Student ID:

Question X (30 marks)

For simplicity, all preprocessing (<include>) directives and using directives are ignore in this question. You do not need to
provide them in your answers as well.

(@) Mary is new to O-O programming. She has written a simple program that models shops (c1ass Shop) and
customers (class Customer), and how the shops earn profits from customers.

In the main function she adds 2 customer objects and 2 shop objects, sets the initial money amount of each
customer, and calls the earn function of the shops to earn and get money from the customers. Finally she
shows the customers’ remaining total money and the shops’ total profits.

Below are the source files written by Mary. Mary’s expected program outputs are shown in the comments
next to the output statements in the main function.

Main.cpp
int main()

{

Customer cl,c2;
Shop s1,s2;

cl.set(200); //cl has $200 initially
c2.set(200); //c2 has $200 initially

sl.earn(cl, 30); //s1l earns and get $30 from cl
s2.earn(cl, 40); //s2 earns and get $40 from cl
s2.earn(c2, 50); //s2 earns and get $50 from c2

cout << cl.getAmount() << endl; //expected output: 130
cout << c2.getAmount() << endl; //expected output: 150
cout << sl.getProfit() << endl; //expected output: 30
cout << s2.getProfit() << endl; //expected output: 90

return 0;
}
Customer.h Shop.h
class Customer { class Shop {
private: private:
int totalMoney; int totalProfit = 0;
public: public:
void set(int money); void earn(Customer c, int value);
void spend(int value); int getProfit();
int getAmount(); };
¥
Customer.cpp Shop.cpp
void Customer::set(int money) { void Shop::earn(Customer c, int value) {
totalMoney = money; totalProfit += value;
} c.spend(value);
}
void Customer::spend(int value) {
totalMoney -= value; int Shop::getProfit() {
} return totalProfit;
}

int Customer::getAmount() {
return totalMoney;

}

Mary can compile the source files and build the executable successfully. However, when she runs the program, the
outputs are wrong. They are not the same as her expectations.

(i) Explain the mistake that Mary has made. (3 marks)

(ii) What are the outputs of Mary’s program? (3 marks)

(iii) How could the problem be fixed? Write down all code that has to be revised. (4 marks)

(iv) Mary’s program can further be improved by adding a Customer constructor that initializes the customer’s total money
amount. Write down all code that has to be revised. (4 marks)

(b) Design the class Group that models a group of customers joined together for group-purchasing.

Note:

- For simplicity, we assume that a purchasing group has at most 10 customers only.
Also, the money to pay for each group purchase is divisible by the count of group members so that the
payment by each member is a whole number.

- The same customer should be able to purchase individually and should be able to join 1 or more purchasing
groups. For example, if the customer has $100 initially, then after spending $40 individually, and $35 in one
group purchase, and $12 in another group purchase, he should have $13 left.

- Other than the Group class, you also need to
(a) Add an earn function in the shop class that handles earning from group purchase

(b) Rewrite the main function for testing. It should contain at least the following steps:
- create 2 customer objects: c1 and c2.
- create 1 purchasing group g1 and have both c1 and c2 joining g1
- create 1 shop object: s1
- the shop s1 earns $300 from g1 (i.e. each of c1 and c2 spends $150)
- the shop s1 earns $30 from c1
- display the total profit of s1
- display the total remaining money of c1

- You may assume that the revised code given in part (iii) and (iv) have already been applied.

Write your code for the Group class (Group.h and Group.cpp), as well as the new earn function in shop. cpp, and
the new main function. (16 marks)

