note: Must be written as AR
the first statement in a day=d;
constructor ¥
public Day(int y) {
this(y,1,1); //first day of the year
Last modified: 24-Sep-2020 8/16

. more methods

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

er data int

A new implementation of the Day class
- using an integer data as int yyyymmdd;

Question:

To use this new implementation, do
the users need to adjust their code?
Answer:

public class Day {

private int yyyymmdd;

//Constructor
public Day(int y, int m, int d) { No.

yyyymmdd=y*10000+m*100+d; The way to create and use Day

objects (call the public methods) are

// Return a string for the day like dd MMM yyyy the same.
public String toString() {
final String[] MonthNames = {
"Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jul", "Aug",
IISepIIJ lloctll, "NOV“J llDecll};

return getDay()+" "+ MonthNames[getMonth()-1] + " "+ getYear();

public int getDay() {return yyyymmdd%100;}

public int getMonth() {return yyyymmdd’%10000/100;}
public int getYear() {return yyyymmdd/10000;}

. ./Other methods

Mutator, Accesor Methods

oetX X, setX

e Public methods are provided for outsiders to act on the data:
- Accessor methods (getters) allow outsiders to obtain the data
o Often named as get.., eg. getDay ()
o May not return the values of an instance field literally.
o E.g., The Day class has the instance field int yyyymmdd;
the asccessor methods are:

public int getDay() {return yyyymmdd%100; }
public int getMonth() {return yyyymmdd%10000/100;}
public int getYear() {return yyyymmdd/10000;}

- Mutator methods (setters) change the current data of an object
o Often named as set..., eg. setDay()
o May apply special checking, eg. never make salary negative.

e Note: It is WRONG to think that “we should add get... and set... for most instance fields!”
Why? — See the coming explanation later in this topic: Avoid unnecessary accessor and mutator methods

Last modified: 24-Sep-2020 9/16

Topic 03

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

VII. public vs private, Encapsulation issue|

Public vs Private

{

B Public methods f
Any method in any class can call the method.

s The followings methods are often

class Employee

// instance fields
private String name;
private double salary;
private Day hireDay;

UinC'] '/ constructor
p ' i public Employee(String n, double s, int year, int month, int day)
— {
o Constructors //—> GFIE =
i salary = s;

a

Accessor methods

Mutator methods

a

Other methods which
outsiders might need

k)

m Public instance fields %
For proper practice of encapsulation,
we seldom declare instance fields as
public.

a

i hireDay

new Day(year,month,day);

public String getName() {return name;}
public double getSalary() {return salary;}
public Day getHireDay() {return hireDay;}
Public void setSalary(double newSalary)

salary = newSalary;

b
public void raiseSalary(double percent)

double raise = salary * percent /100;
salary += raise;

B Private Instance fields:

. . S
These instance fields can be accessedﬁ

only by through methods of the
Emplovee class itself.

Private methods

R

class Employee

/ instance fields
private String name;

: private double salary;
i T'private Day hireDay;

Sometimes implemented, which take
the role of helper methods.

A method can access the private data
of all objects of its class, not only the
implicit parameter.

class X

{

private int data;
public X(int d) {data=d*2;}

public void doSomething(X r)

{
X s

new X(8);

Retum the number of days in a particular month®/
private static int getMonthTotalDays(int y, int m)
{
switch(m){
case 1:
case 8:

case 3:
case 10:
return 31;
case 6: case 9:
return 38;
case 2:
if (isLeapYear(y))
return 29;
else
return 28;

case 5: case 7:
case 12:

case 4: case 11:

return @; liThis line never runs. Just for passing the compiler :

System.out.println(this.data);
System.out.println(r.data);
System.out.println(s.data);

Last modified: 24-Sep-2020

10/16

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Avoid returning reference from accessor methods

class Employee {
This accessor method breaks encapsulation ® AT DL SAFEDE
* Instance fields should be changed through public Day getHireDay() { return hireDay;}

the methods provided by the class itself.

Now problem happens - The user can write:

: Employee harry;
iharry = new Employee("harry", 75600, 1987, 12, 15);

fDay d = harry.getHireDay(); //d and harry.hireDay refer to the same object
fd.advance(); //changes it to 1987-12-16 !! | .

rame -]
S —

hireDay =

Solution / Rule of thumb:

If you need to return a multable data field,
you should return a new copy of the Day object.
(learn “object cloning” later)

More on mutable , immutable:

mutable: after construction, there are still other way that the object can get changed.
immutable: after construction, there is no way that the object can get changed.

e.g. Strings are made immutable -

String methods may return new resultant String objects,
but String methods never amend the content of the original string object.

That is, the String class does not provide you any method to change the object.
This is known as immutable. [http://docs.oracle.com/javase/tutorial/java/data/strings.html]

public static void main(String[] args)
{
String s1, s2;
The replace() method of String.
s1 / s1 itself does not change!

s2

"Everybody gets a good grade";
sl.replace("a good grade", "an A+");

System.out.println(s1); //Output: Everybody gets a good grade
System.out.println(s2); //Output: Everybody gets an A+

Avoid unnecessary accessor and mutator methods

Some beginners think that "we should add accessor and mutator methods for all instance fields".

This is BOTH WRONG! 5%

- Getters and setters in this way actually break encapsulation (See next section)
- We should add them only if really needed.

- We can often find replacements:
Example 1: Inside a Rectangle class we remove .getX() and .getY(),
but add the useful method .draw()
Example 2: In the Day class, it is bad to provide setYear(..), setMonth(..), setDay(..)
Reason: easily misused, e.g., change 2016-02-29 to 2016-02-30

- "Don't ask for the information you need to do the work;
ask the object that has the information to do the work for you. "
- http://www.javaworld.com/article/2073723/core-java/why-getter-and-setter-methods-are-evil.html

Last modified: 24-Sep-2020 11/16

http://docs.oracle.com/javase/tutorial/java/data/strings.html
http://www.javaworld.com/article/2073723/core-java/why-getter-and-setter-methods-are-evil.html

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

VIII. Benefits of Encapsulation|

Recall: : Encapsulation (sometimes called information hiding)

s Simply combining data and behavior in one package, which are considered
as implementation details

= Implementation details are hidden away from the users of the objects

= E.g., We can use scanner objects, but their implementation details are
encapsulated in the scanner class.

Benefits of Encapsulation
It is a good practice to encapsulate data as private instance fields.

1. Protect the data from corruption by mistake.
Outsiders must access the data through the provided public methods

2. Easier to find the cause of bug
Only methods of the class may cause the trouble

3. Easier to change the implementation
* e.g. change from using 3 integers for year,month, day to using 1 integer yyyymmdd
* We only need to change the code in the class for that data type
« The change is invisible to outsiders, hence not affect users.

IX. The Final keyword - Method constant, Class constant, Final Instance Fields

The Final keyword .
Recall [Topic 02]:
Can be used to: [Top]
public class MyApp I Method constants ‘

@ define Method constants (see topic 02) U Lublic static void main(string[] args)
(D final double CM_PER_INCH = 2.54;

@ define Class constants (see topic 02)

3 declare instance fields as "Final" (see below)

public class MyApp Class constants

@ public static final double cM_PER_INCH = 2.54;

Fublic static void main(String[] args)

Final Instance Fields

When we declare an instance field as final
It is to be initialized once latest when the object is constructed.
It cannot be modified again.

i class Employee
If we remove these statements, we get error:
3 | D"iVEEE giLg% Str‘ing name; “The blank final field hireDay may not have
private double salary; P
private final Day hireDay; | been initialized”

public Employee(String n, double s, int year, int month, int day)

name = n;
salary = s;
hireDay = new Day(year,month,day); -—

Last modified: 24-Sep-2020 12/16

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

word - Class constant (used with final), Static Method, Static Fields|

The static keyword

- Used to denote fields and methods that belong to a class (but not to any particular object):

1. Class constant (used with final) :
public class MyApp Class constants

Example 1: My2pp.CM PER TNCH —f

public static final double CM_PER_INCH = 2,54;
Example 2: System.out

public static void main(String[] args)

2. Static method (class-level method) .
Example 1: Day.isLeapYear (v)
Example 2: main ()
Note: Static methods do not have implicit parameter (ie. no calling ob ject, no this)
When to use Static method?

Answer: 1. when we don't need to access the object state because all needed
parameters are supplied as explicit parameters (eg. Day .15 Leap¥ear (v))

2. when the methed only need to access static fields of the class
{eg. Employee.getNextTd ()
3. Static Fields

A static field is a single field owned by the whole class
i.e., Not a field per object instance. (taught in next slide)

Elas e loyee Static Field Example
{ private static int nextId
private static int nextId = 1;

private String name;
private int id;
public Employee(String n) {name = n; id = nextId; nextId++;}
public static int getNextId() {return nextId;}
public String toString() {return name+" ("+id+") ";}
Note the use
public static void main(String[] args) & unit test of nextld and
{
Employee a = new Employee("Harry"); update
Employee b = new Employee("Helena");
Employee ¢ = new Employee("Paul");
System.out.println(a); Enployestinextidi 4
System.out.println(b);
System.out.println(c); .
System.out.println(B Employee object for Harry String object
"The Id of the next new enployee will be " + as name = — Ea
Employee.getNextId()); id =
}
I
Employee object for Helena String object
—‘: b = |_\l\% name = | W
Output: : d=L_ 2]
Harry (1)
Helena (2) Employee object for Paul String object
paul (3) c=[_= Srname - 7| —
The Id of the next new employee will be 4 Sl

% If afieldis non-static, then each object has its own copy of the field. (name, id)

% If afieldis static, then there is only one such field per class. (nextId)

% Static method for accessing static fields:
To provide a public method for outsiders to access a static field, we usually make the method static
i.e. class-level method (getNextId)

Last modified: 24-Sep-2020 13/16

Topic 03

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

XI. Method Parameters - Java uses "call by value"

Method Parameters
Java uses "call by value":

* Methods receive copy of parameter
values

* The original arguments given by
the caller do not change
(Employee a, b in the following example)

* Copy of object reference lets method

modify object
(.salaryv’)

See the given example:

a and b are object variables, ie.
references to objects.

el and e2 are copies of a and b.
- Changing e1, e2 do not affect a, b

- But using e1 and e2 to refer to the
objects and access the salary fields,
it does really mean the salaries in
the objects pointed by a and b.

\ String object
name =
= e =

el

e2

Last modified: 24-Sep-2020

5 class Employee

il

public static void main(String[] args)

private String name;
private double salary;
public Employee(String n, double s) mame=n;smaw=$}§
public String toString() {return name+" ($"+salary+") ";}!
private static void swapEmployee(Employee e1,Employee e2)
{ [
Employee temp=el; //Cannot really swap

] el=e2; // caller’s arguments

] e2=temp;

{ }

f private static void swapSalary(Employee e1,Employee e2)

] {

5 double temp=el.salary; //OK - swapping the

] el.salary=e2.salary; // instance fields can

! e2.salary=temp; // be done.

:)

1}

{
Employee a = new Employee("Harry",10600);
Employee b = new Employee("Helena",2000@) ; Output:
Employee. swapEmployee(a,b); /MNo changetoa and b Harry (520000.0)
Employee.swapSalary(a,b); //Salary swapped! Helena ($10000.0)

System.out.println(a);
System.out.println(b);

Employee object for a

salary= | 1000020000

Employee object for b String obiect
Salary = | aaa3a10000

14/16

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

I1. Default field initialization (not for local variables)

Default field initialization (Note: not for variables!)

Ll If we don’t set a field explicitly in a constructor,
* ltis set to a default value:
Numbers: 0
Boolean values: false

Object references: null

. However, local variables are NOT initialized
class Employee
{
private String name;
private double salary;
public Employee(String n, double s) { /* do nothing */}
public String toString() {return name+" ($"+salary+") ";}
public static void main(String[] args) // unit test for Employee class
{
Employee a = new Employee("Harry",10000);
System.out.println(a); |//show: null ($0.9)‘€;no problem!
String s;
int x;
System.out.println(s);|// Error: The local variable s may not have been initialized
System.out.println(x);|// Error: The local variable x may not have been initialized
¥
}

XIII. Overloading methods, Signature

Overloading methods

o ie. “use the same names for different methods”
o But the parameters must be different

o So that the compiler can determine which to invoke.
E.g.Day vi1,v2; ...; swap(vl,v2); /invoke a method called “swap” which accepts 2 Day objects.

o Terminology: Name + parameters = Signature

Example 1: | void swap(Employee el, Employee e2) {..}
void swap(Day d1, Day d2) {..} //swap all year,day,month fields

Example 2: [Overloaded Constructors]

public class Day
{

public Day(int y, int m, int d) {year=y;month=m;day=d;}
public Day(int y) {this(y,1,1);} //first day of the year

. more methods

Last modified: 24-Sep-2020 15/16

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

IV. Default Constructor - Constructors with zero argument - designed and automatic generated

Default Constructor

B Programmers sometimes create a constructor with no argument, like:

{ public Employee()

{
i name = "";
salary = 0;
i hireDay = new Day(2014,1,1);
-1

It is called when we create an object like: | Employee e = new Employee();

m If we don't provide constructor, then a default constructor is automatically generated,
Like this: public Employee()

{ :
name = null; recall: dy by
salary = 8; [actually, Fields are a\refz\s\/e‘
hireDay = null; ; default null or zero or

} ;

m If we provide 1 or more constructors, then the above will not be generated for us.

V. Class Design Hints

Hints for Class Design

1. Always keep data private.
2. Always initialize data

3. Group instance fields as objects | public class Customer ; ;
{ { public class Customer

when appropriate private String street; | g {
private String city; i private Address address;

private String state;]

rivate String zip;] J o ;

L.J. g z1p; : i} Create this class
} : 2 2 2 . ™

4. Not all fields need individual field accessors and multators
e.g. once hired, we won't change hireDay, therefore setHireDay(..) is not needed.

5. Break up classes that have too many responsibilities

?ublic class CardDeck // bad dcsigr‘f ;{Jublic class CardDeck public class card

private int[] value; private Card[] cards; . + .

private int[] suit; o ’ pr.}vate *"t va!ue,

¥ . private int suit;

public CardDeck() {...} ; public Cardbeck() {...}) .

public int getTopValue() {...} . public Card getTop() {...] publ]_.c (_Zar'd(lntv, ints) {...}

public int getTopSuit() {...} | L P”*’l?“ *"t get\la,‘_lue() sty
1 public int getSuit() {...}

)

6. Proper naming. For classes, use noun, or adjective+noun, or gerund (-ing).
E.g. Order, RushOrder, BillingAddress

---end ---

Last modified: 24-Sep-2020 16/16

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Topic 04 - Inheritance

I. Classes, Superclasses, and Subclasses
- Inheritance Hierarchies
Controlling Access to Members (public, no modifier, private, protected)
Calling constructors of superclass
- Polymorphism and Dynamic Binding
- Preventing Inheritance: final Classes and Methods
- Casting and instanceOf
- Abstract Classes
II Object: The Cosmic Superclass
-equals , toString , getClass , clone
III Generic Array Lists
IV Object Wrappers and Autoboxing
V Design Hints for Inheritance

I. Classes, Superclasses, and Subclasses

Inheritance
¢ Inheritance: A fundamental concept of OO Programming
o Idea: create new classes that are built on existing classes
¢ Terminologies:
U subclass / superclass
The new class is called a subclass (derived class, or child class).
The existing class is called a superclass (base class, or parent class).
d “is-a” relationship
An object of the subclass is also an object of the superclass.
E.g. Cats are animals. Tom is a cat. Tom is also an animal.
U Reuse
All attributes/methods of the superclass can be reused
(or inherited) in the subclass.
However, constructors are not inherited.

U Redefine (or called Override)
The methods of the superclass can be redefined in the subclass.

Last modified: 14-Oct-2020 1/14

Topic 04

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

UML notation for Inheritance:

o lllustrating (1) “is-a”, (2) Reuse, (3) Redefine

Superclass

instanceFieldl
instanceField2

+ +

method1 ()
method2 ()

Subclass

instanceField3

+ +

method1 ()
method3 ()

Inheritance in JAVA:

Inheritance

(1) “is-a” relationship

-- Each object of a Subclass is

an object of Superclass

(2) Reuse field

Subclass has 3 instance fields:
instanceFieldl (reuse),
instanceField2 (reuse),
instanceField3 (newly added)

(2) Reuse method
In Subclass:
method2 (reuse),

(3) Redefine
In Subclass:
methodl (redefine),

In Subclass:
method3 (newly added)

e E.g. In auniversity, each university staff is also a library member
ie. an obvious “is-a” relationship.

e Java keyword extends:

e Class vs Object

We can add new methods and fields to
adapt the sub class to new situations
(instanceField3, method3)

fch%SﬁﬁeﬂaﬁsMembm

added methods and fields

class Manager extends Employee

added methods and fields

[Lab04]

position: Research Assistant

[T Member |
Classes m T)
o - name
2 - fine
ObJeCtS memberID: 2000 memberID: 100
name: Roy name: Sam
fine: $50 fine: $30

memberID: 3000
name: Mandy
fine: $0

position: IT Officer

memberID: 65
name: May
fine: $20

* Note: in actual java implementation, the name fields store references to string objects,
and the position fields store the codes of the positions

Last modified: 14-Oct-2020

2/14

Topic 04

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Subclasses - subclasses have more data and functionality than their parent classes.

class Manager extends Employee

.. added field, eg. bonus

.. added methods, constructors,

.. redefine methods in the Employee class,

e.g. getSalary

Examples of Reuse:

[Recall]
Reuse: 1:
All attributes/methods of |-
the superclass can be ‘
reused (or inherited) in
the subclass.
However, constructors
are not inherited.

| public class Employee

I

private String id;
private String name;
private double salary;

HAccessor methods
public String getld() {return id;}

public String getName() {return nan

| public class Manager extends Employee

/A manager has an extra bonus
private double bonus;

3

| public static void main()
1|
Manager m;

m = new Manager(..);
System.out.printin(m.getld()); v’

System.out.printin(m.getName()); v°

Examples of Redefine:

[Recall]
Redefine:
(or called Override)

The methods of the
superclass can be
redefined in the subclass.

Last modified: 14-Oct-2020

Example 1:

)

| class Employee

private double salary;

ﬁublic double getSalary() {return salary;}
@

Usage of the super keyword :

Indicate that we are to use the

class Manager extends Employee

private double bonus;

5ub|ic double getSalary() { return super.getSalary() + bonus; }
5 ®

Superclass method @.
If “super.” is removed, then it will
call @ =» recursion non-stop!

‘Must not reduce the visibility

Example 2:

double penalize(int daysOverdue) {

/I $3 per day
fine += daysOverdue * 3;

double penalize(int daysOverdue) {

/1 $5 per day
fine += daysOverdue * 5;

g

- position
+ penalize ()

———— |- name

;

- memberID

- fine
+ penalize ()

3/14

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Access Level Modifiers [http://docs.oracle.com/javase/tutorial/java/javaO0/accesscontrol.html]

o Determine whether other classes can use a particular field or method.
Or we say, “affect the visibility”

U At the class level, the class can be
1. public: visible to all classes everywhere.
2. no modifier: visible only within its own package (package-private)

O At the member (field / method) level, it can be
1. public
protected — Visible to the package and all subclasses
no modifier (package-private)
private — Visible to the class only)\

E.g. If a method (or a field) is
public, then it can be used by the

Pobn

Access Levels code in the same class, the package
which contains this class, the
Modifier Class | Package | Subclass | World subclasses which inherit this class,
o T RV] and the world
public (1Y Y Y Y L)
protected | | Y Y Y N !
no modifier | Y Y N N E.g. If a method (or a field) is \
private Y N N N protected, then it can be used
only by the code in the same class,

the package which contains this
class, the subclasses which inherit
this class, but not others from the

world. /

e Example:

Superclass: | class Employee
private double salary;

b.u blic double getSalary() {return salary;}
1}

Subclass: | class Manager extends Employee

private double bonus;

This version is OK b.ublic double getSalary() { return super.getSalary() + bonus; }

i

| class Manager extends Employee
1 {
This version has error: { private double bonus;
The field Employee.salary is ; | .)
.] public double getSalary() { return salary + bonus; }
not visible 1}

e Using “protected” for data fields is considered “against the spirit of OOP”.

Reason - It breaks data encapsulation:

Instance fields should be treated as implementation details and encapsulated properly.
Eg. Any change to the field (say. change the name) ghgj|d not need outsiders (including subdiasses) rgcompile.

Last modified: 14-Oct-2020 4/14

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Constructors - Review

We can provide zero or more constructors

o If we do not provide any constructor, then a default constructor is automatically generated.
(a no-argument constructor: fields are default null or zero or false)

e 3 Examples for class Employee
e Example 1: We write a 3-arguments constructor
° Example 2: We do not write any constructor (Java automatically generates a no-argument constructor)
e Example 3: We write three constructors (no argument, 1 argument, 3 arguments)

| Example 1: We write a 3-arguments constructor i Example 2: We do not write any constructor
| class Employee ' . class Employee

14 R
: private String id; ‘ : private String id;
private String name; ; : private String name;
private double salary; [] private double salary;
public String toString() { returnid +" " + name +" " + salary;} public String toString() ¢ returnid+" " +name+" " + salary;}
//Constructor with 3 arguments //not provide any constructor
public Employee(String i, String n, double s) :
‘ 1}
id=i; | : { OK:
name = n; £ . b] ; Since we don't write any
salary =s; fror: § constructor,
: The constructor :: -
. j Java automatically
11 | Employee() is]
. y ; bt \ . generates a no-argument |
- - undefined g | ==——=—=—=—=—=—=g [

constructor

. void main(String[] .'in.h
//Employee €0 = new Employee(); Employee e = new Employée();
System.out.printin(e.toString()); //null null 0.0

| public static void main(String[] args)

Employee e3 = new Employee("001", "Helena", 1000); : 1
System.out.println(e3); //001 Helena 1000.0 5]
11 ‘

I

private String id;
private String name;
private double salary;
public String toString() { returnid +" " + name + " " + salary;}
public Employee() 3 :
) © Employee e0 = new Employee();
id="[-1"; 2 System.out.printin(e0); // [-] [new staff] 191.0
name = "[new staff]"; i
_ * . H
salary = Math.round(Math.random()*1000); . Employee e1 = new Employee("001");
i System.out.println(el); // 001 null 0.0
ublic Employee(String i ?
? ployee(gi) i © Employee e3 = new Employee("001", "Helena", 1000);
id=i: 4 % System.out.println{e3); // 001 Helena 1000.0
?ublic Employee(String i, String n, double s) | B
id=i: [What if we add the 4t" constructor as:
name = n; : : public Employee(String nm)
salary = s; . {
: } ! name = nm;
) i : }
public static void main(String[] args) o : Anwer:
] { | P A i Error : Duplicate method Employee(String)
DR Compiler:

When I see new Employee("abc"), I cannot
decide which constructor to run.

Last modified: 14-Oct-2020 5/14

Topic 04

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Constructors - Calling Constructors of superclass

e Constructors are not inherited public class Employee
L. private String id;
e Butinside a subclass constructor private String name;
private double salary;
1. We can explicitly call a superclass - public String toString() {retunid+""+name+"" +salary;}
(] -
constructor L ?ubllc Employee () @
- must be the first statement. g salary = Math.round(Math.random()*1000);
g_ //Here other fields get default values (obj fields are mull)
2. Otherwise the no-argument =
constructor of the superclass is ?ublic Employee(String i, String n, double s)
invoked. Ak
name = n;
salary = s;
}
class Manager extends Employee
private double bonus;
public String toString() {return supertoString() +"" +bonus;}
public Manager(String i, String n, double s, double b}@é
S {]
WV T— super(i,n,s);
bonus = b;
}
public static void main(String[] args) [
Employee e = new Manager("@@l", "“Helena“, 1000, 1@);5
System.out.println(e); //001 Helena 1000.0 10.0]
' public class Employee
private String id;
private String name;
private double salary;
" public String toString() {retumid+"" +name +"" +salary;}
% ﬁublic Employee() @
]
2 salary = Math.round(Math.random()*1888);
g- //Here other fields get default values (obj fields are null)
@
public Employee(String i, String n, double s)
{
id=i;
. name = n;
Question: salary = s;
What if we now }
i.Remove B only? ! l 77777777 M 7777777777777777 tdEl 7777777777
.. class Manager extends Employee
ii.Remove both A and B?
iii RemovernIy? w private double bonus;
Anwer: 2 public String toString() {returnsupertoSting() +"" +bonus}
(i) Remove B only: OK = public Manager(string i, String n, double s, double b)@
(ii) Remove both A and B: OK \S\ i /i this line i not given, the no-argument constructor
(A no-argument constructor is given bonus = b; of the superclass is invoked
automatically for Employee. The }

salary will be zero)
(iii) Remove A only: - Implicit super
constructor Employee() is

undefined. Must explicitly invoke
another constructor

Last modified: 14-Oct-2020

public static void main(String[] args)

Employee e = new Manager("@@l", "Helena", 1l@ee,
System.out.println(e); //null null 639.0 10.0

10);

I}

6/14

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Polymorphism and Dynamic Binding

o Polymorphism — An object variable can refer to different actual types. [Compile time checking]

Superclass Superclass and subclass

o Dynamic Binding — Automatically select the appropriate non-static method. [Runtime decision]
not field

Example: Suppose we have proper constructors:

public Employee(String i, String n, double s) public Manager(String i, String n, double s, double b)
] 1{

{
] id=i; :] super(i,n,s);
! name =n; :] bonus = b;
] salary =s; ; 11
0 S -
© “Polymorphism?” —compile time checking © 1 public static void main(String[] args)
* Using an Employee variable btoreferto = | {

“aManagerr/l_ Employee a = new Employee("001", "Alice", 1000);
! ™Employee b = new Manager(”902", "Brian", 1080, 10);

* Failed:
- Attempt to assign Manager variable ¢ to
. refer to the new Employee object.

//Manager c = new Employee("@©3", "Candy", 1008);
gCompw’latw’onerrormessage: - ------- Manager d = new Manager("904", "Daisy", 1000, 18);
: cannot convert from Employee to Manager .= |
”Mimmmemm : System,out.println(a.tostring())
DRI (e | .~System.out.println(b.toString())

)

; // @e1 Alice 1000.0
; // 902 Brian 1000.0 10.0
5

: Choose the correct .toString() method b // 9@4 Daisy 1000.0 10.0

: for the Manager, although the manager ~"" } SR e L T BRefeined A

riabl I e

Preventing Inheritance: final Classes and Methods

¢ Final class and Final method — Avoid being inherited or redefined

Example of final class:

final class Executive extends Manager

{
}

Example of final method:

class Employee

public final String getName() {return name;}
} If we redefine .getName() in the Manager class,

we get Error:
Cannot override the final method from Employee

¢ In Java, the String class is a final class

E.g. the following is not allowed.

static class StringSubClass extends String
Error: StringSubClass cannot extend the final
—

} " — class String

Last modified: 14-Oct-2020 7/14

Topic 04

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Casting and instanceOf

o Casting: Consider the type of an object as a different type
Note: you are not actually changing the object itself.

Two types of casting:

Manager ml = new Manager("902", "Brian", 1000, 10);
Employee el = ml; /lupcasting

Employe

Manager m;
m = (Manager)el; //[downcasting
System.out.println(m.getBonus());

Manager

upcasting: label a subclass object reference as a superclass.

It is done automatically (implicitly): You DO NOT need to add (Superclass) for explicit casting.
Always successful at run time.

Example of use: a subclass object (like Manager) is added as an element in a collection of the
superclass (Employee[])

class Employee {
private String id;
private String name;
private double salary;
public String toString() {return id +
. //constructor and other methods

+ name + + salary;}

}

class Manager extends Employee {

private double bonus;
public String toString() {return super.toString() +
. //constructor and other methods

+ bonus;}

}

public static void main(String[] args) {
Employee[] allEmployees;
allEmployees = new Employee[3];
allEmployees[@] = new Employee("001", "Alice", 1000);
allEmployees[1] = new Manager("902", "Brian", 1000, 10); // upcasting
allEmployees[2] = new Manager("904", "Daisy", 1000, 15); // upcasting

for (Employee e: allEmployees)
System.out.println(e);

downcasting: label a superclass object reference as a subclass.

Last modified: 14-Oct-2020

It requires explicit casting: You need to add (subclass) for explicit casting.

Example of use: To use an object ‘s actual features after its actual type has been temporarily forgotten.

Given an array: Employee[] allEmployees, each allEmployees[i] belongs to the Employee Type
Suppose we know that allEmployees[2] is actually a Manager. We want to run .getBonus().

However allEmployees[2].getBonus() won't work because the type of al1Employees[2] is not Manager

public static void main(String[] args) {
Employee[] allEmployees;
allEmployees = new Employee[3];
allEmployees[@] = new Employee("001", "Alice", 1000);
allEmployees[1] = new Manager("902", "Brian", 1000, 10); // upcasting
allEmployees[2] = new Manager("904", "Daisy", 1000, 15); // upcasting

Manager m;
m = (Manager) allEmployees[2]; // downcasting
System.out.println(m.getBonus());

8/14

Topic 04

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Be careful of casting problem during run time!!

class Manager extends Employee

private double bonus;
public double getBonus() {return bonus;}

public static void main(String[] args)

Employee[] allEmployees;
allEmployees = new Employee[3];

for (Employee e: allEmployees)

Manager m;
m = (Manager)e; //Runtime error!!!
System.out.printlmgme.getBonus());

) s

Runtime Error:

Solution:

allEmployees[@] = new Employee("@01", "Alice", 1000);
allEmployees[1] = new Manager("902", "Brian", 1000, 10); //upcasting
allEmployees[2] = new Manager("904", "Daisy", 1000, 15); //upcasting

Alice is not a manager.

Employee cannot be cast to Manager at Main.main(Main.java:99)

(Program stops running

May use the instanceof operator to check the class first:

%f (e instanceof Manager)

for (Employee e: allEmployees)

Manager m; Output:
m = (Manager)e; 10.0
System.out.println(m.getBonus()); 15.0

e Use of instanceOf

- An object variable is declared with a type, eg. Employee e;
Then the object variable can refer to an object of the type,
or its subclass.

- The instanceof operator compares an object to a class. /
Syntax: x_instanceof C Ty
where X is an object and C is a class

now-
1 works
e

System.out.println(e instanceof Manager) ;

for (Employee e: allEmployees)
%f (e instanceof Manager)
Manager m;

m = (Manager)e;
System.out.println(m.getBonus());

} / N

>

Output:
true

System.out.println(e instanceof Employee); tprye

~

e Where are instanceof and cast among other operators?

e Note: instanceof is often not needed

for (Employee e: allEmployees)
System.out.println(e.getSalary());

Beginners often use instanceof in an unnecessary way:
e.g. make decision about using which version of .getSalary()

As a proper practice, we should often let JAVA select the

appropriate (redefined) method at run-time (Dynamic Binding).

You will know that this follows important OO principle
(e.g. OCP: Open-Close Principle / Lab06)

Last modified: 14-Oct-2020

[Core JavaChp 3.5.7)

Dperators Associativity
A [0 . O (method call) Left to right
! = ++ -- + (unary) - (unary) (Qcasynew Right to left
L 1 Left to right
*- Left to right
E <€ 33 35> Left to right
D < <=3 >€Eanceoi) Left to right
[0b] == l= Left to right
[&]
S & Left to right
8 A Left to right
(=] .
o) | Left to right
s
f=1 & Left to right
I Left to right
k6 Right to left
= 4= == ¥ [z K= & |= A= <= 33= 335= Right to left

9/14

Topic 04

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Abstract Classes

public abstract class Employee

A
e Abstract method T private String name;
O a method with the abstract keyword; | | ™ public abstract double getPay();
O no implementation public Employee(String aName) {name = aName;}
0 Itacts as placeholders for concrete (i.e. |) public String getName() {return name; }

nonabstract) methods that are
implemented in the subclasses.

o Abstract classes
O Abstract classes cannot be instantiated. i.e., we cannot create new object using an abstract class.

W

A

e can declare an object variable whose type is an abstract class.

a
O Then the object variable can refer to an object of its concrete (i.e. nonabstract) subclass.
a

class which has one or more abstract methods must be declared abstract.

An abstract superclass class
_i.e. it contains abstract method(s)

Eublic abstract class Employee
priv?te String n;fme.; { public class SalariedEmployee extends Employee
public Employee(String n) {name = n;}] .
public String getName() {return name;};] private double salary; //annual
public abstract double getPay(); : ! public SalariedEmployee(String n, double s)
} m ereseoeeereseeeee e et eeeeeeemeeererere)]) super(n); salary = s;
EmpLoyee public double getPay() {return salary/12;}
12N
+ getName() A concrete subclass:
RN i.e. all methods {getPay(), getNamef) are concrete)
SalariedEmployee H 1yEmpl
py S o { public class HourlyEmployee extends Employee
- salary - wageRate, hours
; rivate double wageRate;
‘jigefkéfg?J __________ + getPay() ! Bbivate double hoﬁrs; //for the month

public HourlyEmployee(String n, double w, double h)

super(n); wageRate = w; hours = h;

public double getPay() {return wageRate*hours;}

A'concrete subclass:
i.e. all methods (getPay(}), getName({) are concrete)

e Abstract object variable and concrete object:

Last modified

public static void main(String[] args)

4

Declare object variables
whose types are abstract
(here arr[e..2],¢e)

Employee[] arr = new Employee[3];
, arr[®] = new HourlyEmployee("Helena",52.5,30);
arr[1] = new SalariedEmployee("Kit", 15000);

Then arr[@..2] and e can arr[2] = new HourlyEmployee("Jason", 100,60);

refer to objects of the
concrete subclasses (i.e.
nonabstract ones).

for (Employee e: arr)
System.out.println(e.getName()+
" ($" + e.getPay()+")");
] } Output:
: Helena ($1575.@)

Kit ($1250.0)
___ Jason ($6000.9)

: 14-0ct-2020 10/14

Topic 04

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

I1. Object: The Cosmic Superclass

The Java’s Object class: java.lang.object

U Every class automatically “is-a” subclass of the Object class. (Inheritance)

U Every object of every class is of type Object.

Object o1 = new Employee("002", "Jim", 10000);
System.out.println(ol); //002 Jim 10000.0
System.out.println(ol.getClass().toString()); //class Employee
System.out.println(ol instanceof Object); //true
System.out.println(ol instanceof Employee); //true

Object 02 = "Hello";

System.out.println(o2); //Hello

System.out.println(o2 instanceof Object); //true
System.out.println(o2 instanceof Employee); //false

System.out.println(o2.getClass().toString()); //class java.lang.String

O Object methods: equals, toString, getClass, clone etc..
- automatically inherited in every class
- equals, toString :we usually need to override appropriately
- getClass : returns a Class object which represents the class itself
- clone : returns a copy of an object

The equals method of the Object class:

//Jjava.lang.object.equals:
public boolean equals (Object obj)

The Right way to override equals for a class - note the explicit parameter

class ClassName

{

12>1.1blic boolean equals(Object obj){..}
}

e The override annotation :

Note: To override a method in a subclass, we must give exactly the
same signature (method name + parameter list) and return type.
To avoid mistake, use the override annotation.

U Denotes that the annotated method is required to override a method in the superclass.
O Helps us check for misspelling (eg. equals), or wrong parameter list etc..

@verride P
public boolean gqual(Object otherOhject) /~ Butthe
{ : : +~ superclasses
£ The method equal(Object) must overnde _ 5 do n%E_avte)
. .. .equa ect).’
or implement a supertype method el

Last modified: 14-Oct-2020

"Oh! Probably typing mistake!"

11/14

Topic 04

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

e The Right way to override equals for a class:

Use the @Override annotation
Parameter: Object

Check against null

Compare the classes

Casttoourclasstype

class SubjectResult
{

private String name; //e.g. "Chemistry", "Geography"
private char grade; //e.g. 'A', 'B', 'C'

SubjectResult(String n, char g) {name=n; grade=g;}

-~ @Override
public boolean equals(Object otherObject)

e —
“.if (otherObject == null)
return false;

e if (this.getClass() != otherObject.getClass())
return false;

\x%'SubjectResult otherSR = (SubjectResult) otherObject;

Check the fields one by one
-use .equals for object fields | if (!this.name.equals(otherSR.name))

- use == for primitive fields

Call .equals of superclass:
super.equals(otherObject);

return false;
if (this.grade!=otherSR.grade)
return false;

return true;

}
} SubjectResult s1 = new SubjectResult("Chemistry",'A"');
1 SubjectResult s2 = new SubjectResult("Physics",'A");
System.out.println(sl.equals(s2));//false
Array Sample ArrayList Sample

III Generic Arra LiStS Integer[] arr; ArrayList<Integer> arrlist;

arr = new Integer[3]; arrlist = new ArrayList<Integer>();
e The Java’s Generic ArrayList: arr[0]= 100; arrlist.add(100);
Java.util. ArrayList B e s
for (int i=@j;i<arr.length;i++) for (int i=@;i<arrlist.size();i++)
U java.util.ArraylListis System.out.println(arr[i]); System.out.println(arrlist.get(i));

a very useful class which is:

- Similar to an array, for storing a collection of object elements
- Automatically adjusts its capacity
- Need a type parameter to specify the type of elements.

Syntax: ArrayList<Element_type>
- Add / retrieve / remove elements: .add(obj), .get(index), .remove(index)
- The count of elements: .size()

U Starting from Java 7, we can omit the type argument when new is used.

ie. arrlist =
arrlist =

Last modified: 14-Oct-2020

new ArrayList<Element_Type>(); € OK
new ArraylList<>(); € Also OK. The compiler itself will check what type is needed.

<> is called the diamond syntax

12/14

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

IV Object Wrappers and Autoboxing

e The Java primitive types and Wrappers
U Recall: Java has 8 primitive types:
int, long, float, double, short, byte, char, boolean
U Each primitive type has a class counterparts which is called a Wrapper Class:
Integer, Long, Float, Double, Short, Byte, Character, Boolean

O Example: | Integer x = 3; //Autoboxing

e Java collections (like ArrayList) — require Wrappers
@ Java collections (like ArrayList) can only store object references, not primitive types (Integerv’, intx)
OK: ArrayList<Integer>
Invalid: ArraylList<int>

U Autoboxing is done upon getting and setting:
ArrayList<Integer> arrlist = new ArraylList<>();
arrlist.add(123); // automatically translated to arrlist.add(Integer.value0f(123));

e More about Wrapper classes: -
O The Number class: the superclass of Integer etc.. | |
Byte | Double | Float
U Wrapper classes are final, so we cannot subclass them.
| Integer | short Long

U Wrapper classes are immutable — we cannot change a

wrapped value after the wrapper has been constructed. http://docs.oracle.com/javase/tutorial/java/data/numberclasses.html

Integer x = 3; // Autoboxing
//x.setValue(4); % thereis no method like this (i.e. Integer is immutable)
X = 4; /I This new value, 4, is wrapped to create another Integer object. x is now set to refer to this new object.

3

4

New Integer object to wrap the int value of 4

The Number Class
Method
byte byteValue()
¢ All subclasses of Number provide the following methods: short shortvalue()
Q Conversion from this object to primitive data :”t '”ltva"‘v&? .
. . . L. . ong longValuel
O Compare this object with another explicit object float floatValue()
a Equals double doubleValue()
int compareTo(Byte anotherByte)
int compareTo(Double anotherDouble)
int compareTo(Float anotherFloat)
int compareTo(Integer anotherinteger)
) . . int compareTeo(Long anotherLong)
e Each also provide additional methods for conversion. int compareTo(Short anctherShort)
E.g. The Integer class provide these methods: boolean equals(Object obj)
Method

static int parselnt(Siring s) /7 Returns an integer (decimal only).
String toString() /7 Returns a String object representing the value of this Integer

static Integer valueOf(int i} /7 Returns an Integer object holding the value of the specified primitive
static Integer valueOf(String s) // Returns an Integer object holding the value of the given string

Last modified: 14-Oct-2020 13/14

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

'V Design Hints for Inheritance

Inheritance - Design Hints:
1. Place common operations and fields in the superclass.
2. Don’t use protected fields

- Using “protected” for data fields is considered “against the spirit of OOP”.

- Reason: It breaks data encapsulation:

Instance fields should be treated as implementation details and encapsulated properly.
Eg. Any change to the field (say. change the name) ghqj|d not need outsiders (including subdiasses) rgcompile.

[Topic03]

Recall: | Encapsulation (sometimes called information hiding)]
= Simply combining data and behavior in one package, which are considered
as implementation details]
= Implementation details are hidden away from the users of the objects
= E.g., We can use scammer objects, but their implementation details are
encapsulated in the scanner class.

It is a good practice to encapsulate data as private instance fields.

1. Protect the data from corruption by mistake.
Outsiders must access the data through the provided public methods

2. Easier to find the cause of bug
Only methods of the class may cause the trouble

3. Easier to change the implementation
* e.g. change from using 3 integers for year,month, day to using 1 integer yyyymmdd
* We only need to change the code in the class for that data type
+ The change is invisible to outsiders, hence not affect users.

- However, protected methods can be useful to indicate methods that are not ready for general use
and should be redefined in subclasses (eg. .clone())

3. Use inheritance to model the “is-a” relationship. Don’t use inheritance unless all inherited fields and
methods make sense.

- Do not extend a class if your intension is just to reuse a portion (<100%) of the superclass.

4. Don’t change the expected behavior when you override a method.

5. We should use polymorphism and rely on dynamic binding.

- Do not explicitly check the type (Ref. Lab06 page 1 Approach 1)

Last modified: 14-Oct-2020 - end - 14/14

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Topic 05 -Interfaces and Inner Classes

I. Review:

- visibility (public, protected/private), static, abstract,
polymorphism, dynamic binding

II Interface
- Introduction
Example 1 - Working with Member Roles (Lab Exercise Reviewed)

Example 2 - A,B,C,D, etc.. (An interface implemented by multiple classes;
A class implements multiple interfaces)

- Interface vs Abstract class, when to use?
- Example 3 - Grader, Student, Exercise

- The Java Comparable Interface (sorting)

- The Java Cloneable Interface

III Inner Classes

Review some key terms:

Visibility (public / protected / private):

- When we implement or redefine a method in the subclass, it must be at least as "visible" as one
in the superclass.

- A subclass cannot access the private members in the superclass.

The static keyword
Used to denote fields and methods that belong to a class (but not to any particular object).

The abstract keyword
The abstract keyword is applied for classes and nonstatic methods:

= When applied for a nonstatic method: means that we intend to provide no implementation;
and the implementation will be provided in concrete subclasses.

= When applied for a class: means that the class may or may not include abstract methods.
Abstract classes cannot be instantiated (ie. cannot be used to instantiate any object), but
they can be subclassed.

- abstract is NOT for fields (no matter static or nonstatic)
- abstract is NOT for constructors or static methods

Polymorphism — An object variable can refer to different actual types. [compile time checking]
Superclass Superclass and subclass which are concrete

E.g., An object variable (of type A) can refer to objects of various actual types, including type A and its sub-types.

Dynamic Binding — Automatically select the appropriate non-static method. [runtime checking]
Not field!

Last modified: 28-0ct-2020 1/13

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

I1. Interface

Java Interface

¢ Interface is a way to describe what classes should do (not how)

O Only headings are given to methods ' (ie. no implementation)

Q Syntax: interface Interface_Name
{
/*nonstatic methods, static final fields*/
}

e Aclass can implement an interface (or more than one interfaces)

O Animplementing class satisfies an interface by implementing the methods given in the interface.

Q Syntax: class Class_Name implements Interface Name [, Interface_Name ..]

{
}

' For simplicity, here we talk about general non-static methods only.

Java 8 and onwards allow default and static methods which should come with implementation
(http://docs.oracle.com/javase/tutorial/java/landl/defaultmethods.html)

Example 1 - Working with Member Roles (Lab Exercise Reviewed)

Team.java
Roler;

if (roleType=='I') r = new RLeader();
else /*roleType=='n"*/ r = new RNormalMember();

<<interface>>
Role _ public interface Role Role.java
---------------------- 11
e " i public String getNameAndRole(Member member);
{ + getNameAndRole(Member) /* no code */ ! public String genTeamContactMsg(Team team);
+ genTeamContactMsg(Team)]

RLeader RNormalMember

+ getNameAndRole(Member) {} + getNameAndRole(Member) {)
+ genTeamContactMsg(Team) (..} || + genTeamContactMsg(Team) {..}

.......... =¥ == W
p ",

RLeader.java RNormalMember. java

public class RLeadefimpIements Role public class RNonn‘allMember implements Role

{ SR
public String genTeamContactMsg(Team team) {..} [! public String genTeamContactMsg(Team team) {..}
public String getName AndRole(Member member) {..} | 1 public String getNameAndRole(Member member) {..}
1 S

Last modified: 28-0ct-2020 2/13

Topic 05

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Example 2

An interface can be implemented by multiple classes

A class can implement multiple interfaces

| interface A {void f1(); void f2();}
interface B {void f3(); void f4();}
class C implements A

public void f1() {..}
public void f2() {..}

. class D implements A,B

public void f1() {..}
public void f2() {..}
: public void f3() {..}
; public void f4() {..}
1}

abstract class C2 implements A
1

! public void f1() {..}

1}

1 public static void main(String[] args)

A a; We can use A, B, C, D, C2 as data types.

g Ei However, only Cand D can be _
D d; instantiated (create object mstances)_
C2 c2; ;

//a = new A8; /I Cannot instantiate the type A
= ; I/ Cannot instantiate the type B

d = D();
//x5 = new C2(); // Cannotinstantiate the type C2:
new C(); // Upcasting is no problem 5

new D();
c; /I Upcasting is no problem

QnNnocwow

(E)a; /I Downcasting requires explicit cast
(D)b;

More considerations:

(1) Two interfaces can contain the same method and implemented in one class

interface A2 {void f1(); void f5();}
class X implements A, A2

public void f1() {..}
public void f2() {..}
public void f5() {..}

(2) An abstract class implements an interface

abstract class C2 implements A

public void f1() {..}

(3) An interface extends one or more interfaces

interface T extends A,B { void f5();}

Both A and A2 have
the same void f1()

Not implement all methods
for A, so marked "abstract”.

- A class can only extend one class.
- But an interface can extend more interfaces.

Here interface T has f1(),f2(),f3(),f4(),f5().
T is a sub-interface of both A and B.

(4) A class can extend a superclass + implement interface(s)

class D2 extends D implements T

public void f5() {..}

class Emloyee extends Person
implements I1, 12

}

Last modified: 28-Oct-2020

3/13

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Interface vs Abstract class

Interface Example Abstract Class Example [Topic04]
<<interfaces>> Employee
Role - name
: + getName() ..}
+ getNameAndRole(Member) [I.no.gode i/ + getPay() /in
+ genTeamContactMsg(Team) Y] f} K
s ‘\\ | salariedEmployee | HourlyEmployee
Rieader RNormalienber ’ - salary : - wageRate, hours |
+ getpay()_g | —
+ getNameAndRole(Member) {}' + getNameAndRole(Member) R UrhorrronITnTIIRIITT O Ty
+ genTeamContactMsg(Team J b
Similarities
e Cannot instantiate them (ie. cannot create object instances)
e Contain methods which are to be implemented by other classes.
Differences
Abstract class Interface
A subclass can only inherit one abstract class A class can implement 1 or more interfaces.
Abstract class does not support multiple inheritance. Interface is a way to approximate multiple inheritance.
abstract class A {} ‘ We cannot interface A {..} ‘
abstract class B {} % have multiple interface B {..} v
class C extends A, B {} superclasses class Cimplements A,B{..}
|
Allow access modifiers (private / protected / public) All methods are public

We do not need to write the
keywords public , abstract.
They are implicit for Interfaces.

Can provide shared method code (default behavior) No shared method code:

Nonstatic methods can be abstract or non-abstract Nonstatic methods are abstract Generally speaking?
- We write headers only

Has constructors No constructors

Allow various kinds of fields: static or not, final or not No object fields

- Any field defined in an interface is actually treated
as static and final

' For simplicity, here we talk about general non-static methods only.

Java 8 and onwards allow default and static methods which should come with implementation
(http://docs.oracle.com/javase/tutorial/java/landl/defaultmethods.html)

Last modified: 28-0ct-2020 4/13

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Which should you use, abstract classes or interfaces?

[http://docs.oracle.com/javase/tutorial/java/landl/abstract.html]

B Consider using abstract classes for any point below:

* Want to share code among several closely related classes.

= Expect that subclasses have many common methods or fields, or require non-public access
modifiers such as protected and private.

= Want fo declare useful object fields. So that methods can access and modify the state of the
object to which they belong.

Employee

- Name

+ getame() {.}
+ getPay() [* no code ¥/

/R

SalariedEmployee HourlyEmployee
- salary - wageRate, hours
+ getPay() .} + getPay() {.}

B Consider using interfaces for any point below:

= Expect that unrelated classes would implement your interface. For example, the interfaces
Comparable and Cloneable are implemented by many unrelated classes.

*= Want to specify the behavior of a particular data type, but not concerned about who
implements its behavior.

* Want to take advantage of multiple inheritance of type (See Example 3 in next page).

¢¢interfacesy
Role

+ getameAndRole (Member) [* o code ¥/
+ genTeanContactMsg(Team) /* no code */

i &
v]
i i

RLeader RNormalMember
+ gethameAndRole (Member) {..} + getameAndRole (Member) {..}
+ genTeanContactMsg(Tean) (..} + genTeanContactMsg(Tean) (..}

Last modified: 28-0ct-2020 5/13

Topic 05

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Example 3 - Grader, Student, Exercise

- This example illustrates the Practical use of "one class with multiple interfaces"

- Storyboard: A grader can only read/grade students’ exercises, while a student can only read/write the exercise.

- You will see that the Exercise class implements both the IGrade and IReadWrite interfaces.

- Goal: To filter functionalities so that

different users who receive the same

(here graders and students)

here the exercise 0!

obL(lae%:c can use the dedicated functions only.

<<interface>> <<interface>>
IReadWrite IGrade
*
+ readAnswer() [*_no_code */ + readAnswer() /* no code */I | *
<<‘\4 + writeAnswer(int) /* no code */ + grade() /* no_code */ v
% s,
< X
& t? jj Q&%
1 : :
Exercise -
Student - question: String e.g. “what is 4!” Grader
- name: String - modelAnswer: int e.g. 24 - name: String
. . n - studentAnswer: int
+ doExercise(IReadWrite ex, int ans) {.. i
(5) (..} T rer + gradeExercise(Igrade ex) {..}

+

+
+ grade()
+

+ Exercise(String g, int modelAns)
readAnswer ()
writeAnswer(int)

displayResult()

{..}
{..}

{aad
{10}
{23

class Student
{
private String name;
public Student(String n) {name=n;}
public void doExercise(IReadWrite x, intans)
X.writeAnswer(ans);
}
class Grader
{
private String name;
public Grader(String n) {name=n;}
public void gradeExercise(IGrade x)
x.grade();
}
interface IReadWrite
{
void readAnswer();
void writeAnswer(int anAnswer);
}
interface IGrade
{
void readAnswer();
void grade();
}

Last modified: 28-Oct-2020

class Exercise implements IGrade, IReadWrite

{

private int studentAnswer;
private char grade;

private final String question;
private final int modelAnswer;

public Exercise(String q, int a)

question = q; modelAnswer=a;

public void writeAnswer(int anAnswer)

studentAnswer=anAnswer;

public void readAnswer()

System.out.println(
"Student's answer is "+ studentAnswer);

}
public void grade()

if (studentAnswer==modelAnswer) grade='A';
else grade="F';
public void displayResult()

System.out.println(
"Student's answer is
", grade is: "+grade);

}

"+studentAnswer+

public static void main(String[] args)

{

Exercise ex = new Exercise("What is 4!", 24);
Student m = new Student("Mary");
Grader h = new Grader("Helena");
m.doExercise(ex,24); 0 .

’ ? utput:
h.gradeExercise(ex); SUTPUL:

ex.displayResult(); .
PR O grade is: A

6/13

Student's answer is 24,

Topic 05

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

The Java Comparable Interface (sorting)

JAVA provides sorting methods for comparable objects

1) Arrays

: Arrays.sort (array) ;

2) Collections (e.g. ArraylList) : Collections.sort(array list);

Before using the above, we have to solve for some issues:

""Nobody knows that trees and plants are to be sorted and, even if we are told, but how to sort them? ... @ "

Correspondingly, in JAVA we have to

®tell that the objects are to be sorted, and @decide how to compare them in sorting.

These are what we do in JAVA:

- the class should implement the interface: java.lang.Comparable<type>

- this Comparable interface has a method to be implemented: int compareTo(type another)

Return value:

0 if equal

1 if this is larger than another
-1 if this is smaller than another

Example: Employees ordered by salaries

private final String name;
private double salary;
private final Day hireDay;

@Override
public int compareTo(Employee another)

else return -1;

class Employee implements Comparable<Employee>

if (this.salary==another.salary) return 0;
else if (this.salary»>another.salary) return 1;

public static void main(String[] args)
{
/* sort an array of employees */
Employee[] arr = new Employee[3];

class Employee implements Comparable<Employee>

{
@Override
public int compareTo(Employee e2) {
. //check this.salary and e2.salary
¥

arr[@] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
arr[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
arr[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

Arrays.sort(arr);
for (Employee e : arr)
System.out.println(e);

/* sort an arraylist of employees */
ArraylList<Employee> arrlist =

new ArraylList<>();

arrlist.add(arr[2]);arrlist.add(arr[0]);arrlist.add(arr[1]);

Collections.sort(arrlist);

for (Employee e : arrlist)
System.out.println(e);

Output:
—+name=Tony Tester,salary=40000.0,hireDay=15 Mar 1990
iname=Harry Hacker,salary=50000.0,hireDay=1 Oct 1989

'name=Carl Cracker,salary=75000.0,hireDay=15 Dec 1987
‘name=Tony Tester,salary=40000.0,hireDay=15 Mar 1990
_iname=Harry Hacker,salary=50000.0,hireDay=1 Oct 1989

'name=Carl Cracker,salary=75000.0,hireDay=15 Dec 1987

Last modified: 28-Oct-2020

7/13

Topic 05

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

The Java Cloneable Interface (copying)

B Introduction to Cloning:

To clone an object, it means to make a new copy of the object.

i & Different from copying!!!

Copying an object variable vs Cloning an object
copying :
Copying
Employee original, copy;
original = original = new Employee (..);
Employee copy = original;
CDDY=E\‘ = : copying a variable
cloning:
Cloning
—_—m—
original = Employee original, copy;
original = new Employee (..);
copy = original.clone();
The clone method
returns a new copy
—

B To make an object cloneable, we need to

o Make the class implements java.lang.Cloneable
av-k copP
o Redefine the method : public type clone() Mw’g
- The Object class provides protected Object clone() ‘M ——
which copies field-by-field (Shallow-cloning) 5‘?;'::’
If a field is a reference, it only copies the reference, i Ly grad>
that refers to the same subobject (o SN
- We redefine the clone() method to handle cloning of mutable subobjects
}J\M\o_r cb-Oged
class Employee implements Comparable<Employee>, Cloneable °b4%4 |
= 5“\""\’)“" —’//>
PN pap
@0verride l’\ et
public Employee clone() throws CloneNotSupportedException (¢opy sub-obpds)
{

Employee copy = (Employee) super.clone();

copy.hireDay = new Day(
this.hireDay.getYear(),
this.hireDay.getMonth(),
this.hireDay.getDay());

Construct a copy for this.hireDay,

Actually can be omitted.

copy.name = new String(this.name); Reason: Since strings are immutable,

return copy;

Call the Object superclass’s clone() method

or call .clone of this.hireDay (if Day.clone is available)

it is Okay to let both

original and copy refer to the same string.

Why okay? Well, if one changes the n
actually to create a new string object.

Last modified: 28-Oct-2020

ame, the change is
[Ref. LecO5_Ex.pdf]

8/13

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Illustration: Correct code

class Employee implements Comparable<Employee>, Cloneable

@Override
public Employee clone() throws CloneNotSupportedException
= Super.clone() only { Employee copy = (Employee) super.clone();
performs Shallow-cloning -~
_ copy.hireDay = new Day(Call the Object
= So we need to perform L this.hireDay.getYear(), superclass’s clone()
deep-cloning for mutable ™~ this.hireDay.getMonth(), gethod
subobjects this.hireDay.getDay()); ‘
copy.name = new String(this.name); Actually can be omitted
return copy; (see last slide)

} |

public static void main(String[] args) {
Employee e = new Employee("Carl Cracker", 75000, 1987, 12, 15);
Employee e2 = e;
. Employee e3 = e.clone();
Uz Ellamiliy e.getHireDay().setDay(1988,1,1);
e.setName("Helena"); //“Helena” is a new string object
e.setSalary(880090);

Output:
System.out.println(e); name=Helena,salary=88000.0,hireDay=1 Jan 1988
System.out.println(e2); name=Helena,salary=88000.0,hireDay=1 Jan 1988
System.out.println(e3); name=Carl Cracker,salary=75000.0,hireDay=15 Dec 1987

Illustration: Incorrect code

class Employee implements Comparable<Employee>, Cloneable

@Override
public Employee clone() throws CloneNotSupportedException
{
= Super.clone() only . Employee copy = (Employee) super.clone();
performs Shallow-cloning |~
,,,,,,, /¥ copy-hireDay—=—new-Day{ Call the Object
= Sowe needtoperform = | this hireDay . getVearl) superclass’s clone()
deep-cloning for mutable | this. hireDay.getMonth({), qethiod
subobjects ———this-hirebay-getbay())s ‘
if not done, then the new ———copy-name—=—newString(thisname);—' Actually can be omitted
object copy will refer to return copy; (see last slide)
subobjects in the original) } \

one.

public static void main(String[] args) {
Employee e = new Employee("Carl Cracker", 75000, 1987, 12, 15);
Employee e2 = e;
. Employee e3 = e.clone();
Uselcloning e.getHireDay().setDay(1988,1,1);
e.setName("Helena"); //“Helena” is a new string object
e.setSalary(88000);

Output:
System.out.println(e); name=Helena,salary=88000.0,hireDay=1 Jan 1988
System.out. pr‘%ntln(ez) 5 name=Helena,salary=88000.0,hireDay=1 Jan 1988
} System.out.println(e3); name=Carl Cracker,salary=75000.0,hireDay=1 Jan 1988
J
®

Last modified: 28-Oct-2020 9/13

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

III Inner Classes
public class OuterClass

B Inner Class - Introduction {

. .] o private class InnerClass
e Aninner class is a class defined within its outer class.

. . Fields and methods of InnerClass
o Often used as helping classes

. . Fields and methods of OuterClass
e Advantage of using Inner class: }

1) Better organization of code:

The helper class is contained inside the outer class, rather
than written separately.

2) Access across inner/outer classes:
(a) The outer class have access to the inner class’s
methods and nonstatic fields' (even if they are private).
(b) The inner class has access to the outer class’s
methods and fields (even if they are private).

(" static field cannot exist in a nonstatic inner class, unless initialized with a constant expression
private final static int testing=3; //ok
private static int testing=3; //not allowed

Inner Class Example 1. §13ss BankAccount

Recall: private class Money “Garer cias

private String currency; /eg."HKD", "RMB", "NTD", "JPY", "KRW", "USD", "GBP"
private double value;

“The outer class have
access to the inner

class’s methods and public Money(String c, double b) {currency=c; value=b;}
nonstatic fields (even
if they are private)” @verride

public String toString() {return currency+" "+value;}

the inner class to

define an object field

The outer class uses pr':i.vate Money balance;
public BankAccount(String currency)

{
- balance = new Money(currency, 0.00);
* Use a constructor -~ } . A A 7y .
of the inner class public static void main(String][] args)
* Use a method of ~..__ public String getBalance() BankAccount account =
the inner class e q new BankAccount(HKD"),

return balance.toString();

* Access a field of
the inner class ™

-

account.addMoney(300) ;

public void addMoney(double incr) SYS'CA%VEO%'EC %l;llg‘%%g(z .

+ account.getBalance());

—~

balance.value += incr; }

} q Output:
An object of
rry o @l Account balance = HKD 300.0

-

Last modified: 28-0ct-2020 10/13

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Inner Class Example 2, §1a@ss BankAccount
private class Money

Recall:

private Stri ng currency; /e.g."HKD", "RMB", "NTD", "JPY", "KRW", "USD", "GBP"

“The inner class has private double value;

access to the outer

class’s methods and public Money(String c, double b) {currency=c; value=b;}
fields (even if they are
private)." @Override

public String toString() {return currency+" "+value+" owned by "+owner;}

private Money balance; private String owner;

A field of the outer class

public BankAccount(String currency, String ow)
Note: we don’t write the

outer object like: balance = new Money(currency, ©.00); owner = OW;
outer.owner }

public String getBalance()

; return balance.toString();
See the drawing public void addMoney(double incr)
in next slide for {])
illustration) balance.value += incr;
}
public static void main(String[] args)
BankAccount account =
Y CL new BankAccount("HKD",
“Helena");
,// account.addMoney(300);
BankAccount object 2 System.out.println(
"Account balance = "
BankAccount + account.getBalance());
saance = [Yo vteuts
P = I:I Account balance = HKD 300.0 owned by Helena

Outer object Money object
Money String object
String) [HKD_|
value = 300

Inner object

Last modified: 28-0ct-2020 11/13

Topic 05

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Association between inner class object and outer object

E.g.

In a nonstatic method (methodX) of the outer class, we create an inner object.

The implicit parameter (this, or known as the calling object) of the call to methodX, is then the outer

object of the created inner object.

BankAccount object account _

BankAccount SN

Invoke

Outer object

account.methodX()

Elass BankAccount
?r‘ivate class Money

A nonstatic method
1 . methodx() of the outer class
T
. new Money("HKD", 0.00);
Money object
Money String object
Strin
currency =
value = 9.00 _

Inner object

Note: methodX can mean the constructor of the outer-class, i.e., the one in example 2 (last page).

More details about Inner Class (For interested students only)

B Aninnerclass can be
¢ Nonstatic, like our example :

- Nonstatic inner class object must
arise from an outer class object.

- Has a connection between an outer
class object and the inner class
object.

- Nonstatic inner class must not have
static members.

o Static

[We do not go into details. Interested students

may read Core Java Chp06 / Absolute Java

Chp13]

Static: No connection between outer --~_
class object and inner class object.

(eg. inner class object created in a static
method of the outer class)

class BankAccount
p{)rivate class Money

private String currency;
private double value;

public Money(String c, double b) {..}
@Override
o5

} public String toString() {return

private Money balance;

public BankAccount(String currency)

balance = new Money(currency, 0.00);

)

public String getBalance()

=

return balance.toString();

-

public void addMoney(double incr)

-~

balance.value += incr;

} }

SN(public class OuterClass
private static class InnerClass

. Fields and methods of InnerClass

. Fields and methods of OuterClass

Last modified: 28-Oct-2020

12/13

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Other Facts

B Each inner class gets its own .class file: Mame Date madified Type Size

_ BankfccountSMoney.class 371072014 11:15 AN CLASS File 2 KB
_ | BankAccount.class 3/10/2014 1116 AWM CLASSFile 1KE

B Visibility of Inner Class

BankAccount.Money amount;

¢ Aninner class can be private, like example 2 amount = account.new Money("USD",123);

¢ Aninner class can be public. System.out. prlntln(/qmount .toString());
If so, it can be used outside the outer class. =~ i
[We do not go into details. For interested students only] SS -

B Interesting variations:
o Nested inner classes

¢ Anonymous class
(want one object only, lazy to give class name; created using new in a method, as an inner class)

e When a class inherits an outer class, the inner class is also inherited.
[We do not go into details. Interested students may read Core Java Chp06 / Absolute Java Chp13]

---end -

Last modified: 28-0ct-2020 13/13

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Topic 06 -Exception Handling

I. Introductory Examples (Example 1-5)
II. Exception Handling — Basic Idea
III. Exception Hierarchy
IV. The Try-throw-catch Mechanism
V. Define our own exception classes (Example 6)
VI. Pitfall: Catch the more specific exception first (Example 7)
VII. The throws clause, throws clause in derived class (Example 8)
VIII. The Catch-or-Declare Rule, Checked Exceptions, Unchecked Exceptions
IX. The Finally Block (Example 6')

I Introductory Examples

Files for testing:

[data()(]l.txt‘
. . .) MNarme ﬂ | sl
Requirement: Read one positive integer from a file ;]
atal0l .t —
= data002.txt
=| dataﬂﬂl.bd:\ﬁl |‘hell::ﬁt m,\smatc\'\)
(nput =
BE Example 1 - Problems checked by Java Virtual Machine
public static void main(string[] args) throws FileNotFoundException
{
Scanner in = new Scanner(System.in);
System.out.print("Input the file pathname: ");
String fname = in.next();
[Line 13] Scanner inFile = new Scanner(new File(fname));
[Line 14] int x = inFile.nextInt();
System.out.println("Data is: "+x);
inFile.close();
in.close();
}
Rundown 1.1:
Input the file pathname: c:\data@e1l.txt
Data is: 678 * Problems are checked by Java Virtual
Machine
Rundown 1.2: . I .
Input the file pathname: c:\data@2.txt * java.io.FileNotFoundException and
Exception in thread "main" java.io.FileNotFoundException java.util.InputMismatchException are
at java.io.FileInputStream.open(Native Method)
at java.io.FileInputStream.<init>(Unknown Source) : JAVA classes, each means a type of
at java.util.Scanner.<init>(Unknown Source) exception.
at Main.main(Main.java:13) T
* JVM outputs the message by calling:
Rundown 1.3: public void printStackTrace()
Input the file pathname: c:\data@@2.txt
Exception in thread "main" java.util.InputMismatchException | / [a method of the Java.lang.Throwable
at java.util.Scanner.throwFor(Unknown Source) class]
at java.util.Scanner.next(Unknown Source) /
at java.util.Scanner.nextInt(Unknown Source)
at Main.main(Main.java:14)

Last modified: 27-Oct-2020 1/12

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Files for testing: l’ N 3o t200L 0
Mame] | calis

E -:Iatat]ﬂl.txt/ 7] data002.txt
|| datad02.bd— |hello . matchj

(Input ™

B Example 2 - We check and handle the problems ourselves
Below shows how that can be done, using try-catch blocks

Program:
public static void main(String[] args)
{ try
¢ Scanner in = new Scanner(System.in); e A Try block tells what to do when

System.out.print("Input the file pathname: "); everything goes smoothly.

String fname = in.next(); .
Scanner inFile = new Scanner(new File(fname)); e A catch block handles a kind of
int x = inFile.nextInt(); |- caught problems (exceptions)
System.out.printin("Data is: "+x); o

inFile.close();
in.close();

catch (FileNotFoundException e)

{

System.out.println("Cannot open the file. Please check or ask CS2312 helpers.“) ;

. catch (InputMismatchException e)

i System.out.println("Cannot read the required number from the opened file. "+
i " Please download from Helena's website again.") ;

.,
catch (InpuyMismatchException e)

Declare the exception type (Data type) and exception object variable (other names are ok, but “e” is often used)

Testing:
Rundown 2.1: try
Input the file pathname: c:\data@ol.txt {

Data is: 678 }
catch (FileNotFoundException e)

Rundown 2.2: System.out.println("Cannot open ..”);

. 3
Input the file pathname: c:\data@2.txt catch (InputMismatchException e)
Cannot open the file. Please check or ask {
CS2312 helpers.

System.out.println("Cannotread ..”);

}

Rundown 2.3:

Input the file pathname: c:\data@@2.txt
Cannot read the required number from the
opened file. Please download from Helena's
website again.

We write code to check and take
action (here simply output the
situation)

Last modified: 27-Oct-2020 2/12

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

A common case: we handle more processing:
1) Put the actions in one method. The actions may have problems.
2) Place the try-catch block in the caller. The caller will handle the problems.

B Example 3

public static void processFile(String fname) throws FileNotFoundExceptigq, InputMismatchException

Scanner inFile = new Scanner(new File(fname));

int x = inFile.nextInt();
$ys‘_cem.out.pr‘1ntln("Data is: "+x); The throws clause — declare what
} inFile.close(); exceptions might occur.

public static void main(String[] args)
try
{

Scanner in = new Scanner(System.in);
System.out.print("Input the file pathname: ");
String fname = in.next();
processFile(fname);
in.close();
}
catch (FileNotFoundException e)
{
System.out.println("Cannot open the file. Please check or ask CS2312 helpers.");
catch (InputMismatchException e)
{

System.out.println("Cannot read the required number from the opened file. Please download from Helena's website again.") ;

Rundown: [Same as 2.1, 2.2, 2.3 in Example 2]

We can write an Exception Controlled Loops
- Let the user get things right on a subsequent try

B Example 4

public static void processFile(String fname) throws FileNotFoundException, InputMismatchException
{
Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
System.out.println("Data is: "+x);

A X Rundown 4.1:
} inFile.close(); Input the file pathname: c:\data002.txt
Cannot read the required number from the opened file.
public static void main(String[] args) Try another file? Type your choice [y/n]: y
{ Input the file pathname: c:\data02.txt

Scanner in = new Scanner(System.in);

Cannot open the file.
boolean shouldEnd=false;

T . .
while (!shouldEnd) Try anothe.r file? Type your choice [y/n]:y
{ Input the file pathname: c:\data001.txt
try Data is: 678
{

System.out.print("Input the file pathname: ");
String fname = in.next();

processFile(fname);

shouldEnd=true;

}
catch (FileNotFoundException e)
System.out.println("Cannot open the file.");

System.out.print("Try another file? Type your choice [y/n]: ");
shouldEnd=(in.next().charAt(0)=="n");

}
catch (InputMismatchException e) Rundown 4.2:
Input the file pathname: c:\data002.txt
System.out.println("Cannot read the required Cannot read the required number from the opened file.

System.out. pr‘int("Tr-y another -Fi}e? TYpe YOI 1ry another file? Type your choice [y/n]: y
} shouldEnd=(in.next().charAt(8)=="n"); Input the file pathname: c:\data02.txt
Cannot open the file.

in.close(); Try another file? Type your choice [y/n]: n

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Create exception class + throw an exception object of the kind

- Suppose we expect a non-negative integer, however the file contains a —ve integer.
This is what we want:

If the file content is —ve, the output should tell:
\ | data003.ixt]
Rundown 5.1: File Edit F{
Input the file pathname: c:\data@e3.txt 1234
Unexpected negative value from the file. 4~

Try another file? Type your choice [y/n]: n

- This problem is not described by JAVA standard exception classes.
Therefore we create and use our own exception class.

B Example 5

public class NegativeIntegerException extends Exception

public NegativeIntegerException() It is customary to give both a

super\("Negative integer ! o) B default constructor and a
constructor that contains a

. . . . detailed message.
public NegativeIntegerException(String message)

super(message) ;

processFile(): public static void processFile(String fname) throws FileNotFoundException,

InputMismatchException, NegativelntegerException

{
Scanner inFile = new Scanner(new File(fname)); —May throw FileNotFoundException|
int x = inFile.nextInt(); —May throw InputMismatchException|
if (x<0) { [
throw new NegativelntegerException(); ——/throw NegativelntegerException|
}
System.out.println("Data is: "+x);
inFile.close();
}
Inside main(): | try
{
System.out.print("Input the file pathname: ");
String fname = in.next();
processFile(fname);
shouldEnd=true;
}
catch (FileNotFoundException e)
{
}
catch (InputMismatchException e)
{
}
catch (NegativeIntegerException e)
{
System.out.println("Unexpected negative value from the file.");
System.out.print("Try another file? Type your choice [y/n]: ");
shouldEnd=(in.next().charAt(@)=="n");
}

Last modified: 27-Oct-2020 4/12

Topic 06

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

11 Exception Handling — Basic Idea)

B Possible errors of a runni
1) User input error (e.g. ty

ng JAVA program
ping mistake, wrong format of URL)

2) Device errors (e.g. printer suddenly jammed, webpage temporarily unavailable)

3) Physical limitation (e.g.
4) Code error (e.g. invalid

B Error handling

disk full, out of memory)
array index)

1) [Traditional approach |] Method returns -1, special end-of-file value, etc..

2) [Traditional approach Il] Method returns a null reference.

3)
[Mission]

JAVA'’s exception handling:
Transfer control from the location where error occurred to an error handler

that can deal with the situation

the code sectio

throws an object that encapsulates the error information

n exits immediately

it does not return any value (even the method return type is not void)
Search for an exception handler that can deal with this particular error.

III Exception Hierarchy in JAVA

Throwable

£\

A
A
[

B
I

http://docs.oracle.com/j
avase/7/docs/api/java/u

til/InputMism
tion.html

The Topmost Class: Throwable

. Runtime
IOException [Exceplllion J

java.util

Class InputMismatchException

an neException
ava util NoSuchElementExcer
java_util.InputMismatchE:

atchExcep

ption
xception

@a.lang

Class Throwable

java_lang.Object
java_lang. Throwable

MemoryError
OSktJe;(c)kOvemowError

* Throwable is the
superclass of all errors
and exceptions in JAVA,
- Thrown by JVM, e.g.

FileNotFoundException

Runtime
Exception

43

[IOException]

)

)

_/

http://docs.oracle.com/javase/7
/docs/api/java/lang/Throwable.
html

Last modified: 27-Oct-2020

InputMismatchException

- Thrown in our code, e.g.
NegativeIntegerException (we defined in Example 5)

5/12

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

The Exception Hierarchy: [http://docs.oracle.com/javase/7/docs/api/java/lang/Error.html]

Throwable

Java.lang . . -
» The Exception hierarchy indicates
Class Exception conditions that a reasonable
application might want to catch.
java.lang.Object Ref. Examples 1-5 {OfMemoryErTor —_—
u java.lang. Throwable (P) %_l.t]aGKO\’efﬂo""E"or REx::eption

java.lang.Exception

Example 5 [recalled]

public static void processFile(String fname) throws ..
{

Scanner inFile = new Scanner(new File(fname)); ——3vM may throw FileNotFoundException |
int x = inFile.nextInt();

if (x<@) \DJVM may throw InputMismatchException
throw NegativelntegerException}

throw new NegativeIntegerException();
System.out.println("Data is: "+x);

} inFile.close(); Eublic static void main(String[] args)
try {
. Catch and handle
processFile(fname);
; e
catch (FileNotFoundException e) {..}
catch (InputMismatchException e) {..}
catch (NegativeIntegerException e) {..}
}
The Error Hierarchy: [http://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html]
java.lang + The Error hierarchy describes internal
Class Error errors and resource exhaustion ;
situations which are abnormal.
java '3”9":{‘*31'9‘3;' . Indicates serious problems that a il . .
avi wab . . e! i
lava ?;Vgé l;r:‘; i reasonable application should NOT try QU9 tveroerror [I0Exception] [R]

to catch. (But if you want, you can!!) (3)

It should be aborted and the system (not our code) need to take over the control.
St

Note: Java programmers often call “Errors” as “Exceptions” as well. We speak in the
same way in this topic.

Examples:
java.lang.OutOfMemoryError (Previous lecture exercise: out of heap space)
Program P
Object[] arrl = new Object[10000000]; Ia“l';gr‘tedtl_)y
Object[] arr = arri; — 3 runtime | class StackOverflowError
T ——— R Exception in thread "main"
for (int i=0;i<200 ;1'++) { java.lang.OutOfMemoryError: java ‘ED\?S?_“,JW?‘;NO‘, e
arr[@]=new Object[10000000]; Java heap space - jevaa \EHQ‘E’T‘DV
arr:(ObjeCt[])arr[O].: at Main.main(Main.java: 12 java.lang.VirtualMachineError
J
} java.lang.StackOverflowError

java.lang.StackOverflowError (Previous lecture exercise: recursion cannot st

java.lang

private static int factorial(int n) { Program Class StackOverflowError
if (n==1) return 1; aborted by java lang Object
else return n*factorial(n+l); JAVA runtime java '7'}’]”:"(““1*1“'
} Emeption in thread "main" java.lang ‘/HTuaH‘s‘:.V:r neError
java.lang.StackOverflowError java.lang-StackOverflowError
public static void main(String[] args) { at MaingtactError;actoria! MaingtacEError.java:g
; . . at MainStackError.factorial(MainStackError.java:
System.out.println(factorial(4)); at MainStackError.factorial(MainStackError.|java:6
} at MainStackError.factorial(MainStackError.java:6
Last modified: 27-Oct-2020 6/12

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Catch an error and handle it, continue running.

[For illustration purpose only; recall: “a reasonable application should NOT try to catch”]

moMemO“fE"“
uckcw grioWETO

private static int factorial1(int n) public static void main(String[] args)

if (n==1) return 1: %f\;ﬂ/nner‘ in = new Scanner(System.in);
else return n*factorial1(n+1);
} System.out.println(factoriall(4)); //failed

private static int factorial2(int n) fatCh (StackOverflowError e)

. System.out.printf("Error happens when factoriall runs\n\n");
if (n==1) return 1; svst . primt("Print stack? T hoice [y/n]: ")
* : 1) ystem.out.prin rint stack? Type your choice [y/n]: ");
) else return n*factorial2(n-1); 3% (in.next().charAt(8)es'y’
e.printStackTrace();

System.out.print("\nTry another one? Type your choice [y/n]: ");
if (in.next().charAt(@)=='y")
} System.out.println(factorial2(4)); //0K: 24

System.out.println("\nFinished");

We catch the error Error happens when factoriall runs

and handle it, Print stack? Type your choice [y/n]: y
NN java.lang.StackOverflowError
make the program at MainStackErrorCaught. 'Factor‘lall(MalnStackEr‘r‘or‘Caugh va:

=S

nStackErrorCaught.f
However, practically it should

R

be aborted and the system Try another one? Type your choice [y/n]: y
(not our code) need to take 24
over the control. "> | Finished

IV The Try-throw-catch Mechanism|

The Try-throw-catch Mechanism:

The try block

* Tells what to do when everything goes smooth

* Can have code that throws exceptions for unusual conditions

+ If something goes wrong within the try block, execution in the try block is stoped and an
exception is thrown

The throw statement: We can write the throw statement to (create exception object and) throw an exception.

« The similar is done when JAVA detects problem (e.g., JAVA may throw an object of StackOverflowError).
FileNotFoundException,
InputMismatchException, etc..

* Syntax| throw new ExceptionClassName(arguments); exception object is
created and thrown

» After exception is thrown, the flow of control is transferred to a catch block, and the catch block
begins to run

The catch block
+ Tells what to do when an exception is caught

* One parameter, usually named “e” (but other names are also ok)
+ Syntax

catch (ExceptionClassName e)

..code to handle the exception

Last modified: 27-Oct-2020 7/12

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Throwable

Exception

T) :)
" Runtime
[IOExceptlcn] \ [Exception]
T

[y

'V Define our own exception classes

= Predefined exception class contains:
- An object field to store a message and a constructor that sets the message
- An accessor method, String getMessage()

= We define our own exception class by inheriting Exception (or other throwables)

We can add fields and methods in our class

E.g. int problemvalue, int getProblemvalue()
It is customary to give

- Constructors to be implemented: both a default constructor
public class NegativelntegerException extends Exception and a constructor that
contains a detailed
private int problemValue; message.

public int getProblemValue() { return problemvalue; } .
1

public NegativeIntegerException() { super("Negative integer!"); }
public NegativeIntegerException(String message) { super(message); }"
public NegativeIntegerException(String message, int v) <o

super(message); problemValue=v; Add constructor according to our design
¥

Which constructor will run [tprow new NegativeIntegerException();
is decided by how we create

- 8 throw new NegativeIntegerException("-ve number");
the exception object:

throw new NegativeIntegerException("-ve number", x);

[Complete Code]
Example 6 Revised NegativeIntegerException: Add a field to store the problem value

NegativeIntegerException: public class NegativelIntegerException extends Exception

private int problemvalue;
public int getProblemValue() {return problemValue;}

public NegatlveInteger‘ExceptlonE) { super("Negative integer!"); }
public NegativeIntegerException(String msg) {super%msg)}

public NegativeIntegerException(String msg, int v)
super(msg); problemValue=v;

}
}
Inside main():| try
{ -
Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
if (x<0)

throw new NegativeIntegerException(“-ve number”, x);

System.out.println("Data is: "+x);
inFile.close();

}
catch (FileNotFoundException e) {
System.out.println("Cannot open ...“);

catch (InputMismatchException e) {
System.out.println("Cannot read ...");

catch (NegativeIntegerException e8 Rundown 6.1:
System,out.println(e.getMessage)+ Input the file pathname: ¢:\data003.txt

} ["+e. getPr‘oblemValue()+ -ve number [-1234]

Last modified: 27-Oct-2020 8/12

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

VI Pitfall: Catch the more specific exception firs

B When we have 2 or more catch-blocks, catch the more specific exception first

Example 7 [based on Example 5]

public static void processFile(String fname) throws
FileNotFoundException, InputMismatchException, NegativeIntegerException

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();

if (x<0) , , If you exchange their order,
throw new NegativeIntegerException(); . .

System.out.println("Data is: "+x); compller' complams:

inFile.close(); “Unreachable catch block for

}

public static void main(String[] args) NegativelntegerException. It s

already handled by the catch block
try { for Exception”
é;ocessFile(fname); ’

i
catch (NegativeIntegerException e) /

System.out.println("Unexpected negative value from the file."); /

catch (Exception e)

System.out.println("Some problem happens.");

in.close();

Last modified: 27-Oct-2020 9/12

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

'VII The throws clause, throws clause in derived class

® The Throws clause

= When a method may cause exception, but no catch is done within the method,
Then it may inform the user by using the Throws clause to declare the exception

= The user may catch and handle the exception (or the user itself declares it again).

Example 5 [recall]

public static void processFile(string fname) throws FileNotFoundExceptio
InputMismatchException, NegativelntegerException

Declaring the exception
The throws clause declares what
exceptions might occur.

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
if (x<0)

throw new NegativelntegerException();
System.out.println("Data is: "+x);
inFile.close();

}

Inside main(): ?ublic static void main(String[] args)

Throwing an
exception

try {
ﬁﬁécessFile(fname);

Handling an

}
catch (FileNotFoundException e) {..} excegtion

catch (InputMismatchException e) {..}
catch (NegativeIntegerException e) {..}

}
Propagation of Exception
N Exceph:nsfh h calls main() calls methodA() calls methodB()
propagate throug
method calls in the LN N
. Java main() methodA() methodB()
stack until they are |, time With Without Without
caught and handled. |system | | gespion | | grceton e
" Handle it iR
\ and Continue Exception
to run / i e

Throws back
Throws back

. calls main() calls methodA() calls methodB()
B Exceptions not /—\ /—\ /—\
handled finally will
h Y Ja main() methodA() methodB()
cause the program | . vime Without Without Without
exception exception exception
to abor‘T. system handler handler handler
bPrgcgr:jamb R . R R
aborte \ - | .
JAVA runtime . hxceptdon
Throws back Throws back

Throws back

Last modified: 27-Oct-2020 10/12

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

% Throws clause in derived classes

* When we redefine a method in a subclass, it should have the same exception
classes listed in its throws clause that it had in the superclass

e Or it should have a subset of them

* i.e., asubclass may not add any exceptions to the throws clause,
but it can delete some

class ClassY Example 8

public void processFile(String fname) throws FileNotFoundException

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
System.out.println("Data is: "+x);
inFile.close();
}
}

class ClassZ extends ClassY
public void processFile(String fname) throws FileNotFoundException, NegativeIntegerException

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
if (x<0)

throw new NegativeIntegerException();
System.out.println("Data is: "+x);
inFile.close();

43 Exception MegativelntegerException is not compatible with throws clause in ClassY.processFile{String) 1

2 anniels Fivar aveailaklas

VIII The Catch-or-Declare Rule, Checked Excep

& The Catch-or-Declare Rule

= If an exception may be thrown inside a method,

public void methodX()

t
the meThod may dCC(I with it by }r‘y { ... //code which may throw exception
catch (.. e i
1. placing the concerned code within a I 111 ffcakeh and handie the exception
try-block, and handle in a catch-block, }
or Eublic void methodX() throws ..
et S >
2. declaring it }

= The compiler reinforces the Catch-or-Declare Rule on the
following exceptions [Known as “checked exceptions”]:

Throwable

Must Catch-or-Declare

[“Chetk/ei exceptions”]

Runtime
Exception

For other exceptions/errors,
it is okay whether we deal
with them or not.
[Known as "unchecked exceptions”]

Last modified: 27-Oct-2020 11/12

Topic 06

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

IX The Finally Bloc

% The Finally Block

= The finally block
contains code to be
executed whether or
not an exception is
thrown in a try block.

Last modified: 27-Oct-2020

public static void main(String[] args)
{

)) Example 6’
Scanner in = new Scanner(System.in);

System.out.print("Input the file pathname: ");
String fname = in.next();

Scanner inFile=null;
try

inFile = new Scanner(new File(fname));

b
catch (FileNotFoundException e)
System.out.println("Cannot open the file.");
}
catch (InputMismatchException e)
{
System.out.println("Cannot read the required number.");
catch (NegativeIntegerException e)
System.out.println(e.getMessage()+" ["+e.getProblemvalue()+"]");
}
finally {
if (inFile != null) {
System.out.println("Closing inFile");
inFile.close();

} else {
System.out.println("inFile not open");

in.close();

---end ---

12/12

Topic 07 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Topic 07 - Generic Programming

I. Introduction
Example 1 — User defined Generic Method: printTwice(T x)
Example 2 — User defined Generic Class: Pair<T>
Example 3 — using java.util. ArrayList<E>

Il. Type Inference and Diamond Operator

I1l. Pitfalls and Type Erasure

IV. Generic Class with more than 1 parameter (For interested students only)

V. Bounds for type parameter, Generic Interface, Inheritance with Generic Classes

I Generic Programming - Introduction

B Generic Programming

e Generics
— method and class definitions which involve type parameters.

e Generic Programming
— writing code that can be reused for objects of many different types.

e User-defined generic classes and methods
[See examples 1 and 2]

e There are also generic classes and methods provided in the standard Java libraries:
e.g. the ArrayList generic class,
the Collections.sort generic method

[See example 3]
Example 1 Simple Generic Method

. xis called the value parameter.
.~ Tis called the type parameter.

public class Main <T>means that:
)] e)) ¥ v In the following, T is the type
Declare |24 r{)ubllc static <T> void printTwice(T x) parameter which stands for the
a Generic System.out.printin(x); actual type which is known when
Method . System.out.println(x); printTwice is called.
Use the public static void main(String[] args)
se
Generic > printTwice("hello"); //This time T is a string Output:
Method printTwice(1234); //This time T is an integer hello
printTwice(4.0/3); //This time T is a double 2:;}&0
} 1234

1.3333333333333333
1.3333333333333333

Last modified: 9-Nov-2019 1/6

Topic 07

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Example 2 Simple Generic Class <T> s called the

. <T>means that:

type parameter.

In the following, T is the type

{
Declare

a Generic
Class

¥ class Pair<T»>

parameter which stands for the
actual type which is known when an

object of this Generic 1is created.

private T first;
private T second;

public Pair() { } //first and second automatically initialized as null
public Pair(T x1, T x2) { first = x1; second = x2; }

@Override
public String toString() {return "(1)"+first+" (2)"+second;}

Use the |
Generic
Class

public class Main

public static void ma;n(string[] args)

.-
Pair<String> p® = new Pair<String>();

Pair<String> pl = new Pair<String>("hello","cheers");
Pair<Boolean> p2 = new Pair<Boolean>(true,false);
Pair<Integer> p3 = new Pair<Integer>(123,456);
Pair<Number> p4 = new Pair<Number>(123,456);
Pair<Object> p5 = new Pair<Object>(123,"cheers");
System.out.println(p®);

System.out.println(pl);

System.out.println(p2);

System.out.println(p3);

System.out.println(p4);

System.out.println(p5);

Each time when we use the Generic Class Pair,
_____--we need to tell the type which T stands for.

Output:

(1)null (2)null
(1)hello (2)cheers
(1)true (2)false
(1)123 (2)456
(1)123 (2)456
(1)123 (2)cheers

Example 3 The ArrayList generic class, the Collections.sort generic method
[provided in standard Java libraries]

{
{

import java.util.Arraylist;
import java.util.Collections;

public class Main

public static void main(String[] args)

ArrayList<Integer> arrlist = new ArrayList<>();
arrlist.add(1234);

arrlist.add(8899);

arrlist.add(36);

Collections.sort(arrlist);
System.out.println(arrlist); //Output: [36, 1234, 8899]

[For interested students only]

The ArrayList class is defined as: class ArrayList<E>

The sort method is defined as: public static <T extends Comparable<? super T>> void sort(List<T> list)

Where List is a Java interface implemented by ArrayList and a number of other Java classes.

[http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html]

[http://stackoverflow.com/questions/4343202/difference-between-super-t-and-extends-t-in-java]

Last modified: 9-Nov-2019

2/6

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

Topic 07 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

. Example 1 value
Il Type Inference and Diamond Syntax| parameter
public static <T> void printTwice(T)Z)
B Type Inference { N
System.out.println(x); ty?:eter
. . . - 3 . ra
e Type inference is a Java compiler's ability to) = RSl 0.0 .
determine the type argument(s) that make the
invocation applicable. public static void main(String[] args)
{
e Compiler looks at each method invocation® and e IR IR MBS Sl
dina decl tion® i der to decid printTwice(1234); /[This time T is an integer
corresponding declaraton®, In order to decide printTwice(4.0/3); /[ThistimeT is adouble @
the type. } K 5

type. —— type
) - . parameter argument
Ref: http://docs.oracle.com/javase/tutorial/java/generics/genTypelnference.html

Example 2

class Pair<T>

{
private T first;
private T second;

}

public static void main(String[] args)

{
Pair<String> p@ = new Pair<String>();
Pair<String> pl = new Pair<String>(".",".");
Pair<Boolean> p2 = new Pair<Boolean>(true,false);

@

B The Diamond Syntax: <>
This time T is a boolean

B We can omit the types in <> when new is used.
(Since Java 7)

B e, simply write | pair<string> p@ = new Pair<> ();
Pair<String> pl = new Pair<> ("hello","cheers");
Pair<Boolean> p2 = new Pair<>(true,false);

Compiler checks the type of the object variable (here p0, p1, p2)
to guess and fill in the type parameter.

Last modified: 9-Nov-2019 3/6

http://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html

Topic 07 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

111 Pitfalls and Type Erasure

e Static fields belong to the generic class, not the instantiated classes.

class Smartphone {}
class Pager {}
class TabletPC {}

class MobileDevice<T> {
private static int count=0;
MobileDevice() {count++;System.out.println(count);}

I 606
}
public class Main
{
public static void main(String[] args)
{
MobileDevice<Smartphone> phone = new MobileDevice<>(); Output:
MobileDevice<Pager> pager = new MobileDevice<>(); 1
MobileDevice<TabletPC> pc = new MobileDevice<>(); 2
} 3
}

e Cannot declare static fields of a type parameter

public class MobileDevice<T> {
private static T os; // compile-time error

/...

}
MobileDevice<Smartphone> phone = new MobileDevice<>(); what should
MobileDevice<Pager> pager = new MobileDevice<>(); be the type
MobileDevice<TabletPC> pc = new MobileDevice<>(); of os‘:y

[http://docs.oracle.com/javase/tutorial/java/generics/restrictions.html#createObjects]

e Cannot create an object instance of a type parameter

Compile error: public static <E> void append(List<E> list) {
E elem = new E(); // compile-time error
list.add(elem);

e A class cannot have two overloaded methods that will have the same signature after type erasure.

public class X{
public void print(Pair<String> strSet) { } //compile-time error
public void print(Pair<Integer> intSet) { } //compile-time error

Compile-time error:
Method print(Pair<String>) has thg same
print(Pair<T>) as another method in type X

erasure

For Type Erasure — We may think of it in this way:

When the compiler generates the bytecode, type parameters in generic types are “replaced
with the raw type* : Object”.

Advantage: Type Erasure ensures that no new classes are created for parameterized types;
consequently generics incur no runtime overhead. (c.f. Different approach in C++ templates)

* A type parameter could be bounded. If so, it is replaced by the bound instead of Object.

Last modified: 9-Nov-2019 4/6

Topic 07

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

B Type Erasure [For interested students only]
http://docs.oracle.com/javase/tutorial/java/generics/erasure.html

http://docs.oracle.com/javase/tutorial/java/generics/genTypes.html

Generics were introduced to the Java
language to provide tighter type checks at
compile time and to support generic
programming. To implement generics, the
Java compiler applies type erasure to:

The raw type for Pair<T> in Example 2 looks like:

class Pair

public Pair() { }

private Object first;
private Object second;

Type erasure ensures that no new classes are
created for parameterized types; consequently,
generics incur no runtime overhead.

Replace all type parameters in generic
types with raw types, which are their

bounds or Object if the type parameters

are unbounded. The produced bytecode,
therefore, contains only ordinary classes,
interfaces, and methods.

public Pair(Object first, Object second)

this.first = first;
this.second = second;

}

@Override
public String toString() {
return "(1)"+first+" (2)"+second;

Insert type casts if necessary to

preserve type safety.

Generate bridge methods to preserve
polymorphism in extended generic types.

public static void main(String[] args)

{

Pair p® = new Pair();
Pair pl = new Pair("hello","cheers");
Pair p5 = new Pair(123,"cheers");

System.out.println(p®);
System.out.println(pl);
System.out.println(p5);

//(1)null (2)null
//(1)hello (2)cheers
//(1)123 (2)cheers

Pitfalls - More [For interested students only]

class Pair<T>

private T first;
private T second;
public Pair() { }

public Pair(T x1, T x2) { first = x1; second =

x2; }

Constructor headings do not include the type parameter

We do not write public <T> Pair() { }

public <T> Pair(T x1, T x2) { first = x1; second = x2; }

Cannot use a generic class as the base type of an array

String [] x1=new String[3]; //0K

Pair<String>[] x2 = new Pair<String>[3]; //Error:

Cannot create a generic array
of Pair<String>

Cannot create, catch, or throw objects of parameterized types

class MathException<T> extends Exception { /* ...

class QueueFullException<T> extends Throwable { /* ...

// compile-time error

*/} // compile-time error

Cannot use casts or instanceof with parameterized types

if (list instanceof ArrayList<Integer>) // compile-time error

Pair<Integer> 1i = new Pair<>();

Pair<Number> 1n

(Pair<Number>) 1li; // compile-time error

e can use pounded wildcard *:

Butw mber> In=1i;

pair<? extends Nu

Last modified: 9-Nov-2019

5/6

http://docs.oracle.com/javase/tutorial/java/generics/erasure.html
http://docs.oracle.com/javase/tutorial/java/generics/erasure.html
http://docs.oracle.com/javase/tutorial/java/generics/genTypes.html
http://docs.oracle.com/javase/tutorial/java/generics/genTypes.html

Topic 07 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

IV Generic Class with more than 1 paramete rjigISRIEHESCE RS ERIERIY

B Generic Class can have more than 1 type parameters

class TwoTypePair<T1, T2> Example 2a
{
private T1 first;
private T2 second;

public TwoTypePair(T1l firstItem, T2 secondItem)
{

first = firstItem;
second = secondItem;

}

public void setFirst(T1l newFirst) { first = newFirst; }
public void setSecond(T2 newSecond) { second = newSecond; }
public T1 getFirst() { return first; }

public T2 getSecond() { return second; }

public boolean equals(Object otherObject)

{
if (otherObject == null)
return false;

else if (getClass() != otherObject.getClass())
return false;

else { . A
{ TwoTypePair<String, Integer> x1,x2,x3;

x1 = new TwoTypePair<>("USD",123);
X2 = new TwoTypePair<>("USD",456);
x3 = new TwoTypePair<>("USD",123);

public static void main(String[] args)

TwoTypePair<T1, T2> otherPair =
(TwoTypePair<T1, T2>)otherObject;

return (first.equals(otherPair.first)
&& second.equals(otherPair.second)); System.out.println(x1.equals(x2));//false
} System.out.println(x1.equals(x3));//true

\V Other Notes - Bounds for type parameter, Generic Interface, Inheritance with Generic Clas

& Bounds for Type Parameters

e Torestrict the possible types that can be plugged in for a type parameter T

° Ean“ﬂe: public class TwoBTypePair<T1l extends Classl, T2 extends Class2 & Comparable>

B Generic Interfaces (Similar to generic classes)

e Example: interface PairInterface<T1, T2>
void processThePair(T1 t1, T2 t2);

% Inheritance with Generic Classes

e A generic class can be defined as a derived class of an ordinary class or of another generic class

e Example: | class ce {}

class C1<T> extends CO0 {}

class C2<T> extends C1<T> {}
class C3<T> extends C1<String> {}

Last modified: 9-Nov-2019 6/6

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Topic 08 - Collections

I. Introduction - Java Collection Hierarchy
II. Choosing/using collections
III. Collection and Iterator (For interested students only)
IV. Methods of Collection
V. Concrete classes
VI. Implementation (Hash table, resizable array, tree, linked-list)
VII. HashSet, TreeSet, Comparator
VIII. Priority Queue (For interested students only)
IX. HashMap, TreeMap
X. Conversion to/from array (For interested students only)

XI. Simple algorithms: shuffling, sorting, binarySearch, reverse, disjoint..

[Ref: Core Java Chp 13, Intro to Java Programming [Liang] Chp 22, Absolute Java Chp 16, docs.oracle.com/javase/tutorial/collections/TOC.html]

I Introduction - Java Collection Hierarch

B Java Collection Framework

e Acollection is a container object that holds a group of objects

o Aframework is a set of classes, which form the basis for building advanced functionality

e The Java Collections Framework supports different types of collections:
Containers for storing a collection of elements:
1. Sets — store a group of non-duplicate elements
2. Lists — store an ordered collection of elements
3. Queues- store objects that are processed in first-in, first-out fashion

Containers for storing key/value pairs:
4. Maps — store key/value pairs

e Interfaces in the hierarchies:

Collection Map
—
[| I |
Set List CQueue Deque | SortedMap

I
SortedSet

Two distinct trees: Collection and Map

[http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html]

1/8

Topic 08

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

The Java Collection Framework is an excellent example of using interfaces, abstract classes, and
concrete classes.

Interfaces — define the framework
Abstract classes — provide partial implementation
Concrete classes — implement the interfaces with concrete data structures

Some of the interfaces and classes in Java Collection [Liang Chp.22]:

CoIIectionq-

- - SortedSet 4 """""""""""""""""" TreeSet

1

1
:' Set 4 e — AbStraCt5€t<]—— Hash5e4 LinkedHashSet
1

t
E AbstractCollection 4
] Vector 4 Stack
1
e gl AbstractListq—
17 List
' 4_ L | ArraylList
|
1
! AbstractSequentialList4 LinkedList
' - Deque (} |
1 1
L-Queve(}-'-----=-=-—c e e - AbstractQueue <|7 PriorityQueue
Interfaces Abstract Classes Concrete Classes

Providing an abstract class (partial implements an interface) makes it convenient for the user to write the

code.

The user can simply define a concrete class that extends the abstract class (rather than implementing all
methods in the interface)

11 Choosing/using collections|

How to choose a data structure from the Java Collection Framework?
- Need quick search?
- Data should be kept sorted?

- Rapid

insertion/removal in the middle?

- Need association between keys and values?

- efc..

The way to

When we use a list, we do not need to know
which implementation is actually chosen once

use a data structure: it has been constructed.

{

}
}

import java.util.*;

,_ Therefore we use the interface type for the
variable (to hold the reference)

public class Main

public static vyia main(String[] args) {

List<Integer> datalist;

datalist = new Vector<>(); < If we change our mind, we can easily use a different one.
dataList.add(100); e.g., change to: .
datalList.add(200); datalist = new ArraylList<>();

or:

System.out.println(dataList); datalist = new LinkedList<>():
-)

|

For interested students: http://beginnersbook.com/2013/12/difference-between-arraylist-and-vector-in-java/

Last modified: 12-Nov-2020 2/8

Topic 08

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

LEAO I I 1) WV s BRAS @ XT0 G (For interested students only)

e The Collection Interface:

public interface Collection<E>

//2 fundamental methods:
boolean add(E element);
Iterator<E> iterator();

} ///_7,,/}

Interfaces

e The iterator method returns an Iterator object.

e The Iterator object is for visiting the elements in the collection one by one (See the Iterator interface).

{

List<Integer> datalList;

for(int i=0;i<10;i++)
dataList.add(i*i);

public static void main(String[] args)

datalList = new ArrayList<>();

The Iterator Interface:

public interface Iterator<E>

E next();

//(1) Get the iterator and use it to visit elements
Iterator<Integer> itr = datalList.iterator();
while (itr.hasNext()){
Integer e = itr.next();
System.out.print(e+" ");
} Output: 014916 25 36 49 64 81

//(2) for-each loop (Actually a shortcut for (1))
for (Integer e: datalList)
System.out.print(e+" ");

Output: 014916 25364964 81

boolean hasNext();

TV Methods of Collection

public interface Collection<E>
e The Collection interface is generic { ..
int size();
. boolean isEmpty();

* Usage exar’qples. 1 - boolean contains(Object obj);
ArraylList<Employee> emList; boolean containsAll(Collection<?> c);
ArraylList<Student> sList; boolean equals(Object other);

boolean addAll(Collection<? extends E> from);
e ie., when we create a collection, boolean remove(Object obj)
there is a type parameter for us boolean removeAll(Collection<?> c)
. void clear()
to lﬁ)m;{'de t||'1€ Cla‘?s type of the boolean retainAll(Collection<?> c)
collection elements. object[] toArray()
<T> T[] toArray(T[] arrayToFill)
}
public abstract class AbstractCollection<E> implements Collection<E>
{
public boolean contains(Object obj)
{
for (E element : this) // calls iterator() I ————
if (element.equals(obj))
return true;
return false;
}

Last n

3/8

Topic 08

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

'V Concrete classes

Some concrete classes:

ArrayList An indexed sequence that grows and shrinks dynamically
. . An ordered sequence that allows efficient insertion and
LinkedList ;
removal at any location
ArrayDeque A double-ended queue that is implemented as a circular array
HashSet An unordered set collection (set: rejects duplicates)
TreeSet A sorted set collection (set: rejects duplicates)
. A collection that allows efficient removal of the smallest
PriorityQueue
element
HashMap A map data structure that stores key/value associations
T A map data structure that stores key/value associations
reeMap
(sorted by keys)

VI Implementation (Hash table, resizable array, tree, linked-list)

Commonly used implementations (concrete classes) for collection interfaces

General-purpose Implementations
Interfaces| Resizable array Linked list Hash table Tree
Implementations Implementations | Implementations | Implementations
Set HashSet TreeSet
List ArraylList LinkedList
Queue, . .
Deque ArrayDeque LinkedList
Map HashMap TreeMap
[http://docs.oracle.com/javase/tutorial/collections/implementations/index.html]
e Hash table implementation: fast lookup, data unsorted, e =W
require hash code —i=)
=

In Java, hash tables are implemented as an array of
buckets (linked-lists)

Tree implementation: fast lookup, data sorted, implemented as Red-black tree

Last modified: 12-Nov-2020

b0 LearninCS333%

Learn in 53334

4/8

http://docs.oracle.com/javase/tutorial/collections/implementations/index.html
http://docs.oracle.com/javase/tutorial/collections/implementations/index.html
http://docs.oracle.com/javase/tutorial/collections/implementations/index.html

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

VII HashSet, TreeSet, Comparator

HashSet
e Example: using HashSet<String> to store the words in “Alice in Wonderland”

e Hash code - an integer for each object to be hashed
- computed quickly based on the state (field values) of the object
- determine where to insert the object in the hash table.

e Hash codes for Strings in Java:

String Hash Code
"Lee" 76268
"lee" 107020
"eel" 100300
public static void main(String[] args) throws FileNotFoundException
{
Set<String> words = new HashSet<>(); // HashSet implements Set
Scanner in = new Scanner(new File("alice.txt"));
while (in.hasNext())
{
String word = in.next();
words.add(word) ;
}
System.out.println(words); //Output: [..,..,..] <== all distinct words in the file
in.close(); —
} Document Total Number of Words ~ Number of Distinct Words | HashSet | TreeSet
Alice in Wonderland 28195 5909 Ssec | 7sec
The Count of Monte Cristo 466300 37545 75sec | 98 sec
TreeSet

e Example: using TreeSet<String> to store the words in “Alice in Wonderland”

e TreeSet is: - similar to Hashset
- plus improvement: as sorted collection
ie. when iterated, values are presented in sorted order
- insertion is slower than HashSet but much faster than array/linked-list

public static void main(String[] args) throws FileNotFoundException
{
Set<String> words = new TreeSet<>(); // TreeSet implements Set
Scanner in = new Scanner(new File("alice.txt"));
while (in.hasNext())
{
String word = in.next();
words .add(word) In sorted (alphabetical,
} case sensitive) order
System.out.println(words); //Output: [..,..,..] <== all distinct words in the file
in.close(); . G —
} Document Total Number of Words ~ Number of Distinct Words ~ HashSet | TreeSet
Alice in Wonderland 28195 5909 Ssec | 7sec
The Count of Monte Cristo 466300 37545 75 sec | 98 sec

Last modified: 12-Nov-2020

5/8

Topic 08

CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Comparator

o We've learnt the Comparable interface for comparison of objects (also used in sorting)
e But, how to sort items by field £1 in one collection, then field £2 in another collection?

class Product implements Comparable<Product>

private int part_number;
private String product_name;

//sometimes we want to compare part_number
//sometimes we want compare product name

{

e Solution in Java: pass a Comparator object into the TreeSet constructor

- Comparator is an interface:

public interface Comparator<T> public static void main(String[] args)
- : {
} int compare(T a, T b); SortedSet<Product> parts = new TreeSet<>();
parts.add(new Product("Widget", 4562));
. _ parts.add(new Product("Toaster", 1234)); Ordered by
- We often implement it as parts.add(new Product("Modem", 9912)); part_number
an inner class (with no class name). System.out.println(parts); (See compareTo)
[Toaster(1234), Widget(4562), Modem(9912)] |
This i . I SortedSet<Product> sortByName = new TreeSet<>(
!s IS. an gnonymous inner class, . new(Comparator<Product>)()
which implements the 4. {
Comparator<Product> interface > | public int compare
{
.) String descrA = a.getName();
e Further learning of Comparator: String descrB = b.getName();
See lecture exercise: return descrA.compareTo(descrB);
Using Comparator in .sort(..).
)5 Ordered by
sortByName.addAll(parts); Rjeducinans
System.out.println(sortByName); (See compare)
} [[Modem(9912), Toaster(1234), Widget(4562)] |

N SsOGINKO NI (For interested students only)

e PriorityQueue (Underlying implementation: priority heap)

Example: job scheduling

class Assignment implements Comparable<Assignment>

PriorityQueue<Assignment> qToDo =

{
private int priority; //1 means highest priority
private String name; //e.g. "CS2312 Assignment", "CS3342 Project" "CS3334 Survey"
public Assignment(String n,int p) { priority=p; name=n; }
public int compareTo(Assignment other) {return Integer.compare(priority, other.priority);}
public String toString() {return name+"(Priority:"+priority+")";}

}

public static void main(String[] args)

{

new PriorityQueue<>();

qToDo.add(new Assignment("CS3342 Project", 2));
qToDo.add(new Assignment("CS3334 Survey", 1));
gqToDo.add(new Assignment("CS2312 Assignment", 1));
System.out.println(qToDo); //order not guaranteed

[CS3334 Survey(Priority:1), CS3342 Project(Priority:2), CS2312 Assignment(Priority:1)] |

System.out.println(qToDo.remove()); //removed based on priority

System.out.println(qToDo.remove());

System.out.println(qToDo.remove());

—_|CS3334 Survey(Priority:1)
} C€S2312 Assignment(Priority:1)
CS3342 Project(Priority:2)

Last modified: 12-Nov-2020

6/8

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

IX HashMap, TreeMap

e The Map Interface (implementing classes: HashMap, TreeMap)

- A map stores key/value pairs. Both key and value must be objects.
Example: we have some key info, we want to look up the associated element.

¢ Implementing classes:
HashMap unordered implementation of Map; hashing the key (Learn in CS3334)
TreeMap ordered implementation of Map; ordering on the keywhich implements Comparable (Red.hlack tree; Learn in CS3334)
- Both HashMap and TreeMap hash/compare on keys.

- For Hashmap, the class of the keys needs to provide equals() and hashCode(). hashCode() should
return the hash code such that 2 objects which are considered as equal should have the same hash code.

How JAVA locates an object: Find the location with hashcode(); then use equals() to identify it.
- Useful “view” methods to get the set of keys, collection of values, or set of key-value pairs.

e Example: .get, .put

class Product {
private String product_name;
public Product(String name) {product_name=name;}
public String toString() {return product_name;}

}

public static void main(String[] args)

{
Map<Integer,Product> parts = new HashMap<>();
parts.put(4562,new Product("Widget"));
parts.put(1234,new Product("Toaster"));
parts.put(9912,new Product("Modem"));
System.out.println(parts.get(9912)); [/loutput: Modem
parts.put(9912,new Product("Router"));
System.out.println(parts.get(9912)); [loutput: Router
//Get the view: a set of the keys, for iteration;
/loutput: Toaster(1234) Router(9912) Widget(4562)
Set<Integer> kSet=parts.keySet();
for(Integer k:kSet)

System.out.printf("%s(%d) ",parts.get(k),k);
}

Last modified: 12-Nov-2020 7/8

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

LS NL SRS WRINSEN] (o7 interested students only)

From array to collection wrapper

o Lightweight Collection Wrappers: created using asList(..) of the Arrays class

public static void main(String[] args)

¢ String [] nArr = {"Helena", "Kit", "Jason"}; //an array
List<String> nList = Arrays.asList(nArr); //returns a List wrapper
nList.set(@, "Marian"); //cannot apply .add or .remove which changes array size
System.out.println(Arrays.toString(nArr)); //output: [Marian, Kit, Jason]
System.out.println(nList); //output: [Marian, Kit, Jason]

}

From collection to an array copy

e Collection.toArray(..)

public static void main(String[] args)

{

Collection<String> c = new ArrayList<>();
c.add("Helena");c.add("Kit");c.add("Jason");
String[] arr = c.toArray(new String[1]); //create a new array copy; initial size=1; expand as needed

arr[@]="Tom";

System.out.println(c); //output: [Helena, Kit, Jason]
System.out.println(Arrays.toString(arr)); //output: [Tom, Kit, Jason]

X1 Simple algorithms: shuffling, sorting, binarySearch, reverse, disjoint..

e Collections.xxx(..) - Useful methods for collections

public static void main(String[] args)
{
List<String> c = new ArrayList<>(); c.add("Helena");c.add("Kit");c.add("Jason");
System.out.println(c); //Output: [Helena, Kit, Jason]
//Sorting
Collections.sort(c); System.out.println(c); //Output: [Helena, Jason, Kit]
//Binary search
System.out.println(Collections.binarySearch(c, "Helena")); //returns the index: 0
//0thers:
System.out.println(Collections.disjoint(c,c.subList(@, 1))); //Output: false
}
true if no elements
//Other methods: max, min, frequency, reverse, rotate, shuffle in common

Last modified: 12-Nov-2020 8/8

Topic 09 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Topic 09 - OOP Review — Features, Techniques, Practices and Principles

I. OOP Basics, Classes and Objects, Refactoring
II. The Dependency, Association, Aggregation, Composition relationships
III. OO Techniques: Encapsulation, Abstraction, Generalization, Realization, Delegation
IV. Measurements: Cohesion and coupling
V. Principles
VI. Design Patterns

I OOP Basics, Classes and Objects, Refactoring

B Programming - Procedural Approach vs OO Approach

Procedural Approach Object-Oriented Approach
Specify what tasks to do in Specify who performs what
each step. tasks in each step.

B World objects vs OO Programs
The world : Objects communicate to complete some tasks

00 Programs : Objects communicate to provide some functions to users

B Why OOP?
e State-of-the-art, popular approach in the industry
e To handle complexity
e To ease change, e.g., Encapsulation

E Relationship between classes (Ref Topic03: A class is the template / blueprint from which objects are made)
e Inheritance (“is-a”) [See topics 04]
° Interface (“Implements-a") [See topics 05]
e Dependency (“uses-a”) [Nextpage]

B Relationship between objects
e Association (“Knows-a”) [Nextpage]
e Aggregation and Composition (“Has-a”) [Next pagel

B How to maintain good quality of an OOP program - Refactoring

Refactoring
At the beginning, nobody wanted to write poor code;
Gradually, our code starts to look ugly (code smell).
One day we find that it is hard (then towards impossible) to maintain or change.

Refactoring: Improve code structure, without changing its external behavior

- Remove unhealthy dependencies between classes or packages

- Solve for bad class / method responsibilities; Reduce duplicate code and confusion

- Programmers refactor continuously to keep code as clean, simple, and expressive as possible.

Last modified: 25-Nov-2020 1/5

Topic 09 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

I1. The Dependency, Association, Aggregation, Composition relationships

« We say “Class A tecentdepends on Class B the supplier * jf:
Any change to B requires A to be changed and/or recompiled.

« Eg. 1. B s the superclass of A; or B is the interface implemented by A

2. Bis the type of
a field of class A,
a parameter of a class A method, or
a local variable of a class A method

3. aclass B method or field is used / accessed from the code of class A, or
a B object is created in class A’s code

class A extends B { class A { class A {
. private B b; public void handleIt(C c) {
} .. c.getB().xxx(); /Ixxxis B’s method
class A implements B,C,D { } ¥
0o class A { }
} private static B b; class A {
.- public void handleIt() {
} (new B()).xxx();
class A { }
public void handleIt(B b) { }
xxx(b);
}
¥
class A {

public void handleIt() {
B b = Company.getB();
b.xxx();

B Association ("Knows a")
» An association is a type of object links.
« Often implemented as object fields, like other attributes

» Often expressed in two notations (depends on your intention):

i or (ii * 1
0] order (i) order Customer
- cus: Customer
Implementation in Order: Implementation in Customer:
May contain a Customer field May contain a list of orders
7 the written code is

the same as (i)

* Association class
If the association has attributes, it should be implemented as a separate class:

* *
Employee . Project Implementation:
: Class WorksOn {
Employee e;
WorksOn Project p;
= hours .. hours, startDate etc..
- startDate }

Last modified: 25-Nov-2020 2/5

Topic 09 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

B Aggregation and Composition ("Has a")

o Aggregation has vague

) : 1 * 1 *
semantics (Aggregations | Group |—| Member | 0

are also associations)

Association Aggregation
o Composition relates to creating and 1 -
controlling the lifetime of another | Polygon ¢ venexé TS |
object 1 1
(also think about: Garbage Collection). | Circle |‘—t>| Point |
center
Single-owner: When B is composed
by A, A owns B. Suppose a vertex of a polygon p1 is (123, 45) , and

the center of a circle ¢c1 happens to be (123, 45) as well;
Even so, p1 and c1 should link to two different Point objects

FAQ:
[Q] It is often vague to tell two classes' relationship (Association? Dependency? Aggregation?..) Then, use which one?
[A] Fact is: More than one could be correct! Therefore, see which can best match your intention (what to tell).

ation|

« Encapsulation [™r°03l: Combine data and behavior in one package'ide details from the users

* Abstraction: specify the framework and hide implementation details.
- Give the developer a blueprint to follow.
- Tell the user what instead of how
- Eg. in Java: interfaces and abstract methods

* Generalization: provide common structure and behavior at an upper level of the hierarchy (available to
lower level along inheritance)

- Eg. We first design SalariedEmployee and HourlyEmployee as 2 separate classes,
Then we observe common structure and behavior and rewrite as:

Employee

- hame

+ getName() {..}
+ getPay() /* no code */

VAN

SalariedEmployee HourlyEmployee
- salary - wageRate, hours
+ getPay() {..} + getPay() {..}

* Realization: provide implementation details to realize the abstract blueprint
-Examfh-‘ L. Tmplewends Cloneadie
. 7"1W Grm.r\uam <--2
class %AJJS’Jﬂ atends Rucev ded Crmumand

-
Concrefe class Abs+"“°f C(0«4$

Last modified: 25-Nov-2020 3/5

Topic 09 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

+ Delegation: An object forwards ©" delegates g
request to another object. The delegate
carries out the request on behalf of the
original object.

Advantage:

Easily compose behaviors at run-time.
Often used as an alternative to
inheritance.

interface SoundBehavior {
void makeSound();

public class Cat {

}

Cat «interfaces
-sound: SoundBehaviour — SoundBehaviour
+makeSound() +makeSound()
+setSoundBehaviour(SoundBehaviour s)

public class MeowSound implements SoundBehavior {
public void makeSound() { System.out.println("Meow"); }

public class RoarSound implements SoundBehavior {
public void makeSound() { System.out.println(“Roar!"); }

private SoundBehavior sound = new MeowSound();
public void makeSound() { sound.makeSound(); }
public void setSoundBehavior(SoundBehavior newsound) { sound = newsound; }

/ AN

MeowSound RoarSound

+makeSound()| | +makeSoundi()

IV. Measurements: Cohesion and coupling

Coupling

* The degree to which software components
depend on each other

» Two classes (methods) are coupled if changing
one of them leads to a change of the other.

High coupling ® Low coupling v

SR

Cyclic dependencies!!

Cohesion

» The degree to which a class/method has
ONE and ONLY ONE purpose.

» A class (method) has a low cohesion if it
does many unrelated things or too much
work.

« One common mistake of OO design: Too
few classes/methods! Measurement: Cohesion!

A good design should hav_e
high cohesion, low coupling

Low cohesion ® To raise cohesion,
break the class v
Class B
Class A
- s
=8 + processS()
-t + handleS()
+ processS() {.. I* deal with s only */ ..} Class C
+ handleS() {.. I deal with s only */ ..} Ct
+ processT() {./*deal withtonly* .} + processT()
+ handleT() {.. I* deal with t only */ ..} + handleT()

Last modified: 25-Nov-2020

4/5

Topic 09 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Liskov Substituion Principle (LSP)

* LSP: Subclasses must be substitutable for their superclasses.

* -ve case: A subclass’s object is not 100% a superclass’s object.
(Partial code reuse only, eg. BatteryDuck inheriting a Duck Which has the eat() method)

Dependency Inversion Principle (DIP)

* DIP: High level modules should not depend upon low level modules. Both should depend upon abstractions.
Abstractions should not depend upon details. Details should depend upon abstractions.

» -ve case: Classes depend too much on each other, changing one will lead to the change of another.

* Example 1: Topic04 P.10
Employee, SalariedEmployee, HourlyEmployee; main, Company etc. depends on Employee

Abstract Details Details High level Abstract

* Example 2: Lab12Q2 — Person, Playables (Football, Piano, + Chess!)

Open-Closed Principle (0CP)
* OCP: Modules should be open for extension, but closed for modification

* Robert Martin: “it should be easy to change the behavior of a module without changing the source code
of that module.”

« If OCP is applied well, then further changes can be done by adding new code, not by changing old code
that already works. (Ref: Lab06 page 1 State-Pattern; Lab06-Q3: add “Disappeared Member”)

V1. Design Patterns

B Design patterns are referred to as best practices to approach common object-oriented design problems

B Examples of design patterns
= Singleton - Ensure a class has only one instance, and provide a global point of access to it.

= State - Encapsulate a state as an object
To allow an object to alter its behavior when its internal state changes. The object will appear to
change its class.

= Command - Encapsulate a command as an object
To let you support undoable operations.

[A famous book] Looking forward to learn more in your next course:
CS3342 Software Design

DeSign Patterns = Elements Of https://www.cityu.edu.hk/catalogue/ug/202021/course/CS3342.pdf
Reusable Object-Oriented Software

by Gang of Four Keyword Syllabus
El'iCh Gamma / Richard Helm / (An indication of the key topics of the course.)
Ralph Johnson / John Vlissides Software Devel Process, Requi Elicitation and Analysis, Use Case Specifications, Software
Design Principles, Software Design Patterns, Object-Oriented Software Design M ing, UML, Class
Diagram, Use-Case Diagram, Sequence Diagram, Semantics of UML di Professional | Ethics.

First published: 1994;
Latest print: 2016 (44" printing) Syllabus

1. Software Development Process
Project scope, process issues, software development life cycle models, professional ethics.

&)

Software Requirements Specification
Requirements elicitation, analysis, use-case modelling, specification and documentation.

3. Object-Oriented Analysis (OOA)
Object-oriented concepts: object modelling, reuse, object interactions and responsibilities.

4. Object-Oriented Design (OOD)
F fiy design principl and applications of softy design patterns.

Last modified: 25-Nov-2020 5/5

	CS2312_Intro
	Slide Number 1
	Your Attention, Please!
	Java Programming and OO
	Python and Functional Programming
	Textbook and Materials
	Tentative Assessment Pattern
	Course Web
	Sample OO Program

	Topic01
	Topic02
	Topic03
	Topic04
	Topic05
	Topic06
	Topic07
	Topic08
	Topic09

