
CS2312 Problem Solving and Programming
2020-2021 Semester B

Department of Computer Science, City University of Hong Kong

Instructor: Dr. Helena WONG

1www.cs.cityu.edu.hk/~helena Intro

Your Attention, Please!

Not a pure programming course.

Your first programming course and your coming software design course has a

large gap in terms of the level of abstraction required.

This course is to help you to raise the level of abstraction from pure

programming to a logical organization of software code based on the

requirements of the targeted applications to be developed.

2

[Borrowed from Dr. Ricky CHAN’s notes in Spring 2013]

www.cs.cityu.edu.hk/~helena

Related Courses:
CS2310 Computer Programming
CS2312 Problem Solving and Programming
CS3342 Software Design
CS3343 Software Engineering Practice

Intro

Java Programming and OO

[Teaching Focus #1] Java Programming

Crash introduction of basics
you have learnt C++ already, we can move fast onto java

Intensive study of key and advanced techniques
target: pave the way for Part 2

[Teaching Focus #2] Doing the OO

Object Oriented - concepts/design/principles/practices

Intended Learning Outcomes - Briefly:
1. [OO] Understand OO concepts
2. [OOD] Design OO solutions
3. [OOP] Implement the OO solutions in Java
4. [Practices] Apply the best practices in Java programming
5. [Review] Evaluate and review OO design and code

3www.cs.cityu.edu.hk/~helena Intro

Python and Functional Programming

[Teaching Focus #3]

Python and Functional Programming

Given in week 12-13

4www.cs.cityu.edu.hk/~helena Intro

Textbook and Materials
[Focus #1] Java Programming

Textbook: C.S. Horstmann, and G. Cornell, Core JavaTM Volume I, Prentice Hall.

Other books on my desk:
• Walter Savitch, Absolute Java, Addison-Wesley.

• Y. D. Liang, Intro. to JavaTM Programming Comprehensive Version, Pearson.

Official site of Java, tutorial: http://docs.oracle.com/javase/tutorial/index.html

[Focus #2] OO concepts/design/principles/practices
• Materials from Dr. Sam NG for his teaching of a previous course: CS2332 OOP in C++

Sam is also the author of the current syllabus of CS2312.

• Materials from Dr. Ricky CHAN [CS2312 / Spring 2013, CS3342], Dr. Jacky KEUNG [CS3342]

• More.. [Check out at our courseweb]

Acknowledgments:
“Some of the material for this course was influenced by and, in some cases, directly borrowed
from, materials available on the web for similar courses at other universities. I thank the
instructors who posted their materials on the web.” [Borrowed from http://www.cse.ohio-state.edu/~neelam/courses/45923/]

www.cs.cityu.edu.hk/~helena 5Intro

http://docs.oracle.com/javase/tutorial/index.html
http://www.cse.ohio-state.edu/%7Eneelam/courses/45923/

Sample OO Program

www.cs.cityu.edu.hk/~helena 8

Consider a Library System which allows:
• Register a new member. A member may be a child,

adult or senior.
• Cancel, search for an existing member.
• Add a new book.
• Remove the record of a book.
• Search for the details of a book.
• A member borrows / returns a book.
• A member pays fine. Fine rate is $3/day for children,

$10/day for adult and $5/day for senior.
• Undo the last action performed by the user.

Procedural approach and OO approach are very different!!
Which would be our approach for even larger problems?

CS2310 [Procedural approach]: Specify what tasks to do in each step
CS2312 [Object-oriented approach]: Specify who performs what tasks in each step.

Sample rundown:

“Object-oriented design has been widely adopted by businesses around the world. When
done properly, the approach leads to simpler, concrete, robust, flexible and modular
software. “ -- Robert C. Martin (Uncle Bob)

Topic 01 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 3-Sep-2020 1/6

 Contents Topic 01 - Java Fundamentals

 I. Introducing JAVA

 II. Compiling and launching from Command-Line, IDE
 A simple JAVA program

 III. How does JAVA work

 IV. Review - Programming Style, Documentation, Syntax error /
Runtime error / Logic error

 I. Introducing JAVA

- The White Paper for Java was announced in May 1996
James Gosling , Henry McGilton - Sun engineers

- Java is designed to achieve:

 Simple

 Object oriented

 Distributed

 Multithreaded

 Dynamic

 Architecture neutral,
Portable

 High performance

 Robust

 Secure

- The Java platform is available as different packages:

 JRE (Java Runtime Environment) – For consumers to run Java programs.

 JDK (Java Development Kit) – For programmers to write Java programs.
Includes JRE plus tools for developing, debugging, and monitoring Java
applications.

Java is partially modeled on C++, but simplified and improved.

Java was designed from the start to be object-oriented.

Java is designed to make distributed computing easy with
networking capability. Writing network programs is like sending
and receiving data to and from a file.

Multithread programming is smoothly integrated.

Designed to adapt to an evolving environment. Libraries can
freely add new methods and instance variables without effecting
clients. Straightforward to find out runtime type information.

With a Java Virtual Machine (JVM), one program can run on any
platform without being recompiled.

High performance of interpreted bytecodes, efficient translation of
bytecodes to machine code.

Java compiler, modified program constructs, runtime exception-handling

Security mechanisms to protect against harm caused by stray programs.

https://www.oracle.com/java/
moved-by-java/

https://www.oracle.com/java/techn
ologies/language-environment.html

Topic 01 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 3-Sep-2020 2/6

- Once installed, the Java Virtual Machine
(Java VM) is launched in the computer.

- During runtime, the Java VM interprets
Java byte code and translates into OS calls.

- Java Versions:

- Editions for different development purposes:

Hardware
(Intel, AMD, etc..)

OS
(Windows, Linux etc..)

JAVA Virtual Machine

Java programs
(*.class that stores Java byte code)

Version 1.0 (1995)
Version 1.1 (1996)
Version 1.2 (1998)
Version 1.3 (2000)
Version 1.4 (2002)

Version 1.5 (2004) a. k. a. Java 5
Version 1.6 (2006) a. k. a. Java 6
Version 1.7 (2011) a. k. a. Java 7
..
Version ??
https://www.oracle.com/java/
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html

• Java Standard Edition (J2SE)
J2SE can be used to develop client-side standalone applications or applets.

• Java Enterprise Edition (J2EE)
Server-side applications such as Java servlets, Java ServerPages, and Java
ServerFaces.

• Java Micro Edition (J2ME)
Applications for mobile devices such as cell phones.

https://www.oracle.com/java/
https://www.oracle.com/java/
https://www.oracle.com/java/
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html

Topic 01 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 3-Sep-2020 3/6

 II. Compiling and Launching from Command-Line, IDE, A Simple JAVA Program

With JDK installed, you can compile and run Java programs in this way:

1. Create the source file: Welcome.java

2. At the command prompt, set path to JDK and then compile to give Welcome.class

3. Run it:

Explanation of the program:

The static modifier
is added to tell that:
we can run main
without creating an
object first.

(Learn in Lab01_Q1)

In JAVA, we have System.out.print, which is just like
cout << in C++

System.out.println: newline is added after the output.

String[] args is
the argument for
running the
program.

(See next slide.)

In JAVA, everything is inside a class, including the main() method

By convention, class names start with an uppercase letter.

File name (Welcome.java) must match class name (class Welcome)

Topic 01 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 3-Sep-2020 4/6

Arguments can be supplied to main() as an array of strings:

Example:

Run-time exception:

- Integrated Development Environments (IDE):

• NetBeans

• Eclipse

• repl.it

• Vs Code

The program code
expects 2 arguments.
But the only one is
given.

Topic 01 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 3-Sep-2020 5/6

 III. How does JAVA work

Compiling and Running Programs

How are JAVA Programs “Architecture neutral”, “Portable” ?

A .class file does not contain code that is native to the computer;
It contains bytecodes — in machine language of Java Virtual Machine (Java VM).

The JRE runs .class with an instance of the Java Virtual Machine.

Welcome.java Welcome.class Welcome
program

Source files (.java) are compiled into
.class files by the javac compiler.

The role of Java VM

Java VM is available on many

different operating systems.

Once you install JRE or JDK,

Java VM is ready in your

computer.

The same .class file is capable of

running on Microsoft Windows,

the Solaris™, Linux, or Mac OS.

Welcome.java

=> Welcome.class

Topic 01 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

6/6

IV. Review - Programming Style, Documentation, Syntax error / Runtime error / Logic error

Programming Style and Documentation

Appropriate Comments

Naming Conventions

• Choose meaningful and descriptive names.

Proper Indentation and Spacing Lines

• Tabs, tidy spacing

• Use blank line to separate segments of the code.

Block Styles

Three types of programming errors

Debugging
(1) A video on Canvas => CS2312 => https://www.cs.cityu.edu.hk/~helena/cs231220... :

 debugger in VS Code (Tracing Lec01 Q12 Fib and Lab01 Q02 Day)

(2) https://code.visualstudio.com/docs/java/java-debugging

public class Test
{
 public static void main(String[] args)
 {
 System.out.println("Block Styles");
 }
}

public class Test {
 public static void main(String[] args) {

 System.out.println("Block Styles");
 }
}

End-of-line
style

Next-line
style

Syntax Errors

Detected by the compiler

Runtime Errors

Causes the program to abort

Logic Errors

Produces incorrect result

public class Day {
private int year;
private int month;
private int day;
public Day(int y, int m, int d) {
this.year = y;
this.month = m;
this.day = d;

}
public String toString() {
return day + "-" + month + "-" + year;

}
}

Poor! Hard to read!
Please add line breaks before methods

(OK)

(OK)

public class ShowSyntaxErrors {
public static main(String[] args) {

System.out.println("Welcome to Java);
}

}

public class ShowRuntimeErrors {
public static void main(String[] args) {

System.out.println(1 / 0);
}

}

public class ShowLogicErrors {
public static void main(String[] args) {

System.out.print("Five plus six is ");
System.out.println("5"+"6");

}
}

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

1/14

 Contents Topic 02 - Java Fundamentals

I. A simple JAVA Program
 – access modifier (eg. public), static, ..

II. Packages and the Import statement, Java API
(java.lang, java.util, Math,..)

III. Creating Packages and “Default Package”

IV. Comments and Javadoc

V. Data types and Variables

VI. Constants (the final keyword)

VII. Arithmetic Operators, Relational Operators,
Boolean (logical) Operators, Bitwise Operators

VIII. Conversion and type casting

IX. Parentheses, Operator Hierarchy,
Precedence levels, Associativity

X. Strings, StringBuilder

XI. Input (console, file, input from string)

XII. Output (System.out.printf,
String.format, PrinterWriter)

XIII. Control flow

XIV. Arrays

 I. A Simple Java Program

Access Modifier: public

• The keyword public is one of the access modifiers, that states how other parts can get the access.

For example, here public is applied to class FirstSample meaning that outsiders can use the class.

• Except public, we also have other modifiers: private, protected, etc., We will cover them in next topic.

JAVA classes and .java files

• Classes are the building blocks for Java programs.

By convention: start with an uppercase letter

• A .java file cannot have 2 or more public classes.

The name of a public class has to be the same as the file name

• Case sensitive. FirstSample.java matches with class name FirstSample

The main method in Java

• main() does not return anything, thus void

• main() has to be inside a class; as a static method (ie. A method that does not operate on objects.).

String[] args

• Arguments can be supplied to main() as an array of strings. (Ref. Topic01)

FirstSample.java

public class FirstSample
{
 public static void main(String[] args)
 {
 System.out.println("Hello!");
 }
}

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

2/14

print(..), println(..)

• General syntax to invoke a method: object.method(parameters)

• Use the System.out object and call its println method.

o System.out.println("Hello!");
prints “Hello!” + terminate the line (newline character '\n')

• Can be without argument: simply a blank line

o System.out.println();

• .print() method

o System.out.print("Hello!");  not terminating the line ( “\n”)

 II. Packages and the import statement

• Packages are groups of classes.

• The standard Java library is distributed over a number of packages
e.g. java.lang, java.util, ..

• java.util
o java.util contains the Scanner class (and many other classes)

o We can use it like: java.util.Scanner

o If we import java.util.*, then we can simply write: Scanner

• The import statement:

o import java.util.*;

We can use all classes in
java.util

o import java.util.Scanner;
We can use Scanner

• java.lang - Java fundamental classes

o No need to import java.lang (assumed already for all programs)

o java.lang provides the System class , Math class, and many more..

• Use of the java.lang.System class:

Ref: JAVA API Documentation https://docs.oracle.com/en/java/javase/11/docs/api/java.base/module-summary.html

public class FirstSample {

 public static void main(String[] args) {

 System.out.println("Hello!");

 }
}

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/module-summary.html

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

3/14

 III. Creating Packages and “Default Package”

• We can group our source files into packages

o A class not grouped into package is in "default package"

o A class grouped into package is in the package folder and has the package statement:

 To use the class, type Calendar.Day or add import Calendar.*

• Unluckily PASS doesn’t compile packages at this moment.

IV. Comments

Three ways of marking Comments

• Like C++: //, /* . . . */

• For automatic

documentation
generation: /** . . . */

 /**
 Just print them
 @param t1 - 1st thing to be done
 @param t2 - 2nd thing to be done
 */
 static void doTwoThings(String t1, String t2)
 {
 System.out.println(t1);
 System.out.println(t2);
 }

automatic documentation generation
(by the javadoc program from JDK)

Some IDEs add * in front of
every line, for visual style only.

 /**
 * Just print them
 * @param t1 - 1st thing to be done
 * @param t2 - 2nd thing to be done
 */

Project folder in VS Code

File explorer Source code

Package name must
match folder name

Add package statement
to the top of file

Calendar package
contains Day.java

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

4/14

V. Data Types and Variables

Overview of Data types

There are two kinds of types in the Java: Primitive types and Reference types

I. Primitive types: Java has 8 primitive types: boolean, byte, short, int, long, float, double, char

II. Reference types (~ pointers in C++) :

- The values of a reference type are references to objects.
An object is an instance of a class.
Note: The word “object” is often used interchangeably with “instance”.

- Examples of built-in Java classes: String, Math, Scanner
Examples of user-defined classes (Lab01): Main, Day, Model, View, Controller

We can create objects of these classes, using the new operator. After creation, we get the object reference.

We often use a variable to hold the object reference;
Then we can use the variable to access the object.

- An array is also a special kind of object

Variables

We have seen that there are 2 types of data: Primitive and Reference types.

These data can be stored in variables: primitive values and reference values:

Types of variables in JAVA Information stored Examples

(i) Variables of Primitive Types The variables hold the exact
values

int x;
x = 689;

(ii) Variables of Reference Types The variables hold the references
to objects (Like pointers in C++)

Day d;
d = new Day(2016,1,20);#1

#1: Use of a class: We use a class name as variable type, and use the class to create ("new") an object of its kind.

Data Types – Integers

• Integer types

• Java has no unsigned types

• Long integer numbers have a suffix L

• To provide numbers in Binary, we need prefix: 0b

• To provide numbers in Hexadecimal, we need prefix: 0x

e.g. Day dayObj = new Day(2013, 12, 31);
 System.out.println(dayObj.toString());

//suffix 'L' is required for 2,223,123,123

System.out.println("Testing: " + 2223123123L); //Testing: 2223123123

long x;
x = 2223123123L;
System.out.println("x is: " + x); //x is: 2223123123

int x;
x = 0b11111111;
System.out.print(x); //shows 255

x = 0xFF;
System.out.print(x); //shows 255

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

5/14

Data Types – Floating Point Types

• Floating Point Types
o For numbers with fractional parts, (ie. not whole numbers, e.g. 1.1), and
o For very large numbers (e.g. 5 x 1023)

• The precision is limited (ie. keep a few significant digits).

• 2 Types:

• Suffix:

o float - F
o double – D (optional)

• Roundoff errors

Data Types – char and Escape Sequence

• Primitive type for characters: char

• Escape Sequence for special char values:

Data Types – Boolean

• Boolean type: true, false

o We cannot convert between integers and Boolean values

Reason of Roundoff errors:
computer uses binary number system; and there is no precise binary representation of a lot of
fractions (e.g. 1/10)
Solution: use the BigDecimal class (Example is in the given code of this topic)

float x1 = 0.98765987659876598765F;
System.out.println(x1); //Shows 0.9876599

double x2=0.98765987659876598765D; //'D' is optional
System.out.println(x2); //Shows 0.987659876598766

double x3=0.98765987659876598765; //'D' is optional
System.out.println(x3); //Shows 0.987659876598766

double x4=98765987659876598765D; //'D' is optional
System.out.println(x4); //Shows 9.87659876598766E19

System.out.println(2.0 - 1.1); //0.8999999999999999

boolean b=true;
int i = 3;
b = i; //Error!! Type mismatch - cannot convert from int to boolean
i = b; //Error!! Type mismatch - cannot convert from boolean to int

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

6/14

Declaration of Variables

• Every variable has a type:

o double salary;
o int vacationDays;
o long earthPopulation;
o boolean done;

• Common ways to name: start with lowercase letter

o Box box; //Box is a class type and box is the variable.
o Box aBox; //using “a” as prefix
o Box bxJewels, bxCoins;

• Must explicit initialize before use

VI. Constants

• Constants: Java keyword is final

• final: the value is set once and for all.

• Common ways to name a constant: all in uppercase

• Often given as Method constants or Class constants

VII. Operators: Arithmetic Operators, Relational Operators, Boolean (logical) Operators, Bitwise Operators

(I) Arithmetic Operators: +, -, *, /, %, +=, -=, *=, /=, %=

x/y
• If both x and y are integers, denotes integer division, e.g. 3/4 is 0
• Otherwise floating-point division, eg. 3.0/4 is 0.75

x/0
• If x is integer => division by zero exception (run-time error)
• Otherwise, ie. x is floating point => NaN Not a number or Infinity

int x;
System.out.println(x); // ERROR--variable not initialized

int x = 12;
System.out.println(x); //12

int x;
x= 28;
System.out.println(x); //28

public class MyApp
{
 public static void main(String[] args)
 {
 final double CM_PER_INCH = 2.54;
 ..
 }
}

public class MyApp
{
 public static final double CM_PER_INCH = 2.54;

 public static void main(String[] args)
 {
 ..
 }
}

System.out.println(0/0);  java.lang.ArithmeticException: / by zero
System.out.println(0%0);  java.lang.ArithmeticException: / by zero

System.out.println(12.0/0);  gives Infinity
System.out.println(0.0/0);  gives NaN

System.out.println(12.0%0);  gives NaN
System.out.println(0.0%0);  gives NaN

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

7/14

 (II) Relational Operators: ==, !=, >, <, >=, <=

(III) Boolean (logical) operators: &&AND, ||OR

• Evaluated in “Short circuit” fashion

I.e., The second argument is not evaluated if first argument already determines the value.

Example 1:

if isMember is true, then calculateAge doesn't need to (will not) run.

Example 2:

if totCourse is 0, then totalMark/totCourses will not be calculated
(avoid run-time error "Division-by-zero“)

(IV) Bitwise Operators:
 & (“AND”) | (“OR”) ^ (“XOR”) ~ (“NOT”) << (left-shift) >> (right-shift)

VIII. Conversion between numbers, type casting

Legal conversions:

Case 1: Without information loss, or

Case 2: Just to lose precision

Case 3: Though legal, but may lose information. For these cases explicit type casting is needed:

int i=97; char c;
c=(char)i;
System.out.println(i); //output: 97
System.out.println(c); //output: a

double d; float f; int i=2147483647;
d=i;
f=i;
System.out.println(f); //output: 2.14748365E9
System.out.println(d); //output: 2.147483647E9
System.out.println(i); //output: 2147483647

Q: Why int->char may cause information lost?
A: int is 4 bytes, can hold big range of values
 But char is 2 bytes only

2 bytes

2 bytes

if ((isMember==true) || (calculateAge(..)>=65))
 System.out.print("Gift");

if (totCourses>0 && totalMarks/totCourses >=90)
 System.out.print("Well done!!");

Example:
 int n1, n2, n3;
 n1 = 0xFE; (ie. 0b11111110)
 n2 = n1 ^ 0xFF; //set n2 to 0b00000001 (0b11111110 XOR 0b11111111)
 n3 = n2 << 4; //set n3 to 0b00010000 (left-shift 0b00000001 by 4 bits)

4 bytes

4 bytes

8 bytes

8 bytes

1 byte

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

8/14

IX. Parentheses and Operator Hierarchy

When one expression contains 2 or more operators, then

The order of Evaluation depends on precedence level and associativity.

Exercise:

Q1. For each underlined expression below, mark the steps with , :

(i). System.out.println(1234 / 100 / 10) ;

(ii) System.out.println(1234 * 60 % 24); (note: * and % have the same precedence)

(iii). int a,b; a = b = 10;

Q2. Delete the wrong items below (*):

In * (i) / (ii) / (iii), we say that the associativity is left-to-right.

In * (i) / (ii) / (iii), we say that the associativity is right-to-left.

pr
ec

ed
en

ce
 le

ve
l

Note:
When operators have the same precedence level,
then the associativity rules of the operators decide
the order of evaluation.

E.g.

- The precedence level of / and * are higher than the precedence level of + and -

- To override the above ordering, we add () for grouping.
 ↑

int x = 12345 / (4 + 5 * 7 - 2);
    

the precedence level of () is high

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

9/14

X. Strings & StringBuilder

Strings (java.lang.String)

• A String object contains a sequence of Unicode characters (code units in UTF-16 encoding)

• String variables are references to string objects

 or  Shorthand

• .length method yields number of characters

• "" is the empty string of length 0, different from null

  Check for non-null and non-empty

• .charAt method yields char:

• .substring method yields substrings:

It means from position 1 inclusive to position 3 exclusive

• +

• Use .equals to compare string contents:

• Converting Strings to Numbers: Integer.parseInt

• Strings are immutable:
o No method can change a character in an existing string
o To turn greeting from “Hello” to “Help!”, it is not so convenient:

  actually a new string object

For the original string object which was previously referred by greeting, Java has the Garbage Collection
mechanism to recycle the unused memory.

StringBuilder (java.lang.StringBuilder)

• If more concatenation work is needed,

using + for string concatenation is inefficient 
reason: it actually creates new string objects

• StringBuilder object – can manipulate characters within itself. 

• Other StringBuilder methods for handling character contents: setCharAt, insert, delete

String s = new String("Hello");

String s = "Hello";

if (s!= null && s.length() != 0)

char c = s.charAt(i);

String greeting = "Hello";
String s = greeting.substring(1,3);

greeting = greeting.substring(0,3)+"p!";



 

String greeting = "Hello";
String part = greeting.substring(1, 3);

if (part == "el") {..} //NO!
if (part.equals("el")) {..} //OK

"el"

String greeting = "Hello"; String s;
s = 1000 + " " + greeting; // "1000 Hello"
s = 1000 + ' ' + greeting; // ____________

String input = "7";
int n = Integer.parseInt(input); // n gets 7

StringBuilder sb = new StringBuilder();
sb.append("Hello ");
sb.append(name); //suppose name is "Peter"

String result=sb.toString(); //gives "Hello Peter"

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

10/14

XI. Input (Console, File, Input from String)

(1) Reading input from Console

• Construct Scanner from input stream (e.g. System.in)
Scanner in = new Scanner(System.in);

• .nextInt, .nextDouble reads next int or double
int n = in.nextInt();

• .next reads next string (delimited by whitespace: space, tab, newline;
 discard leading whitespace)

• .nextline reads until newline and removes newline from the stream.
Sometimes we need .nextline to remove extra line break (Learn from Lab03)

• .close closes the stream

(2) Reading input from a file

• Construct Scanner from a File object
o Scanner inFile = new Scanner(new File("c:\\data\\case1.txt"));

• .hasNext() checks whether there is still “next string” in the file.

(3) Reading input from another string

Example: Read a of words and show them line by line:

Scanner in = new Scanner(System.in);
String s1,s2;
s1 = in.next(); //type " Today is a good day."
s2 = in.nextLine();
System.out.println(s1); //"Today"
System.out.println(s2); //" is a good day“
in.close();

 Today is a good day.
Today
 is a good day.

Rundown

Scanner inFile = new Scanner(new File(fileName));

while (inFile.hasNext()) {
 String line = inFile.nextLine();
 ..
}
inFile.close();

Scanner inData = new Scanner(str); //where str is a String
//.. apply .hasNext(), .next(), .close() etc..

System.out.print("Enter a line of words: ");

Scanner scannerConsole = new Scanner(System.in);
String str = scannerConsole.nextLine();

Scanner scannerStr = new Scanner(str);
while (scannerStr.hasNext())
 System.out.println(scannerStr.next());

scannerStr.close();
scannerConsole.close();

Enter a line of words: Have a good day!
Have
a
good
day!

Output

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

11/14

XII. Output (System.out.printf, String.format, PrinterWriter)

Formatted Output – using System.out.printf()

• Using .print, .println for floating-point values (problem):

• Using .printf – formatted output (solution)

• Using .printf – multiple parameters

• Conversion characters (%f, %d, %s):

• Similar method to create a string

• Output to a file (Create a PrinterWriter object, then apply .print etc..)

PrintWriter out = new PrintWriter("c:\\report\\myfile.txt");
out.println("My GPA is 4.0");
out.close();

double x = 10000.0 / 3.0;
System.out.printf("%8.2f", x);//prints 3333.33

Field width of 8 characters
Precision of 2 characters
=> Result has a leading space and 7 characters

double x = 10000.0 / 3.0;
System.out.println(x); //prints 3333.3333333333335

System.out.printf("Hi %s. Next year you'll be %d\n", name, (age+1));

String msg = String.format(“Hi %s. Next year you'll be %d", name, age+1);

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

12/14

XIII. Control flow

• Control structures (similar to C++):
 if if..else switch-case while do-while for

• Block Scope (compound statement inside {})

• Cannot declare identically named variables in 2 nested blocks:

• Declaring a variable in a for-loop:

• Using break and continue:
break
 means "immediately halt execution of this loop"
Continue
 means "skip to next iteration of this loop."

// Find x in an array A

bFound=false;
for (i=0;i<n;i++)
{
 if (A[i]==x)
 {
 bFound=true;
 break;
 }
}

// read in 10 numbers
// and handle only the positive ones
for (i=0; i<10; i++)
{
 x=scannerObj.nextInt();
 if (x<0)
 {
 System.out.println("Wrong");
 continue;
 }

 .. // processing of x
}

for (int i = 1; i <= 10; i++)
{
 . . .
}
// i no longer defined here

for (int i = 11; i <= 20; i++) // OK to define another variable named i
{
 . . .
}

public static void main(String[] args)
{
 int n;
 . . .
 {
 int k;
 int n; // ERROR--can't redefine n in inner block
 . . .
 }
}

// No need to use break

bFound=false;
for (i=0;i<n && !bFound;i++)
{

if (A[i]==x)
bFound=true;

}

Or

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

13/14

XIV. Arrays

• An array is a collection of elements of the same type

• Index is zero-based

• Array variable is a reference

• Styles of array declaration:

(1) (2) (3)

• Reinitializing an array variable

• The “for each” loop:

o Syntax: for (variable : collection) statement

o Example:

• Arrays.toString

o Provided by the java.util.Arrays class
o Returns a string representation of the array

• Sorting with Arrays.sort

int[] arr;
arr = new int[5];
arr[0] = 3;
arr[1] = 25;

int[] arr = new int[5];
arr[0] = 3;
arr[1] = 25;

int[] arr = {3,5,0,0,0};

If extension is needed, make arr to refer to a
new larger array and copy the old contents.

Once created, cannot change size

int[] arr; // int[] is the array type; arr is the array name
 // int arr[]; is also okay, but not welcome by Java fans

arr = new int[5]; //create the array;
arr[0] = 3;
arr[1] = 25;

for (int i=0;i<arr.length;i++) //use .length to tell the array size
 System.out.println(arr[i]);

3
25
0
0
0

Output

Initialized values
For number elements : 0
For boolean elements: false;
For object elements: null

for (int x: arr)
 System.out.println(x);

Shorthand - Declaration with initializers

 "for each" loop - goes through each element as x

int[] arr = {3,5,0,0,0};
arr = new int[] {1,2,3,4,5,6,7,8};  a new array

For the original array which was previously referred by arr, Java has a Garbage
Collection mechanism to recycle the unused memory.

int[] arr = {3,5,0,0,0};
System.out.println(Arrays.toString(arr));

[3, 5, 0, 0, 0]

Output

Arrays.sort(arr);
System.out.println(Arrays.toString(arr));

[0, 0, 0, 3, 5]

Output

[0] = 3
[1] = 25
..

arr

Topic 02 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Sep-2020

14/14

• Array copying

(1) Copying reference – not really creating new array

(2) Copying as a new array: Arrays.copyOf

 Syntax: Arrays.copyOf(originalArray, newSize);

Arrays.copyOfRange is another useful method. Learn it in Lab03.

• Multidimensional array

2D array:
- Is a 1D array of

some 1D arrays

Ragged Array:
- Different rows

have different
lengths

 It is easy to do
so in Java.

table =

table[4]=

table[0]=

1234

int[][] table = new int[5][10];
table[3][5]=1234; // set 4th row, 6th column to 1234
for (int[] arr1D: table)
 System.out.println(Arrays.toString(arr1D));

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1234, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Output 5 rows 10 columns

arr1 = new int[] {3,25,0,0,0};
arr2 = arr1;

int[] arr1, arr2, arr3, arr4, arr5;
arr1 = new int[] {3,25,0,0,0}; // 5 elements

arr2 = arr1;
arr3 = Arrays.copyOf(arr1, 4); // only want 4 elements

arr1[1]=99;

System.out.println(Arrays.toString(arr1));
System.out.println(Arrays.toString(arr2));
System.out.println(Arrays.toString(arr3));

[3, 99, 0, 0, 0]
[3, 99, 0, 0, 0]
[3, 25, 0, 0]

Output

[0] = 3
[1] = 25
..

arr1

arr2

String[][] helpers = {
 {"Helena", "Kit", "Jason"},
 {"Helena", "Kit", "Jason"},
 {"Kit", "Jason"},
 {"Helena", "Kit"},
 {"Helena"}
};

System.out.println("Helpers for T01-T05:");
System.out.println("====================");

for (String[] arr1D: helpers)
 System.out.println(Arrays.toString(arr1D));

Helpers for T01-T05:
====================
[Helena, Kit, Jason]
[Helena, Kit, Jason]
[Kit, Jason]
[Helena, Kit]
[Helena]

Output

[0] = 3
[1] = 99
..

arr1

arr2
[0] = 3
[1] = 25
..

arr3

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

1/16

O Contents Topic 03 - Objects and Classes

I. Casual Preview Day, Employee, Initializing fields, Array of objects, toString

II. Introduction to OOP Terminologies: Instance, Instance fields, Methods, Object state, Encapsulation

III. Objects,Object variables Constructor, new, reference to object, null

IV. Implicit Parameters Calling obj, this, Using this to call another constructor

V. Day – Change of implementation Using integer data int yyyymmdd;

VI. Mutator, Accesor Methods getXX, setXX

VII. public vs private Encapsulation issue, mutable/immutable, avoid unnecessary accessors/mutators

VIII. Benefits of Encapsulation
IX. The Final keyword Method constant, Class constant, Final Instance Fields

X. The Static keyword Class constant (used with final), Static Method, Static Fields

XI. Method Parameters Java uses "call by value"

XII. Default field initialization (not for local variables) Numbers:0; Boolean: false; Object references: null

XIII. Overloading methods, Signature
XIV. Default Constructor Constructors with zero argument - designed and automatic generated

XV. Class Design Hints

 I. Classes and Objects – Casual Preview

A. Simple Class Example 1 - Day (See Lab01 Q1)

Add one more method to the Day class:

(1) Fill in the blank according to the comment:

Note: some methods return a result, some do not

(2) Both .advance() and .next() calculate the next day.

Complete the code below based on the comments.

Add this method

// advance the current day object by 1 day
public void advance()
{

if (isEndOfAMonth())
{

if (month==12)
{

year=__________;
month=_________;
day=____________;

}
else
{

}
}
else
{

}
}

class ClassName
{

field1
field2
. . .
constructor1
constructor2
. . .
method1
method2
. . .

}

Day d1 = new Day(2014, 1, 28);
System.out.println(d1.toString()); //Show 28 Jan 2014
______.advance(); //Advance one day
______.next(); //Advance one day
System.out.println(d1.toString()); //Show 30 Jan 2014

Main.java

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

2/16

B. Simple Class Example 2- Employee

- Consider a simplified Employee
class used in a payroll system:

- Alternatively:

- We can even do some method call and computation:

private double salary = Math.random()*10000;

- Using the Employee class in a program:

class Employee
{

// instance fields
private String name;
private double salary=0;
private Day hireDay;

..
}

Initialization can be
done for instance

fields.

class Employee
{

// instance fields
private String name;
private double salary;
private Day hireDay;

// constructor
public Employee(String n, double s, int year, int month, int day)
{

name = n;
salary = s;
hireDay = new Day(year,month,day);

}

public String getName() {return name;}

public double getSalary() {return salary;}

public Day getHireDay() {return hireDay;}

public void raiseSalary(double percent)
{

double raise = salary * percent /100;
salary += raise;

}
}

public class Main_EmployeeTest
{

public static void main(String[] args)
{

// fill the staff array with three Employee objects
Employee[] staff = new Employee[3];
staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

// raise everyone's salary by 5%
for (Employee e : staff)

e.raiseSalary(5);

// printing
for (Employee e : staff)

System.out.println(
"name=" + e.getName() +
",salary=" + e.getSalary() +
",hireDay=" + e.getHireDay());

}
}

Output
name=Carl Cracker,salary=78750.0,hireDay=15 Dec 1987
name=Harry Hacker,salary=52500.0,hireDay=1 Oct 1989
name=Tony Tester,salary=42000.0,hireDay=15 Mar 1990

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

3/16

C. Array of objects

D. .toString()

If an object’s text representation is needed, Java automatically looks for its .toString() method.

public class Main_EmployeeTest
{
 public static void main(String[] args)
 {
 // fill the staff array with three Employee objects
 Employee[] staff = new Employee[3];
 staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
 staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
 staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);
 ..
 }
}

staff=

staff[2]=

staff[0]=
staff[1]=

name =

75000 salary =

hireDay =

String object

1987 year =

12 month =

15 day =

Day object

Employee object
1D array of
Employee object
(references)

Array variable

public class Main_EmployeeTest
{
 public static void main(String[] args)
 {
 ..
 // printing
 for (Employee e : staff)
 System.out.println(
 "name=" + e.getName() +
 ",salary=" + e.getSalary() +
 ",hireDay=" + e.getHireDay());
 }
}

name=Carl Cracker,salary=78750.0,hireDay=15 Dec 1987
name=Harry Hacker,salary=52500.0,hireDay=1 Oct 1989
name=Tony Tester,salary=42000.0,hireDay=15 Mar 1990

public class Day
{
 private int year;
 private int month;
 private int day;
 ..

 // Return a string for the day (dd MMM yyyy)
 public String toString()
 {
 final String[] MonthNames = {
 "Jan", "Feb", "Mar", "Apr","May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

 return day+" "+
 MonthNames[month-1] +
 " "+ year;
 }
 ..
}

class Employee
{
 // instance fields
 private String name;
 private double salary;
 private Day hireDay;
 ..
 public Day getHireDay()
 {
 return hireDay;
 }
 ..
}

Output:

Explanation:

• The reference of a Day object is returned by

• However, a string is needed at

• JAVA automatically looks for a .toString() method of the Day class and invoke it for the Day object

• .toString() returns a string. Done!

",hireDay=" + e.getHireDay());

e.getHireDay()

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

4/16

 II. Introduction to OOP

OO Programs

• An O-O program is made up of objects

Each object has

- a specific functionality exposed to its users

- A hidden implementation

• Basically, as long as an object satisfies your specifications, you don’t care how the functionality is
implemented

- E.g., consider Scanner objects: .nextInt, .hasNext

• Traditional Structured Programming vs OOP

- Structured Programming: Designing a set of procedures to solve a program

 Usually top-down (starting from main())

- OOP: Puts data first, then looks at the algorithms to operate on the data

 There is no “top”.

 Begin by studying a description of the application, and

 identifying classes (often from nouns) and then add methods (often as verbs).

• OOP: More appropriate for larger problems:

- Because of well-organized code around data

- E.g., Easier to find bugs which causes faults on a piece of data

Classes

• A class is the template / blueprint from which objects are made.

- Like cookie cutters from which cookies are made

• Classes in Java program

- Provided by the standard Java library

- Created by ourselves for our application’s problem domain

• Terminologies:

- Instance of a class : an Object created from a class

o E.g., Scanner s; s = new Scanner(..); // s is an instance of the Scanner class

o E.g., Day d; d = new Day(2014,1,19); // d is an instance of the Day class

- Instance fields: Data in an object (e.g., day, month, year)

- Object state: The set of values in the instance fields of an object

 Or “how does the object react when its method runs”

- Methods: procedures which operate on the data.

- Encapsulation (sometimes called information hiding)

o Combine data and behavior in one package, consider as implementation details

o Implementation details are hidden away from the users of the objects

o E.g., We use Scanner objects, but their implementation details are encapsulated in the Scanner
class.

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

5/16

 III. Objects and Object variables - The Constructors and the new operator

• Work with objects - we often:

- First: construct them and specify initial state
 (give values for instance fields like day, month, year)

- Then: apply methods to the objects.

• Constructors:

- We use constructors to construct new instances

- A constructor is a special method

 Purpose: construct and initialize objects

 Named the same as the class name, no return value

 Always called with the new operator
e.g. new Day(2014,1,3)

 A class can have more than one constructor

 e.g. Add the second constructor to the Day class:

 Usage of such a constructor:

• Examples of Constructors

• More notes on Constructors

- Recall: constructors must be called with the new operator

We CANNOT apply it solely for resetting the instance fields like:

 birthday.Day(2014,1,27); // Willing to change the instance fields in birthday?
“Error: The method Day(int, int, int) is undefined for the type Day”

public Day (int y, int m, int d) {..}
public Day (int y, int nth_dayInYear) {..}

d1=new Day(2014,45); //The 45
th
 day in 2014

System.out.println(d1); //14 Feb 2014

public class Day
{

private int year;
private int month;
private int day;

//Constructor
public Day(int y, int m, int d)
{
this.year=y;
this.month=m;
this.day=d;

}

//.. more methods
}

class Employee
{

// instance fields
private String name;
private double salary;
private Day hireDay;

// constructor
public Employee(String n, double s,

int year, int month, int day)
{

name = n;
salary = s;
hireDay = new Day(year,month,day);

}
// ... more methods

}

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

6/16

• When an object is created, we may:

1. Pass the object to a method:

System.out.println(new Day(2014,1,15)); //  Note: actually .toString() is called.

2. Apply a method to the object just constructed:

 System.out.print((new Day(2014,1,15)).next());

 Or simply System.out.print(new Day(2014,1,15).next());

 Reason: constructor is always called with the new operator

  Which style to write?

Suggestion: Choose the one you feel comfortable to read.
 But you should be able to understand both styles
when you read others’ code.

3. Hang on to the object with the use of an object variable:

Day birthyday; //This variable, birthday, doesn’t refer to any object yet

birthday = new Day(2014,1,15); //Now, initialize the variable to refer to a new object

 Or, combined as:

Day birthday = new Day(2014,1,15);

• An object variable:

 Doesn’t actually contain an object.

 The value of any object variable is “a reference to an object that is stored separately”.

 We set a variable to refer to an existing object of the matching type:

- For convenience, we often verbally say “object” instead of “object variable”.
But we need to bear in mind the actual picture.

- Note: The return value of the new operator is also a reference.

- Special value: null (means nothing)

We can set an object variable to null to mean that it refers to no object.
E.g., Day d1=null; //later checking: if (d1==null) ..

- Local variables (ie. variables defined in a method) are not automatically initialized.
To initialize an object variable: we can set it to null, or refer to an existing object, or use new

12Topic03

pr
ec

ed
en

ce
 le

ve
l

[Core Java Chp 3.5.7)

birthday =

2014 year =

1 month =

15 day =

Day object

Day object variable

Day birthday, deadline;
birthday = new Day(2014,1,15);
deadline = birthday;

birthday =
Day object variable

deadline =
Day object variable

Day

2014year =

6month =

15day =

Day object
birthday =

Day object variable

deadline =
Day object variable 2014year =

1month =

15day =

Day object

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

7/16

An exercise:
Consider this simplified Day class.

Your task: Match  - with the descriptions:

a. Error: d1 may not have been initialized
[This is a compilation problem in Java.
If not fixed, we cannot run the program.]

b. Runtime exception: java.lang.NullPointerException

c. print: 15 Jan 2014

d. print: null

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

8/16

 IV. The Implicit Parameter (calling object), and the this keyword

• Implicit and Explicit Parameters

Suppose the raiseSalary method
is called like this:

We say that the method has 2 parameters:

 Implicit parameter: For the object that the method is invoked on. (Here: number007)
 also called “calling object”

 Explicit parameter: The parameter listed in the method declaration. (Here: percent)

• The this keyword

- In every method, the keyword this refers to the
implicit parameter.

- E.g. we can rewrite .raiseSalary:

- When method A invokes
method B to handle the
implicit parameter (calling
object),
the implicit parameter is
either omitted or specified
using the this keyword.

- We have seen this in
the constructor of
the Day class.
More equivalent versions:

- We can use this to call
another constructor.

Note: Must be written as
the first statement in a
constructor

public class Day
{

...

public Day(int y, int m, int d) {
year=y;
month=m;
day=d;

}

public Day(int y) {
this(y,1,1); //first day of the year

}

... more methods
}

“Implicit: not stated directly”

class Employee
{

private String name;
private double salary;
private Day hireDay;
..
public void raiseSalary(double percent)
{

double raise = this.salary * percent /100;
this.salary += raise;

}
}

Some programmers prefer this style
(clearly distinguishes between instance
fields and local variables)

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

9/16

V. Day – Change of implementation -Using integer data int yyyymmdd;

A new implementation of the Day class
- using an integer data as int yyyymmdd;

VI. Mutator, Accesor Methods getXX, setXX

• Public methods are provided for outsiders to act on the data:

- Accessor methods (getters) allow outsiders to obtain the data

o Often named as get.., eg. getDay()

o May not return the values of an instance field literally.

o E.g., The Day class has the instance field int yyyymmdd;

 the asccessor methods are:

 public int getDay() {return yyyymmdd%100;}

 public int getMonth() {return yyyymmdd%10000/100;}

 public int getYear() {return yyyymmdd/10000;}

- Mutator methods (setters) change the current data of an object

o Often named as set..., eg. setDay()

o May apply special checking, eg. never make salary negative.

• Note: It is WRONG to think that “we should add get… and set… for most instance fields!”

Why? – See the coming explanation later in this topic: Avoid unnecessary accessor and mutator methods

public class Day {

 private int yyyymmdd;

 //Constructor
 public Day(int y, int m, int d) {
 yyyymmdd=y*10000+m*100+d;
 }

 // Return a string for the day like dd MMM yyyy
 public String toString() {
 final String[] MonthNames = {
 "Jan", "Feb", "Mar", "Apr",
 "May", "Jun", "Jul", "Aug",
 "Sep", "Oct", "Nov", "Dec"};

 return getDay()+" "+ MonthNames[getMonth()-1] + " "+ getYear();
 }
 public int getDay() {return yyyymmdd%100;}
 public int getMonth() {return yyyymmdd%10000/100;}
 public int getYear() {return yyyymmdd/10000;}
 ../Other methods
}

Question:
To use this new implementation, do
the users need to adjust their code?
Answer:

No.
The way to create and use Day
objects (call the public methods) are
the same.

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

10/16

VII. public vs private, Encapsulation issue



class X
{
 private int data;

 public X(int d) {data=d*2;}

 public void doSomething(X r)
 {
 X s = new X(8);

 System.out.println(this.data);
 System.out.println(r.data);
 System.out.println(s.data);
 }
}

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

11/16

Solution / Rule of thumb:

If you need to return a multable data field,
you should return a new copy of the Day object.
(learn “object cloning” later)

More on mutable , immutable:

mutable: after construction, there are still other way that the object can get changed.
immutable: after construction, there is no way that the object can get changed.

 e.g. Strings are made immutable -

 String methods may return new resultant String objects,
but String methods never amend the content of the original string object.

 That is, the String class does not provide you any method to change the object.
 This is known as immutable. [http://docs.oracle.com/javase/tutorial/java/data/strings.html]

Avoid unnecessary accessor and mutator methods

 Some beginners think that "we should add accessor and mutator methods for all instance fields".

 This is BOTH WRONG! 

- Getters and setters in this way actually break encapsulation (See next section)

- We should add them only if really needed.

- We can often find replacements:
 Example 1: Inside a Rectangle class we remove .getX() and .getY(),
 but add the useful method .draw()

 Example 2: In the Day class, it is bad to provide setYear(..), setMonth(..), setDay(..)
 Reason: easily misused, e.g., change 2016-02-29 to 2016-02-30

- "Don't ask for the information you need to do the work;
ask the object that has the information to do the work for you. "
- http://www.javaworld.com/article/2073723/core-java/why-getter-and-setter-methods-are-evil.html

public static void main(String[] args)
{
 String s1, s2;

 s1 = "Everybody gets a good grade";
 s2 = s1.replace("a good grade", "an A+");

 System.out.println(s1); //Output: Everybody gets a good grade
 System.out.println(s2); //Output: Everybody gets an A+
}

The replace() method of String.
 s1 itself does not change!

* Instance fields should be changed through
the methods provided by the class itself.

Now problem happens - The user can write:

class Employee {
 private Day hireDay;
 ..
 public Day getHireDay() { return hireDay;}
 ..
}

http://docs.oracle.com/javase/tutorial/java/data/strings.html
http://www.javaworld.com/article/2073723/core-java/why-getter-and-setter-methods-are-evil.html

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

12/16

VIII. Benefits of Encapsulation

Benefits of Encapsulation
It is a good practice to encapsulate data as private instance fields.

1. Protect the data from corruption by mistake.
Outsiders must access the data through the provided public methods

2. Easier to find the cause of bug
Only methods of the class may cause the trouble

3. Easier to change the implementation
• e.g. change from using 3 integers for year,month,day to using 1 integer yyyymmdd
• We only need to change the code in the class for that data type
• The change is invisible to outsiders, hence not affect users.

IX. The Final keyword - Method constant, Class constant, Final Instance Fields

Recall [Topic 02]:





public class MyApp
{

public static void main(String[] args)
{

final double CM_PER_INCH = 2.54;
..

Method constants

public class MyApp
{

public static final double CM_PER_INCH = 2.54;
public static void main(String[] args)
{

Class constants

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

13/16

X. The Static keyword - Class constant (used with final), Static Method, Static Fields

 If a field is non-static, then each object has its own copy of the field. (name, id)

 If a field is static, then there is only one such field per class. (nextId)

 Static method for accessing static fields:
To provide a public method for outsiders to access a static field, we usually make the method static
i.e. class-level method(getNextId)

Note the use
of nextId and

update

Employee.nextId = 1

Employee object for Harry
a =

Employee object for Helena
b =

Employee object for Paul
c =

1id =

name =
String object

2id =

String object
name =

3id =

String object
name =

234

)

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

14/16

XI. Method Parameters - Java uses "call by value"

Method Parameters
Java uses "call by value":

* Methods receive copy of parameter
values

* The original arguments given by
the caller do not change
(Employee a, b in the following example)

* Copy of object reference lets method
modify object
(.salary)

See the given example:

a and b are object variables, ie.
references to objects.

e1 and e2 are copies of a and b.

- Changing e1, e2 do not affect a, b

- But using e1 and e2 to refer to the
objects and access the salary fields,
it does really mean the salaries in
the objects pointed by a and b.

name =

10000salary=

String object
Employee object for a

a =

Employee object for b String object

b =

e2 =

name =

20000Salary =

e1 =

1000020000

2000010000

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

15/16

XII. Default field initialization (not for local variables)

Default field initialization (Note: not for variables!)

 If we don’t set a field explicitly in a constructor,

* It is set to a default value:

Numbers: 0

Boolean values: false

Object references: null

 However, local variables are NOT initialized

XIII. Overloading methods, Signature

Overloading methods

o ie. “use the same names for different methods”

o But the parameters must be different

o So that the compiler can determine which to invoke.
 E.g. Day v1,v2; ...; swap(v1,v2); //invoke a method called “swap” which accepts 2 Day objects.

o Terminology: Name + parameters = Signature

Example 1:

Example 2: [Overloaded Constructors]

void swap(Employee e1, Employee e2) {..}
void swap(Day d1, Day d2) {..} //swap all year,day,month fields

public class Day
{
...

public Day(int y, int m, int d) {year=y;month=m;day=d;}
public Day(int y) {this(y,1,1);} //first day of the year

... more methods
}

class Employee
{
 private String name;
 private double salary;
 public Employee(String n, double s) { /* do nothing */}

 public String toString() {return name+" ($"+salary+") ";}

 public static void main(String[] args) // unit test for Employee class
 {
 Employee a = new Employee("Harry",10000);
 System.out.println(a); //show: null ($0.0)  no problem!
 String s;
 int x;
 System.out.println(s); // Error: The local variable s may not have been initialized
 System.out.println(x); // Error: The local variable x may not have been initialized
 }
}

Topic 03 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 24-Sep-2020

16/16

XIV. Default Constructor - Constructors with zero argument - designed and automatic generated

XV. Class Design Hints

--- end ---

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

1/14

 Contents Topic 04 - Inheritance

I. Classes, Superclasses, and Subclasses
- Inheritance Hierarchies
 Controlling Access to Members (public, no modifier, private, protected)
 Calling constructors of superclass
- Polymorphism and Dynamic Binding
- Preventing Inheritance: final Classes and Methods
- Casting and instanceOf
- Abstract Classes

II Object: The Cosmic Superclass
 - equals , toString , getClass , clone
III Generic Array Lists
IV Object Wrappers and Autoboxing
V Design Hints for Inheritance

 I. Classes, Superclasses, and Subclasses

Inheritance

• Inheritance: A fundamental concept of OO Programming

• Idea: create new classes that are built on existing classes

• Terminologies:

 subclass / superclass
 The new class is called a subclass (derived class, or child class).
 The existing class is called a superclass (base class, or parent class).

 “is-a” relationship
 An object of the subclass is also an object of the superclass.
 E.g. Cats are animals. Tom is a cat. Tom is also an animal.

 Reuse
 All attributes/methods of the superclass can be reused
 (or inherited) in the subclass.
 However, constructors are not inherited.

 Redefine (or called Override)
 The methods of the superclass can be redefined in the subclass.

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

2/14

UML notation for Inheritance:

• Illustrating (1) “is-a”, (2) Reuse, (3) Redefine

Inheritance in JAVA:

• E.g. In a university, each university staff is also a library member

ie. an obvious “is-a” relationship.

• Java keyword extends:

• Class vs Object

 * Note: in actual java implementation, the name fields store references to string objects,
 and the position fields store the codes of the positions

memberID: 2000
name: Roy
fine: $50
position: Research Assistant

memberID: 3000
name: Mandy
fine: $0
position: IT Officer

memberID: 100
name: Sam
fine: $30

 memberID: 65

name: May
fine: $20

- instanceField1
- instanceField2

+ method1()
+ method2()

Superclass

- instanceField3

+ method1()
+ method3()

Subclass

Inheritance

(1) “is-a” relationship
Each object of a Subclass is
an object of Superclass

(2) Reuse field
Subclass has 3 instance fields:
instanceField1 (reuse),
instanceField2 (reuse),
instanceField3 (newly added)

(2) Reuse method
In Subclass:
method2 (reuse),

(3) Redefine
In Subclass:
method1 (redefine),

In Subclass:
method3 (newly added)

We can add new methods and fields to
adapt the sub class to new situations
(attribute3, method3)

We can add new methods and fields to
adapt the sub class to new situations
(instanceField3, method3)

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

3/14

• Subclasses - subclasses have more data and functionality than their parent classes.

• Examples of Reuse:

[Recall]
Reuse:
All attributes/methods of
the superclass can be
reused (or inherited) in
the subclass.
However, constructors
are not inherited.

• Examples of Redefine:

[Recall]
Redefine:
(or called Override)

The methods of the
superclass can be
redefined in the subclass.

class Manager extends Employee
{

.. added field, eg. bonus

.. added methods, constructors,

.. redefine methods in the Employee class,

e.g. getSalary
}

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

4/14

Access Level Modifiers

• Determine whether other classes can use a particular field or method.

Or we say, “affect the visibility”

 At the class level, the class can be
1. public: visible to all classes everywhere.
2. no modifier: visible only within its own package (package-private)

 At the member (field / method) level, it can be
1. public
2. protected – Visible to the package and all subclasses
3. no modifier (package-private)
4. private – Visible to the class only

• Example:

• Using “protected” for data fields is considered “against the spirit of OOP”.

Reason - It breaks data encapsulation:

Instance fields should be treated as implementation details and encapsulated properly.
Eg. Any change to the field (say, change the name) should not need outsiders (including subclasses) recompile.

[http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html]

E.g. If a method (or a field) is
public, then it can be used by the
code in the same class, the package
which contains this class, the
subclasses which inherit this class,
and the world

E.g. If a method (or a field) is
protected, then it can be used
only by the code in the same class,
the package which contains this
class, the subclasses which inherit
this class, but not others from the
world.

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

5/14

Constructors - Review

We can provide zero or more constructors

• If we do not provide any constructor, then a default constructor is automatically generated.

(a no-argument constructor: fields are default null or zero or false)

• 3 Examples for class Employee
• Example 1: We write a 3-arguments constructor
• Example 2: We do not write any constructor (Java automatically generates a no-argument constructor)
• Example 3: We write three constructors (no argument, 1 argument, 3 arguments)

Compiler:
When I see new Employee("abc"), I cannot
decide which constructor to run.

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

6/14

Constructors - Calling Constructors of superclass

• Constructors are not inherited

• But inside a subclass constructor

1. We can explicitly call a superclass

constructor
- must be the first statement.

2. Otherwise the no-argument
constructor of the superclass is
invoked.

Su
pe
rc
la

ss

Su
bc
la
ss

Question:
What if we now

i. Remove B only?
ii. Remove both A and B?

iii. Remove A only?
Anwer:
(i) Remove B only: OK
(ii) Remove both A and B: OK

(A no-argument constructor is given
automatically for Employee. The
salary will be zero)

(iii) Remove A only: - Implicit super
constructor Employee() is
undefined. Must explicitly invoke
another constructor

Su
bc
la
ss

Su

pe
rc
la

ss

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

7/14

Polymorphism and Dynamic Binding

• Polymorphism – An object variable can refer to different actual types. [Compile time checking]
Superclass Superclass and subclass

• Dynamic Binding – Automatically select the appropriate non-static method. [Runtime decision]
 not field

Example: Suppose we have proper constructors:

Preventing Inheritance: final Classes and Methods

• Final class and Final method – Avoid being inherited or redefined

Example of final class:

Example of final method:

• In Java, the String class is a final class
E.g. the following is not allowed.

final class Executive extends Manager
{

...
}

If we redefine .getName() in the Manager class,
we get Error:

Cannot override the final method from Employee

static class StringSubClass extends String
{

..
}

Error: StringSubClass cannot extend the final
class String

class Employee
{

...
public final String getName() {return name;}

}

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

8/14

Casting and instanceOf

• Casting: Consider the type of an object as a different type

Note: you are not actually changing the object itself.

Two types of casting:

upcasting: label a subclass object reference as a superclass.
- It is done automatically (implicitly): You DO NOT need to add (Superclass) for explicit casting.
- Always successful at run time.
- Example of use: a subclass object (like Manager) is added as an element in a collection of the

superclass (Employee[])

downcasting: label a superclass object reference as a subclass.
- It requires explicit casting: You need to add (subclass) for explicit casting.
- Example of use: To use an object ‘s actual features after its actual type has been temporarily forgotten.

Given an array: Employee[] allEmployees, each allEmployees[i] belongs to the Employee Type
Suppose we know that allEmployees[2] is actually a Manager. We want to run .getBonus().
However allEmployees[2].getBonus() won't work because the type of allEmployees[2] is not Manager

Manager m1 = new Manager("902", "Brian", 1000, 10);
Employee e1 = m1; //upcasting

Manager m;
m = (Manager)e1; //downcasting
System.out.println(m.getBonus());

Employe
e

Manager

 class Employee {

 private String id;
 private String name;
 private double salary;
 public String toString() {return id + " " + name + " " + salary;}
 .. //constructor and other methods
 }

 class Manager extends Employee {

 private double bonus;
 public String toString() {return super.toString() + " " + bonus;}
 .. //constructor and other methods
 }

 public static void main(String[] args) {

 Employee[] allEmployees;
 allEmployees = new Employee[3];
 allEmployees[0] = new Employee("001", "Alice", 1000);
 allEmployees[1] = new Manager("902", "Brian", 1000, 10); // upcasting
 allEmployees[2] = new Manager("904", "Daisy", 1000, 15); // upcasting

 for (Employee e: allEmployees)
 System.out.println(e);
 }

 public static void main(String[] args) {
 Employee[] allEmployees;
 allEmployees = new Employee[3];
 allEmployees[0] = new Employee("001", "Alice", 1000);
 allEmployees[1] = new Manager("902", "Brian", 1000, 10); // upcasting
 allEmployees[2] = new Manager("904", "Daisy", 1000, 15); // upcasting

 }

Manager m;
m = (Manager) allEmployees[2]; // downcasting
System.out.println(m.getBonus());

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

9/14

Be careful of casting problem during run time!!

• Use of instanceOf

- An object variable is declared with a type, eg. Employee e;
 Then the object variable can refer to an object of the type,

or its subclass.

- The instanceof operator compares an object to a class.
 Syntax: x instanceof C
 where x is an object and C is a class

• Where are instanceof and cast among other operators?

• Note: instanceof is often not needed

Beginners often use instanceof in an unnecessary way:
e.g. make decision about using which version of .getSalary()

As a proper practice, we should often let JAVA select the
appropriate (redefined) method at run-time (Dynamic Binding).
You will know that this follows important OO principle
(e.g. OCP: Open-Close Principle / Lab06)

for (Employee e: allEmployees)
{

if (e instanceof Manager)
{

Manager m;
m = (Manager)e;
System.out.println(m.getBonus());

}
}

Try:
System.out.println(e instanceof Manager);
System.out.println(e instanceof Employee);

Output:
true
true

class Manager extends Employee
{

private double bonus;
public double getBonus() {return bonus;}
..

}

public static void main(String[] args)
{

Employee[] allEmployees;
allEmployees = new Employee[3];
allEmployees[0] = new Employee("001", "Alice", 1000);
allEmployees[1] = new Manager("902", "Brian", 1000, 10); //upcasting
allEmployees[2] = new Manager("904", "Daisy", 1000, 15); //upcasting

for (Employee e: allEmployees)
{

Manager m;
m = (Manager)e;
System.out.println(m.getBonus());

}
}

Runtime Error:
Employee cannot be cast to Manager at Main.main(Main.java:99)
Solution:
May use the instanceof operator to check the class first:

//Runtime error!!! Alice is not a manager. (Program stops running
here.)

for (Employee e: allEmployees)
{

if (e instanceof Manager)
{

Manager m;
m = (Manager)e;
System.out.println(m.getBonus());

}
}

Output:
10.0
15.0

for (Employee e: allEmployees)
 System.out.println(e.getSalary());

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

10/14

Abstract Classes

• Abstract method

 a method with the abstract keyword;

 no implementation

 It acts as placeholders for concrete (i.e.
nonabstract) methods that are
implemented in the subclasses.

• Abstract classes

 Abstract classes cannot be instantiated. i.e., we cannot create new object using an abstract class.

 We can declare an object variable whose type is an abstract class.

 Then the object variable can refer to an object of its concrete (i.e. nonabstract) subclass.
 A class which has one or more abstract methods must be declared abstract.

• Abstract object variable and concrete object:

public abstract class Employee
{
 private String name;
 public abstract double getPay();
 public Employee(String aName) {name = aName;}
 public String getName() {return name; }
}

Declare object variables
whose types are abstract
(here arr[0..2],e)

Then arr[0..2] and e can
refer to objects of the
concrete subclasses (i.e.
nonabstract ones).

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

11/14

II. Object: The Cosmic Superclass

• The Java’s Object class: java.lang.object

 Every class automatically “is-a” subclass of the Object class. (Inheritance)

 Every object of every class is of type Object.

 Object methods: equals, toString, getClass, clone etc..

 - automatically inherited in every class
 - equals, toString : we usually need to override appropriately
 - getClass : returns a Class object which represents the class itself
 - clone : returns a copy of an object

• The equals method of the Object class:

• The Right way to override equals for a class - note the explicit parameter

• The override annotation :
 Denotes that the annotated method is required to override a method in the superclass.
 Helps us check for misspelling (eg. equals), or wrong parameter list etc..

 Object o1 = new Employee("002", "Jim", 10000);
 System.out.println(o1); //002 Jim 10000.0
 System.out.println(o1.getClass().toString()); //class Employee
 System.out.println(o1 instanceof Object); //true
 System.out.println(o1 instanceof Employee); //true
 Object o2 = "Hello";
 System.out.println(o2); //Hello
 System.out.println(o2.getClass().toString()); //class java.lang.String
 System.out.println(o2 instanceof Object); //true
 System.out.println(o2 instanceof Employee); //false

//java.lang.object.equals:
public boolean equals(Object obj)

class ClassName
{
 ..
 public boolean equals(Object obj){..}
}

Note: To override a method in a subclass, we must give exactly the
same signature (method name + parameter list) and return type.
To avoid mistake, use the override annotation.

"Oh! Probably typing mistake!"

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

12/14

• The Right way to override equals for a class:

III Generic Array Lists

• The Java’s Generic ArrayList:

java.util.ArrayList

 java.util.ArrayList is
a very useful class which is:
- Similar to an array, for storing a collection of object elements
- Automatically adjusts its capacity
- Need a type parameter to specify the type of elements.

 Syntax: ArrayList<Element_type>
- Add / retrieve / remove elements: .add(obj), .get(index), .remove(index)
- The count of elements: .size()

 With polymorphism, an ArrayList of super-type can refer to the same type as well as sub-type
objects. (e.g. Employee / Manager)

 Starting from Java 7, we can omit the type argument when new is used.
 ie. arrlist = new ArrayList<Element_Type>();  OK
 arrlist = new ArrayList<>();  Also OK. The compiler itself will check what type is needed.

26Topic04

class SubjectResult
{

private String name; //e.g. "Chemistry", "Geography"
private char grade; //e.g. 'A', 'B', 'C'

SubjectResult(String n, char g) {name=n; grade=g;}

@Override
public boolean equals(Object otherObject)
{

if (otherObject == null)
return false;

if (this.getClass() != otherObject.getClass())
return false;

SubjectResult otherSR = (SubjectResult) otherObject;

if (!this.name.equals(otherSR.name))
return false;

if (this.grade!=otherSR.grade)
return false;

return true;
}

}

Use the @Override annotation

Parameter: Object

Check against null

Compare the classes

Cast to our class type

Check the fields one by one
- use .equals for object fields
- use == for primitive fields

SubjectResult s1 = new SubjectResult("Chemistry",'A');
SubjectResult s2 = new SubjectResult("Physics",'A');
System.out.println(s1.equals(s2));//false

Call .equals of superclass:
super.equals(otherObject);

<> is called the diamond syntax

Array Sample

Integer[] arr;
arr = new Integer[3];

arr[0]= 100;
arr[1]= 101;
arr[2]= 109;

for (int i=0;i<arr.length;i++)
System.out.println(arr[i]);

ArrayList Sample

ArrayList<Integer> arrlist;
arrlist = new ArrayList<Integer>();

arrlist.add(100);
arrlist.add(101);
arrlist.add(109);

for (int i=0;i<arrlist.size();i++)
System.out.println(arrlist.get(i));

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

13/14

IV Object Wrappers and Autoboxing

• The Java primitive types and Wrappers

 Recall: Java has 8 primitive types:
 int, long, float, double, short, byte, char, boolean

 Each primitive type has a class counterparts which is called a Wrapper Class:
 Integer, Long, Float, Double, Short, Byte, Character, Boolean

 Example:

• Java collections (like ArrayList) – require Wrappers
 Java collections (like ArrayList) can only store object references, not primitive types (Integer, int)

 OK: ArrayList<Integer>
 Invalid: ArrayList<int>

 Autoboxing is done upon getting and setting:
 ArrayList<Integer> arrlist = new ArrayList<>();
 arrlist.add(123); // automatically translated to arrlist.add(Integer.valueOf(123));

• More about Wrapper classes:

 The Number class: the superclass of Integer etc..

 Wrapper classes are final, so we cannot subclass them.

 Wrapper classes are immutable – we cannot change a
wrapped value after the wrapper has been constructed.

The Number Class

• All subclasses of Number provide the following methods:

 Conversion from this object to primitive data
 Compare this object with another explicit object
 Equals

• Each also provide additional methods for conversion.
 E.g. The Integer class provide these methods:

http://docs.oracle.com/javase/tutorial/java/data/numberclasses.html

Integer x = 3; //Autoboxing

Integer x = 3; // Autoboxing
//x.setValue(4);  there is no method like this (i.e. Integer is immutable)
x = 4; // This new value, 4, is wrapped to create another Integer object. x is now set to refer to this new object.

4

New Integer object to wrap the int value of 4

x

Topic 04 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 14-Oct-2020

14/14

V Design Hints for Inheritance

Inheritance - Design Hints:

1. Place common operations and fields in the superclass.

2. Don’t use protected fields

- Using “protected” for data fields is considered “against the spirit of OOP”.

- Reason: It breaks data encapsulation:

Instance fields should be treated as implementation details and encapsulated properly.
Eg. Any change to the field (say, change the name) should not need outsiders (including subclasses) recompile.

 [Topic03]

It is a good practice to encapsulate data as private instance fields.

1. Protect the data from corruption by mistake.
Outsiders must access the data through the provided public methods

2. Easier to find the cause of bug
Only methods of the class may cause the trouble

3. Easier to change the implementation
• e.g. change from using 3 integers for year,month,day to using 1 integer yyyymmdd
• We only need to change the code in the class for that data type
• The change is invisible to outsiders, hence not affect users.

- However, protected methods can be useful to indicate methods that are not ready for general use
and should be redefined in subclasses (eg. .clone())

3. Use inheritance to model the “is-a” relationship. Don’t use inheritance unless all inherited fields and
methods make sense.

 - Do not extend a class if your intension is just to reuse a portion (<100%) of the superclass.

4. Don’t change the expected behavior when you override a method.

5. We should use polymorphism and rely on dynamic binding.

- Do not explicitly check the type (Ref. Lab06 page 1 Approach 1)

--- end ---

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 1/13

 Contents Topic 05 -Interfaces and Inner Classes

I. Review:
- visibility (public, protected/private), static, abstract,

polymorphism, dynamic binding

II Interface
 - Introduction
 Example 1 - Working with Member Roles (Lab Exercise Reviewed)
 Example 2 - A,B,C,D, etc.. (An interface implemented by multiple classes;
 A class implements multiple interfaces)

 - Interface vs Abstract class, when to use?

- Example 3 - Grader, Student, Exercise

- The Java Comparable Interface (sorting)

- The Java Cloneable Interface

III Inner Classes

 I. Review

Review some key terms:

Visibility (public / protected / private):

- When we implement or redefine a method in the subclass, it must be at least as "visible" as one
in the superclass.

- A subclass cannot access the private members in the superclass.

The static keyword

Used to denote fields and methods that belong to a class (but not to any particular object).

The abstract keyword

The abstract keyword is applied for classes and nonstatic methods:

 When applied for a nonstatic method: means that we intend to provide no implementation;
and the implementation will be provided in concrete subclasses.

 When applied for a class: means that the class may or may not include abstract methods.
Abstract classes cannot be instantiated (ie. cannot be used to instantiate any object), but
they can be subclassed.

- abstract is NOT for fields (no matter static or nonstatic)

- abstract is NOT for constructors or static methods

Polymorphism – An object variable can refer to different actual types. [compile time checking]

E.g., An object variable (of type A) can refer to objects of various actual types, including type A and its sub-types.

Dynamic Binding – Automatically select the appropriate non-static method. [runtime checking]

Superclass Superclass and subclass which are concrete

Not field!

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 2/13

 II. Interface

Java Interface

• Interface is a way to describe what classes should do (not how)

 Only headings are given to methods 1 (ie. no implementation)

 Syntax:

• A class can implement an interface (or more than one interfaces)

 An implementing class satisfies an interface by implementing the methods given in the interface.

 Syntax:

1 For simplicity, here we talk about general non-static methods only.
 Java 8 and onwards allow default and static methods which should come with implementation
 (http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html)

Example 1 - Working with Member Roles (Lab Exercise Reviewed)

interface Interface_Name
{
 /*nonstatic methods, static final fields*/
}

class Class_Name implements Interface_Name [, Interface_Name ..]
{
 ..
}

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 3/13

Example 2 An interface can be implemented by multiple classes
 A class can implement multiple interfaces

More considerations:

(1) Two interfaces can contain the same method and implemented in one class

(2) An abstract class implements an interface

(3) An interface extends one or more interfaces

(4) A class can extend a superclass + implement interface(s)

We can use A, B, C, D, C2 as data types.
However, only C and D can be
instantiated (create object instances)

interface A2 {void f1(); void f5();}
class X implements A, A2
{
 public void f1() {..}
 public void f2() {..}
 public void f5() {..}
}

Both A and A2 have
the same void f1()

abstract class C2 implements A
{
 public void f1() {..}
}

Not implement all methods
for A, so marked "abstract“.

interface T extends A,B { void f5();} - A class can only extend one class.
- But an interface can extend more interfaces.

Here interface T has f1(),f2(),f3(),f4(),f5().
T is a sub-interface of both A and B.

class D2 extends D implements T
{
 public void f5() {..}
}

class Emloyee extends Person
implements I1, I2
{
 ..
}

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 4/13

Interface vs Abstract class

Similarities

• Cannot instantiate them (ie. cannot create object instances)

• Contain methods which are to be implemented by other classes.

Differences

Abstract class Interface

A subclass can only inherit one abstract class

Abstract class does not support multiple inheritance.

A class can implement 1 or more interfaces.

Interface is a way to approximate multiple inheritance.

Allow access modifiers (private / protected / public) All methods are public

Can provide shared method code (default behavior)

Nonstatic methods can be abstract or non-abstract

No shared method code:

Nonstatic methods are abstract Generally speaking1

- We write headers only

Has constructors

No constructors

Allow various kinds of fields: static or not, final or not No object fields

 - Any field defined in an interface is actually treated
as static and final

1 For simplicity, here we talk about general non-static methods only.
 Java 8 and onwards allow default and static methods which should come with implementation
 (http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html)

We do not need to write the
keywords public , abstract.
They are implicit for Interfaces.

interface A {..}
interface B {..}
class C implements A,B{..} 

abstract class A {}
abstract class B {}
class C extends A, B {} 

We cannot
have multiple
superclasses

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 5/13

Which should you use, abstract classes or interfaces?

 [http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html]

 Consider using abstract classes for any point below:

 Want to share code among several closely related classes.

 Expect that subclasses have many common methods or fields, or require non-public access
modifiers such as protected and private.

 Want to declare useful object fields. So that methods can access and modify the state of the
object to which they belong.

 Consider using interfaces for any point below:

 Expect that unrelated classes would implement your interface. For example, the interfaces
Comparable and Cloneable are implemented by many unrelated classes.

 Want to specify the behavior of a particular data type, but not concerned about who
implements its behavior.

 Want to take advantage of multiple inheritance of type (See Example 3 in next page).

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 6/13

Example 3 - Grader, Student, Exercise

- This example illustrates the Practical use of "one class with multiple interfaces"

- Storyboard: A grader can only read/grade students’ exercises, while a student can only read/write the exercise.

- You will see that the Exercise class implements both the IGrade and IReadWrite interfaces.

- Goal: To filter functionalities so that
who receive can use the dedicated functions only.

- name: String
+ doExercise(IReadWrite ex, int ans)

Student

{..}

- question: String
- modelAnswer: int
- studentAnswer: int
- grade: char

+ Exercise(String q, int modelAns)
+ readAnswer()
+ writeAnswer(int)
+ grade()
+ displayResult()

Exercise

{..}
{..}
{..}
{..}

e.g. “what is 4!”
e.g. 24

{..}

<<interface>>
IReadWrite

+ readAnswer()
+ writeAnswer(int)

/* no code */

/* no code */

<<interface>>
IGrade

+ readAnswer()
+ grade()

/* no code */

/* no code */

- name: String
+ gradeExercise(Igrade ex)

Grader

{..}

1 1

**

different users
(here graders and students)

the same object
(here the exercise object)

class Student
{
 private String name;

 public Student(String n) {name=n;}

 public void doExercise(IReadWrite x, int ans)
 {
 x.writeAnswer(ans);
 }
}

class Grader
{
 private String name;

 public Grader(String n) {name=n;}

 public void gradeExercise(IGrade x)
 {
 x.grade();
 }
}

interface IGrade
{
 void readAnswer();
 void grade();
}

interface IReadWrite
{
 void readAnswer();
 void writeAnswer(int anAnswer);
}

class Exercise implements IGrade, IReadWrite
{
 private int studentAnswer;
 private char grade;
 private final String question;
 private final int modelAnswer;

 public Exercise(String q, int a)
 {
 question = q; modelAnswer=a;
 }

 public void writeAnswer(int anAnswer)
 {
 studentAnswer=anAnswer;
 }

 public void readAnswer()
 {
 System.out.println(
 "Student's answer is "+ studentAnswer);
 }

 public void grade()
 {
 if (studentAnswer==modelAnswer) grade='A';
 else grade='F';
 }

 public void displayResult()
 {
 System.out.println(
 "Student's answer is "+studentAnswer+
 ", grade is: "+grade);
 }
}

public static void main(String[] args)
{
 Exercise ex = new Exercise("What is 4!", 24);
 Student m = new Student("Mary");
 Grader h = new Grader("Helena");
 m.doExercise(ex,24);
 h.gradeExercise(ex);
 ex.displayResult();
}

Output:
Student's answer is 24,
grade is: A

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 7/13

The Java Comparable Interface (sorting)

JAVA provides sorting methods for comparable objects
1) Arrays : Arrays.sort(array);
2) Collections (e.g. ArrayList) : Collections.sort(array_list);

Before using the above, we have to solve for some issues:

"Nobody knows that trees and plants are to be sorted and, even if we are told, but how to sort them? ...  "

Correspondingly, in JAVA we have to
 tell that the objects are to be sorted, and decide how to compare them in sorting.

 These are what we do in JAVA:
 - the class should implement the interface: java.lang.Comparable<type>

 - this Comparable interface has a method to be implemented: int compareTo(type another)

Example: Employees ordered by salaries

Return value:
0 if equal
1 if this is larger than another
-1 if this is smaller than another

class Employee implements Comparable<Employee>
{
 private final String name;
 private double salary;
 private final Day hireDay;
 ..
 @Override
 public int compareTo(Employee another)
 {
 if (this.salary==another.salary) return 0;
 else if (this.salary>another.salary) return 1;
 else return -1;
 }
}

public static void main(String[] args)
{
 /* sort an array of employees */
 Employee[] arr = new Employee[3];
 arr[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
 arr[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
 arr[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

 Arrays.sort(arr);

 for (Employee e : arr)
 System.out.println(e);

 /* sort an arraylist of employees */
 ArrayList<Employee> arrlist = new ArrayList<>();
 arrlist.add(arr[2]);arrlist.add(arr[0]);arrlist.add(arr[1]);

 Collections.sort(arrlist);

 for (Employee e : arrlist)
 System.out.println(e);
}

Output:
name=Tony Tester,salary=40000.0,hireDay=15 Mar 1990
name=Harry Hacker,salary=50000.0,hireDay=1 Oct 1989
name=Carl Cracker,salary=75000.0,hireDay=15 Dec 1987
name=Tony Tester,salary=40000.0,hireDay=15 Mar 1990
name=Harry Hacker,salary=50000.0,hireDay=1 Oct 1989
name=Carl Cracker,salary=75000.0,hireDay=15 Dec 1987

class Employee implements Comparable<Employee>
{
 ..
 @Override
 public int compareTo(Employee e2) {
 .. //check this.salary and e2.salary
 }
}

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 8/13

The Java Cloneable Interface (copying)

 Introduction to Cloning:
To clone an object, it means to make a new copy of the object. Different from copying!!!

Copying an object variable vs Cloning an object

 To make an object cloneable, we need to

• Make the class implements java.lang.Cloneable

• Redefine the method : public type clone()

- The Object class provides protected Object clone()
which copies field-by-field (Shallow-cloning)
If a field is a reference, it only copies the reference,

 that refers to the same subobject

- We redefine the clone() method to handle cloning of mutable subobjects

Employee original, copy;
original = new Employee (..);
copy = original;

= : copying a variable

copying :

Employee original, copy;
original = new Employee (..);
copy = original.clone();

The clone method
returns a new copy

cloning:

class Employee implements Comparable<Employee>, Cloneable
{

..

@Override
public Employee clone() throws CloneNotSupportedException
{

Employee copy = (Employee) super.clone();

copy.hireDay = new Day(
this.hireDay.getYear(),
this.hireDay.getMonth(),
this.hireDay.getDay());

copy.name = new String(this.name);
return copy;

}
}

Call the Object superclass’s clone() method

Construct a copy for this.hireDay,
or call .clone of this.hireDay (if Day.clone is available)

Actually can be omitted.
Reason: Since strings are immutable, it is Okay to let both

original and copy refer to the same string.

Why okay? Well, if one changes the name, the change is
actually to create a new string object. [Ref. Lec05_Ex.pdf]



Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 9/13

 Illustration: Correct code

 Illustration: Incorrect code

class Employee implements Comparable<Employee>, Cloneable
{

..

@Override
public Employee clone() throws CloneNotSupportedException
{

Employee copy = (Employee) super.clone();

copy.hireDay = new Day(
this.hireDay.getYear(),
this.hireDay.getMonth(),
this.hireDay.getDay());

copy.name = new String(this.name);
return copy;

}
}

public static void main(String[] args) {
Employee e = new Employee("Carl Cracker", 75000, 1987, 12, 15);
Employee e2 = e;
Employee e3 = e.clone();
e.getHireDay().setDay(1988,1,1);
e.setName("Helena"); //“Helena” is a new string object
e.setSalary(88000);

System.out.println(e);
System.out.println(e2);
System.out.println(e3);

}

Use Cloning

Output:
name=Helena,salary=88000.0,hireDay=1 Jan 1988
name=Helena,salary=88000.0,hireDay=1 Jan 1988
name=Carl Cracker,salary=75000.0,hireDay=15 Dec 1987

Super.clone() only
performs Shallow-cloning
So we need to perform
deep-cloning for mutable
subobjects

Call the Object
superclass’s clone()
method

Actually can be omitted
(see last slide)

class Employee implements Comparable<Employee>, Cloneable
{

..

@Override
public Employee clone() throws CloneNotSupportedException
{

Employee copy = (Employee) super.clone();

/* copy.hireDay = new Day(
this.hireDay.getYear(),
this.hireDay.getMonth(),
this.hireDay.getDay());

copy.name = new String(this.name); */
return copy;

}
}

public static void main(String[] args) {
Employee e = new Employee("Carl Cracker", 75000, 1987, 12, 15);
Employee e2 = e;
Employee e3 = e.clone();
e.getHireDay().setDay(1988,1,1);
e.setName("Helena"); //“Helena” is a new string object
e.setSalary(88000);

System.out.println(e);
System.out.println(e2);
System.out.println(e3);

}

Use Cloning

Output:
name=Helena,salary=88000.0,hireDay=1 Jan 1988
name=Helena,salary=88000.0,hireDay=1 Jan 1988
name=Carl Cracker,salary=75000.0,hireDay=1 Jan 1988

if not done, then the new
object copy will refer to
subobjects in the original
one.



Call the Object
superclass’s clone()
method

Actually can be omitted
(see last slide)

Super.clone() only
performs Shallow-cloning
So we need to perform
deep-cloning for mutable
subobjects

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 10/13

III Inner Classes

 Inner Class - Introduction

• An inner class is a class defined within its outer class.

• Often used as helping classes

• Advantage of using Inner class:

1) Better organization of code:

The helper class is contained inside the outer class, rather
than written separately.

2) Access across inner/outer classes:
(a) The outer class have access to the inner class’s

methods and nonstatic fields1 (even if they are private).
(b) The inner class has access to the outer class’s

methods and fields (even if they are private).

(1) static field cannot exist in a nonstatic inner class, unless initialized with a constant expression

private final static int testing=3; //ok
private static int testing=3; //not allowed

public class OuterClass
{
 private class InnerClass
 {
 .. Fields and methods of InnerClass
 }
 .. Fields and methods of OuterClass
}

Inner Class Example 1.

Recall:

“The outer class have
access to the inner
class’s methods and
nonstatic fields (even
if they are private)”

class BankAccount
{

private class Money
{
private String currency; //e.g. "HKD", "RMB", "NTD", "JPY", "KRW", "USD", "GBP"
private double value;

public Money(String c, double b) {currency=c; value=b;}
@Override
public String toString() {return currency+" "+value;}

}

private Money balance;

public BankAccount(String currency)
{
balance = new Money(currency, 0.00);

}

public String getBalance()
{
return balance.toString();

}

public void addMoney(double incr)
{
balance.value += incr;

}
}

public static void main(String[] args)
{

BankAccount account =
new BankAccount("HKD");

account.addMoney(300);

System.out.println(
"Account balance = "
+ account.getBalance());

}

Output:
Account balance = HKD 300.0

Outer class

Inner class

The outer class uses
the inner class to
define an object field

• Use a constructor
of the inner class

• Use a method of
the inner class

• Access a field of
the inner class

An object of
the inner class

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 11/13

Outer object

BankAccount

balance =

owner =

BankAccount object

String object
String

Inner object

Money

currency =

300value =

Money object

String object
String

public static void main(String[] args)
{

BankAccount account =
new BankAccount("HKD",

"Helena");

account.addMoney(300);

System.out.println(
"Account balance = "
+ account.getBalance());

}
Output:
Account balance = HKD 300.0 owned by Helena

class BankAccount
{

private class Money
{
private String currency; //e.g. "HKD", "RMB", "NTD", "JPY", "KRW", "USD", "GBP"
private double value;

public Money(String c, double b) {currency=c; value=b;}
@Override
public String toString() {return currency+" "+value+" owned by "+owner;}

}

private Money balance; private String owner;

public BankAccount(String currency, String ow)
{
balance = new Money(currency, 0.00); owner = ow;

}

public String getBalance()
{
return balance.toString();

}

public void addMoney(double incr)
{
balance.value += incr;

}
}

A field of the outer class
Note: we don’t write the
outer object like:

outer.owner

See the drawing
in next slide for
illustration

No need

Inner Class Example 2.

Recall:

“The inner class has
access to the outer
class’s methods and
fields (even if they are
private).”

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 12/13

Association between inner class object and outer object

E.g. In a nonstatic method (methodX) of the outer class, we create an inner object.

 The implicit parameter (this, or known as the calling object) of the call to methodX, is then the outer

object of the created inner object.

 Note: methodX can mean the constructor of the outer-class, i.e., the one in example 2 (last page).

More details about Inner Class (For interested students only)

 An inner class can be

• Nonstatic, like our example :

- Nonstatic inner class object must
arise from an outer class object.

- Has a connection between an outer
class object and the inner class
object.

- Nonstatic inner class must not have
static members.

• Static

[We do not go into details. Interested students
may read Core Java Chp06 / Absolute Java
Chp13]

Static: No connection between outer
class object and inner class object.
(eg. inner class object created in a static
method of the outer class)

Outer object

BankAccount

BankAccount object account

class BankAccount
{

private class Money
{

...
}

.... methodX()
{

... new Money("HKD", 0.00);
}

A nonstatic method
of the outer classInvoke

account.methodX()

Outer class

Inner class

Inner object

Money

currency =

0.00value =

Money object

String object
String

class BankAccount
{

private class Money
{

private String currency;
private double value;

public Money(String c, double b) {..}
@Override
public String toString() {return ..;}

}

private Money balance;

public BankAccount(String currency)
{

balance = new Money(currency, 0.00);
}

public String getBalance()
{

return balance.toString();
}

public void addMoney(double incr)
{

balance.value += incr;
}

}

Outer class

Inner class

public class OuterClass
{

private static class InnerClass
{

.. Fields and methods of InnerClass
}
.. Fields and methods of OuterClass

}

Topic 05 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 28-Oct-2020 13/13

Other Facts

 Each inner class gets its own .class file:

 Visibility of Inner Class

• An inner class can be private, like example 2

• An inner class can be public.
If so, it can be used outside the outer class.
[We do not go into details. For interested students only]

 Interesting variations:

• Nested inner classes

• Anonymous class

(want one object only, lazy to give class name; created using new in a method, as an inner class)

• When a class inherits an outer class, the inner class is also inherited.

[We do not go into details. Interested students may read Core Java Chp06 / Absolute Java Chp13]

--- end ---

BankAccount.Money amount;
amount = account.new Money("USD",123);
System.out.println(amount.toString());

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 1/12

 Contents Topic 06 -Exception Handling

I. Introductory Examples (Example 1-5)
II. Exception Handling – Basic Idea

III. Exception Hierarchy
IV. The Try-throw-catch Mechanism
V. Define our own exception classes (Example 6)

VI. Pitfall: Catch the more specific exception first (Example 7)
VII. The throws clause, throws clause in derived class (Example 8)

VIII. The Catch-or-Declare Rule, Checked Exceptions, Unchecked Exceptions
IX. The Finally Block (Example 6')

I Introductory Examples

Requirement: Read one positive integer from a file

 Example 1 - Problems checked by Java Virtual Machine

public static void main(String[] args) throws FileNotFoundException
{

Scanner in = new Scanner(System.in);
System.out.print("Input the file pathname: ");
String fname = in.next();

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
System.out.println("Data is: "+x);
inFile.close();

in.close();
}

[Line 13]
[Line 14]

Rundown 1.1:
Input the file pathname: c:\data001.txt
Data is: 678

Rundown 1.2:
Input the file pathname: c:\data02.txt
Exception in thread "main" java.io.FileNotFoundException

at java.io.FileInputStream.open(Native Method)
at java.io.FileInputStream.<init>(Unknown Source)
at java.util.Scanner.<init>(Unknown Source)
at Main.main(Main.java:13)

Rundown 1.3:
Input the file pathname: c:\data002.txt
Exception in thread "main" java.util.InputMismatchException

at java.util.Scanner.throwFor(Unknown Source)
at java.util.Scanner.next(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at Main.main(Main.java:14)

• Problems are checked by Java Virtual
Machine

• java.io.FileNotFoundException and
java.util.InputMismatchException are
JAVA classes, each means a type of
exception.

• JVM outputs the message by calling:
public void printStackTrace()

[a method of the Java.lang.Throwable
class]

Files for testing:

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 2/12

 Example 2 - We check and handle the problems ourselves
 Below shows how that can be done, using try-catch blocks

 Program:

 Testing:

public static void main(String[] args)
{

try
{

Scanner in = new Scanner(System.in);
System.out.print("Input the file pathname: ");
String fname = in.next();
Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
System.out.println("Data is: "+x);

inFile.close();
in.close();

}
catch (FileNotFoundException e)
{

System.out.println("Cannot open the file. Please check or ask CS2312 helpers.“);
}
catch (InputMismatchException e)
{

System.out.println("Cannot read the required number from the opened file. "+
" Please download from Helena's website again.");

}
}

• A Try block tells what to do when
everything goes smoothly.

• A catch block handles a kind of
caught problems (exceptions)

catch (InputMismatchException e)

Declare the exception type (Data type) and exception object variable (other names are ok, but “e” is often used)

Files for testing:

Rundown 2.1:
Input the file pathname: c:\data001.txt
Data is: 678

Rundown 2.2:
Input the file pathname: c:\data02.txt
Cannot open the file. Please check or ask
CS2312 helpers.

Rundown 2.3:
Input the file pathname: c:\data002.txt
Cannot read the required number from the
opened file. Please download from Helena's
website again.

try
{

..
}
catch (FileNotFoundException e)
{

System.out.println("Cannot open ..“);
}
catch (InputMismatchException e)
{

System.out.println("Cannot read ..”);
}

We write code to check and take
action (here simply output the
situation)

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 3/12

A common case: we handle more processing:
1) Put the actions in one method. The actions may have problems.
2) Place the try-catch block in the caller. The caller will handle the problems.

 Example 3

We can write an Exception Controlled Loops
 - Let the user get things right on a subsequent try

 Example 4

 public static void processFile(String fname) throws FileNotFoundException, InputMismatchException
{
 Scanner inFile = new Scanner(new File(fname));
 int x = inFile.nextInt();
 System.out.println("Data is: "+x);
 inFile.close();
}

public static void main(String[] args)
{
 Scanner in = new Scanner(System.in);
 boolean shouldEnd=false;
 while (!shouldEnd)
 {
 try
 {
 System.out.print("Input the file pathname: ");
 String fname = in.next();
 processFile(fname);
 shouldEnd=true;
 }
 catch (FileNotFoundException e)
 {
 System.out.println("Cannot open the file.");
 System.out.print("Try another file? Type your choice [y/n]: ");
 shouldEnd=(in.next().charAt(0)=='n');
 }
 catch (InputMismatchException e)
 {
 System.out.println("Cannot read the required number from the opened file.");
 System.out.print("Try another file? Type your choice [y/n]: ");
 shouldEnd=(in.next().charAt(0)=='n');
 }
 }
 in.close();
}

Rundown 4.1:
Input the file pathname: c:\data002.txt
Cannot read the required number from the opened file.
Try another file? Type your choice [y/n]: y
Input the file pathname: c:\data02.txt
Cannot open the file.
Try another file? Type your choice [y/n]: y
Input the file pathname: c:\data001.txt
Data is: 678

Rundown 4.2:
Input the file pathname: c:\data002.txt
Cannot read the required number from the opened file.
Try another file? Type your choice [y/n]: y
Input the file pathname: c:\data02.txt
Cannot open the file.
Try another file? Type your choice [y/n]: n

 public static void processFile(String fname) throws FileNotFoundException, InputMismatchException
 {
 Scanner inFile = new Scanner(new File(fname));
 int x = inFile.nextInt();
 System.out.println("Data is: "+x);
 inFile.close();
 }

 public static void main(String[] args)
 {
 try
 {
 Scanner in = new Scanner(System.in);
 System.out.print("Input the file pathname: ");
 String fname = in.next();
 processFile(fname);
 in.close();
 }
 catch (FileNotFoundException e)
 {
 System.out.println("Cannot open the file. Please check or ask CS2312 helpers.");
 }
 catch (InputMismatchException e)
 {
 System.out.println("Cannot read the required number from the opened file. Please download from Helena's website again.");
 }
 }

The throws clause – declare what
exceptions might occur.

Rundown: [Same as 2.1, 2.2, 2.3 in Example 2]

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 4/12

Create exception class + throw an exception object of the kind

- Suppose we expect a non-negative integer, however the file contains a –ve integer.
 This is what we want:

If the file content is –ve, the output should tell:

 - This problem is not described by JAVA standard exception classes.

 Therefore we create and use our own exception class.
 Example 5

processFile():

Inside main():

Rundown 5.1:
Input the file pathname: c:\data003.txt
Unexpected negative value from the file.
Try another file? Type your choice [y/n]: n

public class NegativeIntegerException extends Exception
{
 public NegativeIntegerException()
 {
 super("Negative integer!");
 }

 public NegativeIntegerException(String message)
 {
 super(message);
 }
}

It is customary to give both a
default constructor and a
constructor that contains a
detailed message.

try
{
 System.out.print("Input the file pathname: ");
 String fname = in.next();
 processFile(fname);
 shouldEnd=true;
}
catch (FileNotFoundException e)
{
 ...
}
catch (InputMismatchException e)
{
 ...
}
catch (NegativeIntegerException e)
{
 System.out.println("Unexpected negative value from the file.");
 System.out.print("Try another file? Type your choice [y/n]: ");
 shouldEnd=(in.next().charAt(0)=='n');
}

 public static void processFile(String fname) throws FileNotFoundException,
 InputMismatchException, NegativeIntegerException
 {
 Scanner inFile = new Scanner(new File(fname));

 int x = inFile.nextInt();
 if (x<0) {
 throw new NegativeIntegerException();
 }

 System.out.println("Data is: "+x);
 inFile.close();
 }

May throw FileNotFoundException

May throw InputMismatchException

throw NegativeIntegerException

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 5/12

II Exception Handling – Basic Idea

 Possible errors of a running JAVA program
1) User input error (e.g. typing mistake, wrong format of URL)
2) Device errors (e.g. printer suddenly jammed, webpage temporarily unavailable)
3) Physical limitation (e.g. disk full, out of memory)
4) Code error (e.g. invalid array index)

 Error handling

1) [Traditional approach I] Method returns -1, special end-of-file value, etc..
2) [Traditional approach II] Method returns a null reference.
3) JAVA’s exception handling:

[Mission] Transfer control from the location where error occurred to an error handler
that can deal with the situation

 throws an object that encapsulates the error information
 the code section exits immediately
 it does not return any value (even the method return type is not void)
 Search for an exception handler that can deal with this particular error.

III Exception Hierarchy in JAVA

The Topmost Class: Throwable

http://docs.oracle.com/j
avase/7/docs/api/java/u
til/InputMismatchExcep
tion.html

Throwable

Error Exception

IOException Runtime
Exception

• Throwable is the
superclass of all errors
and exceptions in JAVA,
- Thrown by JVM, e.g.

FileNotFoundException

InputMismatchException

- Thrown in our code, e.g.
NegativeIntegerException (we defined in Example 5)

http://docs.oracle.com/javase/7
/docs/api/java/lang/Throwable.
html

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 6/12

The Exception Hierarchy:

• The Exception hierarchy indicates
conditions that a reasonable
application might want to catch.
(Ref. Examples 1-5)

The Error Hierarchy:

• The Error hierarchy describes internal

errors and resource exhaustion
situations which are abnormal.

Indicates serious problems that a
reasonable application should NOT try
to catch. (But if you want, you can!!)

It should be aborted and the system (not our code) need to take over the control.
St
Note: Java programmers often call “Errors” as “Exceptions” as well. We speak in the
same way in this topic.

Examples:
 java.lang.OutOfMemoryError (Previous lecture exercise: out of heap space)

 java.lang.StackOverflowError (Previous lecture exercise: recursion cannot stop – Stack overflow)

Example 5 [recalled]
public static void processFile(String fname) throws ..
{

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
if (x<0)

throw new NegativeIntegerException();
System.out.println("Data is: "+x);
inFile.close();

}
public static void main(String[] args)
{
..
try {

...
processFile(fname);
...

}
catch (FileNotFoundException e) {..}
catch (InputMismatchException e) {..}
catch (NegativeIntegerException e) {..}
...

}

Catch and handle

Throwable

Error Exception

IOException Runtime
Exception

JVM may throw FileNotFoundException

JVM may throw InputMismatchException
throw NegativeIntegerException

Throwable

Error Exception

IOException Runtime
Exception

Object[] arr1 = new Object[10000000];
Object[] arr = arr1;

for (int i=0;i<200;i++) {
 arr[0]=new Object[10000000];
 arr=(Object[])arr[0];
}

Exception in thread "main"
 java.lang.OutOfMemoryError:
 Java heap space
 at Main.main(Main.java:12)

Program
aborted by

JAVA runtime

[http://docs.oracle.com/javase/7/docs/api/java/lang/Error.html]

[http://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html]

 private static int factorial(int n) {

 if (n==1) return 1;
 else return n*factorial(n+1);
 }

 public static void main(String[] args) {

 System.out.println(factorial(4));
 }

Exception in thread "main"
 java.lang.StackOverflowError
 at MainStackError.factorial(MainStackError.java:5)
 at MainStackError.factorial(MainStackError.java:6)
 at MainStackError.factorial(MainStackError.java:6)
 at MainStackError.factorial(MainStackError.java:6) ...

Program
aborted by

JAVA runtime

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 7/12

Catch an error and handle it, continue running.
[For illustration purpose only; recall: “a reasonable application should NOT try to catch”]

IV The Try-throw-catch Mechanism

The Try-throw-catch Mechanism:

 The try block

• Tells what to do when everything goes smooth

• Can have code that throws exceptions for unusual conditions

• If something goes wrong within the try block, execution in the try block is stoped and an
exception is thrown

 The throw statement: We can write the throw statement to (create exception object and) throw an exception.

• The similar is done when JAVA detects problem (e.g., JAVA may throw an object of StackOverflowError).
FileNotFoundException,

InputMismatchException, etc..

• Syntax

• After exception is thrown, the flow of control is transferred to a catch block, and the catch block
begins to run

 The catch block

• Tells what to do when an exception is caught
• One parameter, usually named “e” (but other names are also ok)
• Syntax

public static void main(String[] args)
{

Scanner in = new Scanner(System.in);
try
{

System.out.println(factorial1(4)); //failed
}
catch (StackOverflowError e)
{

System.out.printf("Error happens when factorial1 runs\n\n");
System.out.print("Print stack? Type your choice [y/n]: ");
if (in.next().charAt(0)=='y')

e.printStackTrace();

System.out.print("\nTry another one? Type your choice [y/n]: ");
if (in.next().charAt(0)=='y')

System.out.println(factorial2(4)); //OK: 24
}

System.out.println("\nFinished");
}

Error happens when factorial1 runs

Print stack? Type your choice [y/n]: y
java.lang.StackOverflowError
at MainStackErrorCaught.factorial1(MainStackErrorCaught.java:7)
at MainStackErrorCaught.factorial1(MainStackErrorCaught.java:8)at MainStackErrorCaught.factorial1(MainStackErrorCaught.java:8)at MainStackErrorCaught.factorial1(MainStackErrorCaught.java:8)at MainStackErrorCaught.factorial1(MainStackErrorCaught.java:8)at MainStackErrorCaught.factorial1(MainStackErrorCaught.java:8)at MainStackErrorCaught.factorial1(MainStackErrorCaught.java:8)at MainStackErrorCaught.factorial1(MainStackErrorCaught.java:8)
at MainStackErrorCaught.factorial1(MainStackErrorCaught.java:8)

Try another one? Type your choice [y/n]: y
24

Finished

private static int factorial1(int n)
{

if (n==1) return 1;
else return n*factorial1(n+1);

}

private static int factorial2(int n)
{

if (n==1) return 1;
else return n*factorial2(n-1);

}

We catch the error
and handle it,

make the program
continue to run

However, practically it should
be aborted and the system
(not our code) need to take
over the control.

throw new ExceptionClassName(arguments);

catch (ExceptionClassName e)
{
 ..code to handle the exception
}

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 8/12

V Define our own exception classes

 [Complete Code]

 public class NegativeIntegerException extends Exception

{
private int problemValue;
public int getProblemValue() {return problemValue;}
public NegativeIntegerException() { super("Negative integer!"); }
public NegativeIntegerException(String msg) { super(msg); }
public NegativeIntegerException(String msg, int v)
{

super(msg); problemValue=v;
}

}
try
{

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
if (x<0)

throw new NegativeIntegerException(“-ve number”, x);

System.out.println("Data is: "+x);
inFile.close();

}
catch (FileNotFoundException e) {

System.out.println("Cannot open ...“);
}
catch (InputMismatchException e) {

System.out.println("Cannot read ...");
}
catch (NegativeIntegerException e) {
System.out.println(e.getMessage()+

" ["+e.getProblemValue()+"]");
}

Throw?
Throw?

Throw!

Revised NegativeIntegerException: Add a field to store the problem valueExample 6

Rundown 6.1:
Input the file pathname: c:\data003.txt
-ve number [-1234]

Inside main():

NegativeIntegerException:

Predefined exception class contains:
- An object field to store a message and a constructor that sets the message
- An accessor method, String getMessage()

We define our own exception class by inheriting Exception (or other throwables)

• We can add fields and methods in our class
E.g. int problemValue, int getProblemValue()

• Constructors to be implemented:
public class NegativeIntegerException extends Exception
{

private int problemValue;
public int getProblemValue() { return problemValue; }

public NegativeIntegerException() { super("Negative integer!"); }
public NegativeIntegerException(String message) { super(message); }

public NegativeIntegerException(String message, int v)
{

super(message); problemValue=v;
}

}

Add constructor according to our design

It is customary to give
both a default constructor
and a constructor that
contains a detailed
message.

• Which constructor will run
is decided by how we create
the exception object:

throw new NegativeIntegerException();
throw new NegativeIntegerException("-ve number");
throw new NegativeIntegerException("-ve number", x);

Throwable

Error Exception

IOException Runtime
Exception

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 9/12

VI Pitfall: Catch the more specific exception first

 When we have 2 or more catch-blocks, catch the more specific exception first

public static void processFile(String fname) throws
FileNotFoundException, InputMismatchException, NegativeIntegerException
{

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
if (x<0)

throw new NegativeIntegerException();
System.out.println("Data is: "+x);
inFile.close();

}

public static void main(String[] args)
{

..
try {

..
processFile(fname);

}

catch (NegativeIntegerException e)
{

System.out.println("Unexpected negative value from the file.");
}

catch (Exception e)
{

System.out.println("Some problem happens.");
}

in.close();
}

Example 7 [based on Example 5]

If you exchange their order,
compiler complains:
“Unreachable catch block for
NegativeIntegerException. It is
already handled by the catch block
for Exception”

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 10/12

VII The throws clause, throws clause in derived class

Propagation of Exception

Exceptions
propagate through
method calls in the
stack until they are
caught and handled.

Exceptions not
handled finally will
cause the program
to abort.

Java
runtime
system

main()
With
exception
handler

methodA()
Without
exception
handler

methodB()
Without
exception
handler

Exception

Throws back
Throws back

calls main() calls methodA() calls methodB()

Handle it
and Continue

to run

Java
runtime
system

main()
Without
exception
handler

methodA()
Without
exception
handler

methodB()
Without
exception
handler

Exception

Throws back
Throws backThrows back

calls main() calls methodA() calls methodB()

Program
aborted by

JAVA runtime

The Throws clause
When a method may cause exception, but no catch is done within the method,
Then it may inform the user by using the Throws clause to declare the exception

The user may catch and handle the exception (or the user itself declares it again).

Example 5 [recall]
public static void processFile(String fname) throws FileNotFoundException,

InputMismatchException, NegativeIntegerException
{

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
if (x<0)

throw new NegativeIntegerException();
System.out.println("Data is: "+x);
inFile.close();

}
Inside main(): public static void main(String[] args)

{
..
try {

...
processFile(fname);
...

}
catch (FileNotFoundException e) {..}
catch (InputMismatchException e) {..}
catch (NegativeIntegerException e) {..}
...

}

Declaring the exception
The throws clause declares what
exceptions might occur.

Throwing an
exception

Handling an
exception

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 11/12

VIII The Catch-or-Declare Rule, Checked Exceptions, Unchecked Exceptions

The Catch-or-Declare Rule
If an exception may be thrown inside a method,

the method may deal with it by

1. placing the concerned code within a
try-block, and handle in a catch-block,

or

2. declaring it

The compiler reinforces the Catch-or-Declare Rule on the
following exceptions [Known as “checked exceptions”]:

For other exceptions/errors,
it is okay whether we deal
with them or not.

[Known as “unchecked exceptions”]

public void methodX() throws ..
{

..
}

public void methodX()
{
..
try {

... //code which may throw exception
}
catch (.. e) {

... //catch and handle the exception
}

}

Throwable

Error Exception

IOException Runtime
Exception

Must Catch-or-Declare
[“Checked exceptions”]

Throws clause in derived classes
• When we redefine a method in a subclass, it should have the same exception

classes listed in its throws clause that it had in the superclass

• Or it should have a subset of them

• i.e., a subclass may not add any exceptions to the throws clause,
but it can delete some

class ClassY
{
public void processFile(String fname) throws FileNotFoundException
{

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
System.out.println("Data is: "+x);
inFile.close();

}
}

class ClassZ extends ClassY
{
public void processFile(String fname) throws FileNotFoundException, NegativeIntegerException
{

Scanner inFile = new Scanner(new File(fname));
int x = inFile.nextInt();
if (x<0)

throw new NegativeIntegerException();
System.out.println("Data is: "+x);
inFile.close();

}
}

Example 8

Topic 06 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 27-Oct-2020 12/12

IX The Finally Block

 The Finally Block

The finally block
contains code to be
executed whether or
not an exception is
thrown in a try block.

public static void main(String[] args)
{

Scanner in = new Scanner(System.in);
System.out.print("Input the file pathname: ");
String fname = in.next();

Scanner inFile=null;
try
{

inFile = new Scanner(new File(fname));
..

}
catch (FileNotFoundException e)
{

System.out.println("Cannot open the file.");
}
catch (InputMismatchException e)
{

System.out.println("Cannot read the required number.");
}
catch (NegativeIntegerException e)
{

System.out.println(e.getMessage()+" ["+e.getProblemValue()+"]");
}
finally {

if (inFile != null) {
System.out.println("Closing inFile");
inFile.close();

} else {
System.out.println("inFile not open");

}
..
in.close();

}
}

Example 6’

--- end ---

Topic 07 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Nov-2019 1/6

 Contents Topic 07 - Generic Programming

I. Introduction
Example 1 – User defined Generic Method: printTwice(T x)
Example 2 – User defined Generic Class: Pair<T>
Example 3 – using java.util.ArrayList<E>

II. Type Inference and Diamond Operator
III. Pitfalls and Type Erasure
IV. Generic Class with more than 1 parameter (For interested students only)
V. Bounds for type parameter, Generic Interface, Inheritance with Generic Classes

I Generic Programming - Introduction

 Generic Programming

• Generics
– method and class definitions which involve type parameters.

• Generic Programming
– writing code that can be reused for objects of many different types.

• User-defined generic classes and methods

[See examples 1 and 2]

• There are also generic classes and methods provided in the standard Java libraries:
e.g. the ArrayList generic class,

 the Collections.sort generic method

[See example 3]

Example 1 Simple Generic Method

public class Main
{
 public static <T> void printTwice(T x)
 {
 System.out.println(x);
 System.out.println(x);
 }

 public static void main(String[] args)
 {
 printTwice("hello"); //This time T is a string
 printTwice(1234); //This time T is an integer
 printTwice(4.0/3); //This time T is a double
 }
}

Output:
hello
hello
1234
1234
1.3333333333333333
1.3333333333333333

x is called the value parameter.
T is called the type parameter.
<T> means that:
In the following, T is the type
parameter which stands for the
actual type which is known when
printTwice is called.

Topic 07 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Nov-2019 2/6

Example 3 The ArrayList generic class, the Collections.sort generic method
 [provided in standard Java libraries]

[For interested students only]

The ArrayList class is defined as: class ArrayList<E>

The sort method is defined as: public static <T extends Comparable<? super T>> void sort(List<T> list)

Where List is a Java interface implemented by ArrayList and a number of other Java classes.

[http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html]
[http://stackoverflow.com/questions/4343202/difference-between-super-t-and-extends-t-in-java]

Example 2 Simple Generic Class

class Pair<T>
{
 private T first;
 private T second;

 public Pair() { } //first and second automatically initialized as null
 public Pair(T x1, T x2) { first = x1; second = x2; }

 @Override
 public String toString() {return "(1)"+first+" (2)"+second;}
}

public class Main
{
 public static void main(String[] args)
 {
 Pair<String> p0 = new Pair<String>();
 Pair<String> p1 = new Pair<String>("hello","cheers");
 Pair<Boolean> p2 = new Pair<Boolean>(true,false);
 Pair<Integer> p3 = new Pair<Integer>(123,456);
 Pair<Number> p4 = new Pair<Number>(123,456);
 Pair<Object> p5 = new Pair<Object>(123,"cheers");
 System.out.println(p0);
 System.out.println(p1);
 System.out.println(p2);
 System.out.println(p3);
 System.out.println(p4);
 System.out.println(p5);
 }
}

Output:
(1)null (2)null
(1)hello (2)cheers
(1)true (2)false
(1)123 (2)456
(1)123 (2)456
(1)123 (2)cheers

<T> is called the type parameter.
<T> means that:
In the following, T is the type
parameter which stands for the
actual type which is known when an
object of this Generic is created.

Each time when we use the Generic Class Pair,
we need to tell the type which T stands for.

import java.util.ArrayList;
import java.util.Collections;

public class Main
{
 public static void main(String[] args)
 {
 ArrayList<Integer> arrlist = new ArrayList<>();
 arrlist.add(1234);
 arrlist.add(8899);
 arrlist.add(36);
 Collections.sort(arrlist);
 System.out.println(arrlist); //Output: [36, 1234, 8899]
 }
}

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

Topic 07 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Nov-2019 3/6

II Type Inference and Diamond Syntax

 Type Inference

• Type inference is a Java compiler's ability to

determine the type argument(s) that make the
invocation applicable.

• Compiler looks at each method invocation and

corresponding declaration, in order to decide
the type.

Ref: http://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html

 The Diamond Syntax: <>

 We can omit the types in <> when new is used.
(Since Java 7)

 i.e., simply write

Compiler checks the type of the object variable (here p0, p1, p2)
 to guess and fill in the type parameter.

Pair<String> p0 = new Pair<> ();
Pair<String> p1 = new Pair<> ("hello","cheers");
Pair<Boolean> p2 = new Pair<>(true,false);

public static <T> void printTwice(T x)
{
 System.out.println(x);
 System.out.println(x);
}

public static void main(String[] args)
{
 printTwice("hello"); //This time T is a string
 printTwice(1234); //This time T is an integer
 printTwice(4.0/3); //This time T is a double
}

class Pair<T>
{
 private T first;
 private T second;
 ..
}
public static void main(String[] args)
{
 Pair<String> p0 = new Pair<String>();
 Pair<String> p1 = new Pair<String>("..", "..");
 Pair<Boolean> p2 = new Pair<Boolean>(true,false);

This time T is a boolean





Example 1

Example 2

type
argument

type
parameter

http://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html

Topic 07 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Nov-2019 4/6

III Pitfalls and Type Erasure

• Static fields belong to the generic class, not the instantiated classes.

• Cannot declare static fields of a type parameter

[http://docs.oracle.com/javase/tutorial/java/generics/restrictions.html#createObjects]

• Cannot create an object instance of a type parameter

Compile error:

• A class cannot have two overloaded methods that will have the same signature after type erasure.

 For Type Erasure – We may think of it in this way:

 When the compiler generates the bytecode, type parameters in generic types are “replaced
with the raw type* : Object”.

 Advantage: Type Erasure ensures that no new classes are created for parameterized types;
consequently generics incur no runtime overhead. (c.f. Different approach in C++ templates)

 * A type parameter could be bounded. If so, it is replaced by the bound instead of Object.

class Smartphone {}

class Pager {}

class TabletPC {}

class MobileDevice<T> {
 private static int count=0;
 MobileDevice() {count++;System.out.println(count);}
 // ...
}

public class Main
{
 public static void main(String[] args)
 {
 MobileDevice<Smartphone> phone = new MobileDevice<>();
 MobileDevice<Pager> pager = new MobileDevice<>();
 MobileDevice<TabletPC> pc = new MobileDevice<>();
 }
}

Output:
1
2
3

public class MobileDevice<T> {
private static T os; // compile-time error

// ...
}

MobileDevice<Smartphone> phone = new MobileDevice<>();
MobileDevice<Pager> pager = new MobileDevice<>();
MobileDevice<TabletPC> pc = new MobileDevice<>();

What should
be the type

of os?

public static <E> void append(List<E> list) {
 E elem = new E(); // compile-time error
 list.add(elem);
}

public class X{
 public void print(Pair<String> strSet) { } //compile-time error
 public void print(Pair<Integer> intSet) { } //compile-time error
}

Topic 07 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Nov-2019 5/6

 Type Erasure [For interested students only]
http://docs.oracle.com/javase/tutorial/java/generics/erasure.html
http://docs.oracle.com/javase/tutorial/java/generics/genTypes.html

Generics were introduced to the Java
language to provide tighter type checks at
compile time and to support generic
programming. To implement generics, the
Java compiler applies type erasure to:

• Replace all type parameters in generic

types with raw types, which are their
bounds or Object if the type parameters
are unbounded. The produced bytecode,
therefore, contains only ordinary classes,
interfaces, and methods.

• Insert type casts if necessary to
preserve type safety.

• Generate bridge methods to preserve
polymorphism in extended generic types.

Type erasure ensures that no new classes are
created for parameterized types; consequently,
generics incur no runtime overhead.

 Pitfalls - More [For interested students only]

• Constructor headings do not include the type parameter

We do not write

• Cannot use a generic class as the base type of an array

• Cannot create, catch, or throw objects of parameterized types

• Cannot use casts or instanceof with parameterized types

The raw type for Pair<T> in Example 2 looks like:

 public <T> Pair() { }
 public <T> Pair(T x1, T x2) { first = x1; second = x2; }

class Pair
{
 private Object first;
 private Object second;
 public Pair() { }

 public Pair(Object first, Object second)
 {
 this.first = first;
 this.second = second;
 }

 @Override
 public String toString() {
 return "(1)"+first+" (2)"+second;
 }
}

public static void main(String[] args)
{
 Pair p0 = new Pair();
 Pair p1 = new Pair("hello","cheers");
 Pair p5 = new Pair(123,"cheers");
 System.out.println(p0); //(1)null (2)null
 System.out.println(p1); //(1)hello (2)cheers
 System.out.println(p5); //(1)123 (2)cheers
}

Pair<Integer> li = new Pair<>();
Pair<Number> ln = (Pair<Number>) li; // compile-time error

String [] x1=new String[3]; //OK
Pair<String>[] x2 = new Pair<String>[3]; //Error: Cannot create a generic array

of Pair<String>

class MathException<T> extends Exception { /* ... */ } // compile-time error

class QueueFullException<T> extends Throwable { /* ... */} // compile-time error

if (list instanceof ArrayList<Integer>) // compile-time error

class Pair<T>
{
 private T first;
 private T second;
 public Pair() { }
 public Pair(T x1, T x2) { first = x1; second = x2; }

http://docs.oracle.com/javase/tutorial/java/generics/erasure.html
http://docs.oracle.com/javase/tutorial/java/generics/erasure.html
http://docs.oracle.com/javase/tutorial/java/generics/genTypes.html
http://docs.oracle.com/javase/tutorial/java/generics/genTypes.html

Topic 07 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 9-Nov-2019 6/6

 IV Generic Class with more than 1 parameter [For interested students only]

 Generic Class can have more than 1 type parameters

V Other Notes - Bounds for type parameter, Generic Interface, Inheritance with Generic Class

class C0 {}
class C1<T> extends C0 {}
class C2<T> extends C1<T> {}
class C3<T> extends C1<String> {}

Inheritance with Generic Classes

• A generic class can be defined as a derived class of an ordinary class or of another generic class

• Example:

class TwoTypePair<T1, T2>
{
 private T1 first;
 private T2 second;

 public TwoTypePair(T1 firstItem, T2 secondItem)
 {
 first = firstItem;
 second = secondItem;
 }

 public void setFirst(T1 newFirst) { first = newFirst; }

 public void setSecond(T2 newSecond) { second = newSecond; }

 public T1 getFirst() { return first; }

 public T2 getSecond() { return second; }

 public boolean equals(Object otherObject)
 {
 if (otherObject == null)
 return false;
 else if (getClass() != otherObject.getClass())
 return false;
 else
 {
 TwoTypePair<T1, T2> otherPair =
 (TwoTypePair<T1, T2>)otherObject;

 return (first.equals(otherPair.first)
 && second.equals(otherPair.second));
 }
 }
}

public static void main(String[] args)
{
 TwoTypePair<String, Integer> x1,x2,x3;
 x1 = new TwoTypePair<>("USD",123);
 x2 = new TwoTypePair<>("USD",456);
 x3 = new TwoTypePair<>("USD",123);

 System.out.println(x1.equals(x2));//false
 System.out.println(x1.equals(x3));//true
}

Example 2a

public class TwoBTypePair<T1 extends Class1, T2 extends Class2 & Comparable>

Bounds for Type Parameters

• To restrict the possible types that can be plugged in for a type parameter T

• Example:

interface PairInterface<T1, T2>
{
 void processThePair(T1 t1, T2 t2);
}

Generic Interfaces (Similar to generic classes)
• Example:

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

 1/8

 Contents Topic 08 - Collections

I. Introduction - Java Collection Hierarchy

II. Choosing/using collections

III. Collection and Iterator (For interested students only)

IV. Methods of Collection

V. Concrete classes

VI. Implementation (Hash table, resizable array, tree, linked-list)

VII. HashSet, TreeSet, Comparator

VIII. Priority Queue (For interested students only)

IX. HashMap, TreeMap

X. Conversion to/from array (For interested students only)

XI. Simple algorithms: shuffling, sorting, binarySearch, reverse, disjoint..

[Ref: Core Java Chp 13 , Intro to Java Programming [Liang] Chp 22, Absolute Java Chp 16, docs.oracle.com/javase/tutorial/collections/TOC.html]

I Introduction - Java Collection Hierarchy

 Java Collection Framework

• A collection is a container object that holds a group of objects

• A framework is a set of classes, which form the basis for building advanced functionality

• The Java Collections Framework supports different types of collections:

Containers for storing a collection of elements:
1. Sets – store a group of non-duplicate elements
2. Lists – store an ordered collection of elements
3. Queues– store objects that are processed in first-in, first-out fashion

Containers for storing key/value pairs:
4. Maps – store key/value pairs

• Interfaces in the hierarchies:

Two distinct trees: Collection and Map

 [http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html]

“Elements”

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 12-Nov-2020 2/8

• The Java Collection Framework is an excellent example of using interfaces, abstract classes, and
concrete classes.

 Interfaces – define the framework
 Abstract classes – provide partial implementation
 Concrete classes – implement the interfaces with concrete data structures

Some of the interfaces and classes in Java Collection [Liang Chp.22]:

Providing an abstract class (partial implements an interface) makes it convenient for the user to write the
code.

The user can simply define a concrete class that extends the abstract class (rather than implementing all
methods in the interface)

II Choosing/using collections

• How to choose a data structure from the Java Collection Framework?

- Need quick search?
- Data should be kept sorted?
- Rapid insertion/removal in the middle?
- Need association between keys and values?
- etc..

• The way to use a data structure:

For interested students: http://beginnersbook.com/2013/12/difference-between-arraylist-and-vector-in-java/

import java.util.*;

public class Main
{
 public static void main(String[] args) {
 List<Integer> dataList;
 dataList = new Vector<>();
 dataList.add(100);
 dataList.add(200);
 System.out.println(dataList);
 }
}

When we use a list, we do not need to know
which implementation is actually chosen once
it has been constructed.

Therefore we use the interface type for the
variable (to hold the reference)

If we change our mind, we can easily use a different one.
e.g., change to:
 dataList = new ArrayList<>();
 or:
 dataList = new LinkedList<>();

Interfaces Abstract Classes Concrete Classes

Set

SortedSet

AbstractSet

TreeSet

HashSe
t

List AbstractList

AbstractSequentialList

ArrayList

LinkedList

AbstractCollection
Vector Stack

LinkedHashSet

Queue

Deque
PriorityQueue

Collection

AbstractQueue

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 12-Nov-2020 3/8

III Collection and Iterator (For interested students only)

• The Collection Interface:

• The iterator method returns an Iterator object.

• The Iterator object is for visiting the elements in the collection one by one (See the Iterator interface).

IV Methods of Collection

• The Collection interface is generic

• Usage examples:

ArrayList<Employee> emList;
ArrayList<Student> sList;

• ie., when we create a collection,
there is a type parameter for us
to provide the class type of the
collection elements.

public interface Collection<E>
{
 //2 fundamental methods:
 boolean add(E element);
 Iterator<E> iterator();
 ..
}

The Iterator Interface:

public interface Iterator<E>
{
 E next();
 boolean hasNext();
 ..
}

public static void main(String[] args)
{
 List<Integer> dataList;
 dataList = new ArrayList<>();
 for(int i=0;i<10;i++)
 dataList.add(i*i);

 //(1) Get the iterator and use it to visit elements
 Iterator<Integer> itr = dataList.iterator();
 while (itr.hasNext()){
 Integer e = itr.next();
 System.out.print(e+" ");
 }

 //(2) for-each loop (Actually a shortcut for (1))
 for (Integer e: dataList)
 System.out.print(e+" ");
}

Output: 0 1 4 9 16 25 36 49 64 81

Output: 0 1 4 9 16 25 36 49 64 81

public interface Collection<E>
{
 ..
 int size();
 boolean isEmpty();
 boolean contains(Object obj);
 boolean containsAll(Collection<?> c);
 boolean equals(Object other);
 boolean addAll(Collection<? extends E> from);
 boolean remove(Object obj)
 boolean removeAll(Collection<?> c)
 void clear()
 boolean retainAll(Collection<?> c)
 Object[] toArray()
 <T> T[] toArray(T[] arrayToFill)
}

public abstract class AbstractCollection<E> implements Collection<E>
{
 public boolean contains(Object obj)
 {
 for (E element : this) // calls iterator()
 if (element.equals(obj))
 return true;
 return false;
 }
 ..
}

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 12-Nov-2020 4/8

V Concrete classes

• Some concrete classes:

VI Implementation (Hash table, resizable array, tree, linked-list)

• Commonly used implementations (concrete classes) for collection interfaces

General-purpose Implementations

Interfaces Resizable array
Implementations

Linked list
Implementations

Hash table
Implementations

Tree
Implementations

Set HashSet TreeSet

List ArrayList LinkedList
Queue,
Deque ArrayDeque LinkedList
Map HashMap TreeMap

 [http://docs.oracle.com/javase/tutorial/collections/implementations/index.html]

• Hash table implementation: fast lookup, data unsorted,

require hash code
In Java, hash tables are implemented as an array of
buckets (linked-lists)

• Tree implementation: fast lookup, data sorted, implemented as Red-black tree

ArrayList An indexed sequence that grows and shrinks dynamically

LinkedList An ordered sequence that allows efficient insertion and
removal at any location

ArrayDeque A double-ended queue that is implemented as a circular array

HashSet An unordered set collection (set: rejects duplicates)

TreeSet A sorted set collection (set: rejects duplicates)

PriorityQueue A collection that allows efficient removal of the smallest
element

HashMap A map data structure that stores key/value associations

TreeMap A map data structure that stores key/value associations
(sorted by keys)

http://docs.oracle.com/javase/tutorial/collections/implementations/index.html
http://docs.oracle.com/javase/tutorial/collections/implementations/index.html
http://docs.oracle.com/javase/tutorial/collections/implementations/index.html

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 12-Nov-2020 5/8

VII HashSet, TreeSet, Comparator

HashSet

• Example: using HashSet<String> to store the words in “Alice in Wonderland”

• Hash code - an integer for each object to be hashed
 - computed quickly based on the state (field values) of the object
 - determine where to insert the object in the hash table.

• Hash codes for Strings in Java:

TreeSet

• Example: using TreeSet<String> to store the words in “Alice in Wonderland”

• TreeSet is: - similar to Hashset
 - plus improvement: as sorted collection
 ie. when iterated, values are presented in sorted order
 - insertion is slower than HashSet but much faster than array/linked-list

public static void main(String[] args) throws FileNotFoundException
{
 Set<String> words = new HashSet<>(); // HashSet implements Set
 Scanner in = new Scanner(new File("alice.txt"));
 while (in.hasNext())
 {
 String word = in.next();
 words.add(word);
 }

 System.out.println(words); //Output: [..,..,..] <== all distinct words in the file
 in.close();
}

public static void main(String[] args) throws FileNotFoundException
{
 Set<String> words = new TreeSet<>(); // TreeSet implements Set

 Scanner in = new Scanner(new File("alice.txt"));
 while (in.hasNext())
 {
 String word = in.next();
 words.add(word);
 }

 System.out.println(words); //Output: [..,..,..] <== all distinct words in the file
 in.close();
}

In sorted (alphabetical,
case sensitive) order

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 12-Nov-2020 6/8

Comparator

• We’ve learnt the Comparable interface for comparison of objects (also used in sorting)
• But, how to sort items by field f1 in one collection, then field f2 in another collection?

• Solution in Java: pass a Comparator object into the TreeSet constructor

- Comparator is an interface:

- We often implement it as
 an inner class (with no class name).

• Further learning of Comparator:

See lecture exercise:
Using Comparator in .sort(..).

VIII Priority Queue (For interested students only)

• PriorityQueue (Underlying implementation: priority heap)

Example: job scheduling

class Product implements Comparable<Product> {

 private int part_number; //sometimes we want to compare part_number
 private String product_name; //sometimes we want compare product name
 public int compareTo(Product other) {return Integer.compare(part_number, other.part_number);
 ..
}

public interface Comparator<T>
{
 int compare(T a, T b);
}

public static void main(String[] args)
{
 SortedSet<Product> parts = new TreeSet<>();
 parts.add(new Product("Widget", 4562));
 parts.add(new Product("Toaster", 1234));
 parts.add(new Product("Modem", 9912));
 System.out.println(parts);

 SortedSet<Product> sortByName = new TreeSet<>(
 new Comparator<Product>()
 {
 public int compare(Product a, Product b)
 {
 String descrA = a.getName();
 String descrB = b.getName();
 return descrA.compareTo(descrB);
 }
 }
);
 sortByName.addAll(parts);
 System.out.println(sortByName);
}

[Toaster(1234), Widget(4562), Modem(9912)]

[Modem(9912), Toaster(1234), Widget(4562)]

This is an anonymous inner class,
which implements the
Comparator<Product> interface

Ordered by
part_number

(See compareTo)

Ordered by
product_name

(See compare)

class Assignment implements Comparable<Assignment>
{
 private int priority; //1 means highest priority
 private String name; //e.g. "CS2312 Assignment", "CS3342 Project" "CS3334 Survey"
 public Assignment(String n,int p) { priority=p; name=n; }
 public int compareTo(Assignment other) {return Integer.compare(priority, other.priority);}
 public String toString() {return name+"(Priority:"+priority+")";}
}

public static void main(String[] args)
{
 PriorityQueue<Assignment> qToDo = new PriorityQueue<>();
 qToDo.add(new Assignment("CS3342 Project", 2));
 qToDo.add(new Assignment("CS3334 Survey", 1));
 qToDo.add(new Assignment("CS2312 Assignment", 1));
 System.out.println(qToDo); //order not guaranteed

 System.out.println(qToDo.remove()); //removed based on priority
 System.out.println(qToDo.remove());
 System.out.println(qToDo.remove());
}

[CS3334 Survey(Priority:1), CS3342 Project(Priority:2), CS2312 Assignment(Priority:1)]

CS3334 Survey(Priority:1)
CS2312 Assignment(Priority:1)
CS3342 Project(Priority:2)

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 12-Nov-2020 7/8

IX HashMap, TreeMap

• The Map Interface (implementing classes: HashMap, TreeMap)

- A map stores key/value pairs. Both key and value must be objects.
 Example: we have some key info, we want to look up the associated element.

• Implementing classes:

HashMap unordered implementation of Map; hashing the key (Learn in CS3334)

TreeMap ordered implementation of Map; ordering on the keywhich implements Comparable (Red-black tree; Learn in CS3334)

- Both HashMap and TreeMap hash/compare on keys.

- For Hashmap, the class of the keys needs to provide equals() and hashCode(). hashCode() should
return the hash code such that 2 objects which are considered as equal should have the same hash code.

 How JAVA locates an object: Find the location with hashcode(); then use equals() to identify it.

- Useful “view” methods to get the set of keys, collection of values, or set of key-value pairs.

• Example: .get, .put

public static void main(String[] args)
{
 Map<Integer,Product> parts = new HashMap<>();
 parts.put(4562,new Product("Widget"));
 parts.put(1234,new Product("Toaster"));
 parts.put(9912,new Product("Modem"));

 System.out.println(parts.get(9912)); //output: Modem
 parts.put(9912,new Product("Router"));
 System.out.println(parts.get(9912)); //output: Router

 //Get the view: a set of the keys, for iteration;
 //output: Toaster(1234) Router(9912) Widget(4562)
 Set<Integer> kSet=parts.keySet();
 for(Integer k:kSet)
 System.out.printf("%s(%d) ",parts.get(k),k);
}

class Product {
 private String product_name;
 public Product(String name) {product_name=name;}
 public String toString() {return product_name;}
}

Topic 08 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 12-Nov-2020 8/8

X Conversion to/from array (For interested students only)

From array to collection wrapper

• Lightweight Collection Wrappers: created using asList(..) of the Arrays class

From collection to an array copy

• Collection.toArray(..)

XI Simple algorithms: shuffling, sorting, binarySearch, reverse, disjoint..

• Collections.xxx(..) – Useful methods for collections

public static void main(String[] args)
{
 List<String> c = new ArrayList<>(); c.add("Helena");c.add("Kit");c.add("Jason");
 System.out.println(c); //Output: [Helena, Kit, Jason]

 //Sorting
 Collections.sort(c); System.out.println(c); //Output: [Helena, Jason, Kit]

 //Binary search
 System.out.println(Collections.binarySearch(c,"Helena")); //returns the index: 0

 //Others:
 System.out.println(Collections.disjoint(c,c.subList(0, 1))); //Output: false
}

//Other methods: max, min, frequency, reverse, rotate, shuffle

true if no elements
in common

public static void main(String[] args)
{
 String [] nArr = {"Helena", "Kit", "Jason"}; //an array

 List<String> nList = Arrays.asList(nArr); //returns a List wrapper

 nList.set(0, "Marian"); //cannot apply .add or .remove which changes array size

 System.out.println(Arrays.toString(nArr)); //output: [Marian, Kit, Jason]
 System.out.println(nList); //output: [Marian, Kit, Jason]
}

public static void main(String[] args)
{
 Collection<String> c = new ArrayList<>();
 c.add("Helena");c.add("Kit");c.add("Jason");
 String[] arr = c.toArray(new String[1]); //create a new array copy; initial size=1; expand as needed

 arr[0]="Tom";

 System.out.println(c); //output: [Helena, Kit, Jason]
 System.out.println(Arrays.toString(arr)); //output: [Tom, Kit, Jason]
}

Topic 09 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 25-Nov-2020 1/5

 Contents Topic 09 - OOP Review – Features, Techniques, Practices and Principles

I. OOP Basics, Classes and Objects, Refactoring
II. The Dependency, Association, Aggregation, Composition relationships

III. OO Techniques: Encapsulation, Abstraction, Generalization, Realization, Delegation
IV. Measurements: Cohesion and coupling
V. Principles

VI. Design Patterns

I OOP Basics, Classes and Objects, Refactoring

 Programming - Procedural Approach vs OO Approach

 World objects vs OO Programs

 Why OOP?
• State-of-the-art, popular approach in the industry
• To handle complexity
• To ease change, e.g., Encapsulation

 Relationship between classes (Ref Topic03: A class is the template / blueprint from which objects are made)
• Inheritance (“is-a”) [See topics 04]
• Interface (“Implements-a”) [See topics 05]
• Dependency (“uses-a”) [Next page]

 Relationship between objects
• Association (“Knows-a”) [Next page]
• Aggregation and Composition (“Has-a”) [Next page]

 How to maintain good quality of an OOP program - Refactoring

OO Programs : Objects communicate to provide some functions to users

The world : Objects communicate to complete some tasks

Procedural Approach
Specify what tasks to do in

each step.

Object-Oriented Approach
Specify who performs what

tasks in each step.

Refactoring

Refactoring: Improve code structure, without changing its external behavior
- Remove unhealthy dependencies between classes or packages
- Solve for bad class / method responsibilities; Reduce duplicate code and confusion
- Programmers refactor continuously to keep code as clean, simple, and expressive as possible.

At the beginning, nobody wanted to write poor code;
Gradually, our code starts to look ugly (code smell).

One day we find that it is hard (then towards impossible) to maintain or change.

Topic 09 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 25-Nov-2020 2/5

 II. The Dependency, Association, Aggregation, Composition relationships

 Dependency ("Uses a ")

• We say “Class A the client depends on Class B the supplier ” if:

Any change to B requires A to be changed and/or recompiled.

• Eg. 1. B is the superclass of A; or B is the interface implemented by A

2. B is the type of
 a field of class A,
 a parameter of a class A method, or
 a local variable of a class A method

3. a class B method or field is used / accessed from the code of class A, or
a B object is created in class A’s code

 Association ("Knows a")

• An association is a type of object links.

• Often implemented as object fields, like other attributes

• Often expressed in two notations (depends on your intention):

• Association class
If the association has attributes, it should be implemented as a separate class:

class A extends B {
 ..
}

class A implements B,C,D {
 ..
}

class A {
 public void handleIt(C c) {
 c.getB().xxx(); //xxx is B’s method
 }
}

class A {
 public void handleIt() {
 (new B()).xxx();
 }
}

class A {
 private B b;
 ..
}

class A {
 private static B b;
 ..
}

class A {
 public void handleIt() {
 B b = Company.getB();
 b.xxx();
 }
}

class A {
 public void handleIt(B b) {
 xxx(b);
 }
}

A B

- cus: Customer

Order Order Customer 1 * (i) or (ii)

Implementation in Order:
 May contain a Customer field

Implementation in Customer:
 May contain a list of orders

↑ the written code is
the same as (i)

Employee Project * *

- hours
- startDate

WorksOn

Implementation:
Class WorksOn {

Employee e;
Project p;
.. hours, startDate etc..

}

Topic 09 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 25-Nov-2020 3/5

 Aggregation and Composition ("Has a")

• Aggregation has vague

semantics (Aggregations
are also associations)

• Composition relates to creating and

controlling the lifetime of another
object
(also think about: Garbage Collection).

Single-owner: When B is composed
by A, A owns B.

FAQ:
[Q] It is often vague to tell two classes' relationship (Association? Dependency? Aggregation?..) Then, use which one?
[A] Fact is: More than one could be correct! Therefore, see which can best match your intention (what to tell).

III. OO Techniques: Encapsulation, Abstraction, Generalization, Realization, Delegation

• Encapsulation [Topic03] : Combine data and behavior in one packageHide details from the users

• Abstraction: specify the framework and hide implementation details.
- Give the developer a blueprint to follow.
- Tell the user what instead of how
- Eg. in Java: interfaces and abstract methods

• Generalization: provide common structure and behavior at an upper level of the hierarchy (available to

lower level along inheritance)

- Eg. We first design SalariedEmployee and HourlyEmployee as 2 separate classes,
 Then we observe common structure and behavior and rewrite as:

• Realization: provide implementation details to realize the abstract blueprint

Group Member
* 1

Association Aggregation

Circle Point
1 1

center

Polygon Point
* 1

vertex

Suppose a vertex of a polygon p1 is (123, 45) , and
the center of a circle c1 happens to be (123, 45) as well;
Even so, p1 and c1 should link to two different Point objects

Group Member * 1

- name

+ getName()
+ getPay()

Employee

- salary

+ getPay()

SalariedEmployee

- wageRate, hours

+ getPay()

HourlyEmployee

/* no code */
{..}

{..} {..}

Topic 09 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 25-Nov-2020 4/5

• Delegation: An object forwards or delegates a

request to another object. The delegate
carries out the request on behalf of the
original object.

Advantage:
Easily compose behaviors at run-time.
Often used as an alternative to
inheritance.

IV. Measurements: Cohesion and coupling

Coupling
• The degree to which software components

depend on each other
• Two classes (methods) are coupled if changing

one of them leads to a change of the other.

Cohesion
• The degree to which a class/method has

ONE and ONLY ONE purpose.
• A class (method) has a low cohesion if it

does many unrelated things or too much
work.

• One common mistake of OO design: Too
few classes/methods! Measurement: Cohesion!

- s
- t

+ processS()
+ handleS()
+ processT()
+ handleT()

Class A

{.. /* deal with s only */ ..}
{.. /* deal with s only */ ..}
{.. /* deal with t only */ ..}
{.. /* deal with t only */ ..}

Low cohesion 

High coupling 

To raise cohesion,
break the class 

- s
+ processS()
+ handleS()

Class B

- t
+ processT()
+ handleT()

Class C

Cyclic dependencies!!

interface SoundBehavior {
 void makeSound();
}

public class MeowSound implements SoundBehavior {
 public void makeSound() { System.out.println("Meow"); }
}

public class RoarSound implements SoundBehavior {
 public void makeSound() { System.out.println(“Roar!"); }
}

public class Cat {
 private SoundBehavior sound = new MeowSound();
 public void makeSound() { sound.makeSound(); }
 public void setSoundBehavior(SoundBehavior newsound) { sound = newsound; }
}

Low coupling 

Topic 09 CS2312 Problem Solving and Programming | www.cs.cityu.edu.hk/~helena

Last modified: 25-Nov-2020 5/5

V. Principles

Liskov Substituion Principle (LSP)
• LSP: Subclasses must be substitutable for their superclasses.
• -ve case: A subclass’s object is not 100% a superclass’s object.

(Partial code reuse only, eg. BatteryDuck inheriting a Duck which has the eat() method)

Dependency Inversion Principle (DIP)
• DIP: High level modules should not depend upon low level modules. Both should depend upon abstractions.

 Abstractions should not depend upon details. Details should depend upon abstractions.
• -ve case: Classes depend too much on each other, changing one will lead to the change of another.

• Example 1: Topic04 P.10
Employee, SalariedEmployee, HourlyEmployee; main, Company etc. depends on Employee

• Example 2: Lab12Q2 – Person, Playables (Football, Piano, + Chess!)

Open-Closed Principle (OCP)
• OCP: Modules should be open for extension, but closed for modification
• Robert Martin: “it should be easy to change the behavior of a module without changing the source code

of that module.”
• If OCP is applied well, then further changes can be done by adding new code, not by changing old code

that already works. (Ref: Lab06 page 1 State-Pattern; Lab06-Q3: add “Disappeared Member”)

VI. Design Patterns

 Design patterns are referred to as best practices to approach common object-oriented design problems

 Examples of design patterns

 Singleton - Ensure a class has only one instance, and provide a global point of access to it.

 State - Encapsulate a state as an object
To allow an object to alter its behavior when its internal state changes. The object will appear to
change its class.

 Command - Encapsulate a command as an object
To let you support undoable operations.

[A famous book]

Design Patterns - Elements of
Reusable Object-Oriented Software

by
 Erich Gamma / Richard Helm /
 Ralph Johnson / John Vlissides

First published: 1994;
Latest print: 2016 (44th printing)

Gang of Four

Looking forward to learn more in your next course:
CS3342 Software Design

Abstract

Details

Details

High level

Abstract

	CS2312_Intro
	Slide Number 1
	Your Attention, Please!
	Java Programming and OO
	Python and Functional Programming
	Textbook and Materials
	Tentative Assessment Pattern
	Course Web
	Sample OO Program

	Topic01
	Topic02
	Topic03
	Topic04
	Topic05
	Topic06
	Topic07
	Topic08
	Topic09

