CS1302 - Lecture 1
By Dr Helena WONG

Please get Supplementary files from

Canvas => CS1302 => Home => Contact => Dr Helena WONG

(e.g. Slides, Helena's cheat sheets)

CS1302 Intro to Comp Progm'g

cANvAS Home
Announcements
People > Owverview
Zoom

Grades

> Collaborative E-Quiz (CE-Quiz)
LoqQ

> 1. Intreduction to Computer Programming
> Courseware

> Contact Lab tutor: LA

*.ipynb
o &
a Jupyter Notebook file
- It can contain text, program code, etc.
- It is the format of our lecture and lab files

Lecturer: Dr. WONG

e Office: YEUNG-Y7712
s Lecturer: CA1/CF1
.
.

Email: cshwong@cityu

a

edu.hk

- popular among people doing Data Science projects etc. using Python

JupyterHub (~JupyterLab)

a platform that we open the jupyter notebook files
(like a virtual computer, has storage space)

Working with *.ipynb
* *.ipynb contains "cells" for code and Markdown (narration).
* Select a cell: Click on it. A blue color bar appears at the left.

5] . w L A N

o - SXN . &
> ™ - = Jupyter Notebook

- i oy g

m How to complete a lab assignment? e

€ 10 00 § notenook +
L3
Blue color bar

The current active cell Cmardes

acell
Markdown

a cell

Markdown

a cell
Markdown

a cell

- Markdown

a cell
Markdown

a cell
- Code

>~ Output from

™~ execution of the
code

cshwong
Pencil

Generative Al is available. We use a cell magic named "ai".

1) Initialization:
%reload_ext jupyter_ai

2) To ask a question, for example:
%%ai
What defines a computer? Explain in one line.

A| Untitled.ipynb e |+
B+ X OO » = Cc » M code e O]

#reload ext jupyter_ai

Last executed at 2826-81-13 86:44:52 in 5.76s

FXal
What defines a computer? Explain in one line.

Last executed at 2826-91-13 @6:45:86 in 4.17s
A computer is a programmable electronic system that stores,

processes, and retrieves data.

EXai
Compare Java and JavaScript. Give answer im one 1line

Agenda

(a) Course Introduction

(b) Lecture 1 Introduction to Computer Programming

1.

1.1
1.2
1.2.1
1.2.2

2.1
2.2
2.3

4.1
4.2

Computer

What is a computer

What is the architecture of a computer?
Peripherals - Input and Output devices
Central Processing Unit

Programming

What is Programming? What is Machine Language?
How code and data is stored in a computer?

Why computer uses binary representation?

Different generations of programming languages
High-level Language

Compilation vs Interpretation
What programming language will you learn?

Q: Do | need to submit the answers inside the lecture notebook?
A: No. Butyou will have E-Quiz and CE-Quiz.

1. Computer
1.1 What is a computer
1.2 What is the architecture of a computer?

John von Neumann developed the computer model,
then called von Neumann architecture (in the 1940s)
which is still the most common computer model nowadays.

CA: Central Arithmetical Part; CC: Central Control
(https://nanopdf.com/download/ahmedabdelmailkmohammed1_pdf)

1.2.1 Input and Output devices

Input devices are typically devices which take aspects from the physical world and digitizes
those sensations so that a computer can make use of that information, like a keyboard
takes physical keystrokes and interprets those strokes to control a computer. A digital
camera takes light from the physical world, digitizes that light, and generates a digital data
through the CCD.

Output devices are typically devices that take computer signals and render them in a way
that we can understand, like how a monitor is fed display information through the graphics
card so we can physically see what the computer is doing. Since pretty much all digital
cameras have a viewscreen, this would be considered the output device showing menu
options and/or digital interpretations of what the camera is collecting through the lens.

(https://www.quora.com/How-can-a-digital-camera-be-considered-an-input-and-output-device)

1.2.2 Central Processing Unit

Central Processing Unit (CPU)

|
|
| | —
| |
|| Arithmetic- : -
l].uglc |
T unit (CA) I
|
| |
Main : l E I,:l? :
memory I I nt:eni:
(D l I i (L. O)
!
: “| Program L
control l
l unit (CC) I
|
| |
| |
! |

https://nanopdf.com/download/ahmedabdelmailkmohammed1_pdf
https://www.quora.com/How-can-a-digital-camera-be-considered-an-input-and-output-device

1.2.3 Memories

For reference:
RAM

SRAM : Static Random-Access Memory
to store static data,
faster, expensive, used as a cache memory
DRAM : Dynamic Random-Access Memory
For the dynamic storage of data,
smaller size, shorter life, needs to continuously refreshed to keep data

SRAM's data remains active as long as the computer system has a power supply. However, data is lost in
SRAM when power failures have occurred.

DRAM can hold more data than an SRAM of the same size. However, the capacitor needs to be continuously
refreshed to retain information because DRAM is volatile. If the power is switched off, the data store in
memory is lost.

ROM

PROM : Programmable Read-Only Memory

EPROM : Erasable Programmable Read-Only Memory

It is the type of read only memory in which stored data can be erased and re-programmed only once
in the EPROM memory. It is a non-volatile memory chip that holds data when there is no power
supply and can also store data for a minimum of 10 to 20 years. In EPROM, if we want to erase any
stored data and re-programmed it, first, we need to pass the ultraviolet light for 40 minutes to erase
the data; after that, the data is re-created in EPROM.

EEPROM : Electrically Erasable Programmable Read-Only Memory

https://www.javatpoint.com/classification-of-memory

https://www.javatpoint.com/classification-of-memory

CPU Simulation (https://tools.withcode.uk/cpu)

Under Settings, click Examples: Add two numbers. Observe that the values
in the RAM have changed. Click Run at the bottom right-hand corner.

e ~ 'S
PC MAR
. CP 1L do0dLo1 H— RAM
Address Value
L P .
QOno0DH Go1d00
dagdalol
aOopo00 ooi11111
O Decode unit
aoopanin iooddand
Opcode Operand Instruction
oo000011 0011111
aood [T End
00000100 10010010
[ILH Y address Add
aadontel p YOI 00D
oile address Gubtract
GodeeL1d 000000
ool address Store
aidoeiit Ba0b00
oi0d address Lead MDR
B000000 * 30001000 0000000
o110 address Branch
Always 00001001 DOO0H00D
0i1i address Branch if oaoaLaLn Q0000009
ACC = 0
goooioil DoagdanD
10 address Branch if ‘
ACC 3= @ G0001100 BO0HI00
1001 Bl Input aodo1tit 000000
1001 LI 1] Output * Go001110 GOO0BHH0
\ ; J \. i
Explanation of doing 2+3
Instruction Cycles: fetch, decode, execute for 2+3
Recall:

Can you find these in the simulation?
Memory (RAM)
ALU (Arithmetic Logic Unit)
CU (Control unit)
Decode unit (Opcode, Operand) => Instruction
PC (Program Counter)
MAR (Memory Address Register)
MDR (Memory Data Register)
ACC (Accumulator Register)
CIR (Current Instruction Register)

* Both code and data are in RAM

The demo actually has 5 main steps:

1. fetch, decode, execute (input into the Accumulator register)

2. fetch, decode, execute (store the value in the Acc into memory)

3. fetch, decode, execute (input into the Accumulator register)

4. fetch, decode, execute (add value in ACC to the data at the memory
location (brought to MDR), Result saved in ACC)

5. fetch, decode, execute (output from the Accumulator register)

[6. end]

* ALU performs arithmetics like a calculator,
* CU directs the operations of the processor in
executing a program.

Although CS1302 mainly focuses on programming with
a high level programming language (Python), the
learning of how the CPU works could give a good idea
(though not most detail) of how actually the
translated machine instructions run step by step.

Well, you don't need to dictate every details in the
simulation (like what is the complete name of ACC),
and you don't need to worry about writing down the
detail instructions (5 steps) of adding 2 numbers, and
you don't need to explain precisely how the fetch-
decode-execute cycle runs with using the registers and
the bus etc.. It is sufficient if you understand:

i) how program and data are stored in the main
memory (RAM)

i) for carrying out each instruction, the CU directs
the operations in a fetch-decode-execute cycle.

6

2. What is Programming?
2.1 How code and data is stored in a computer?

Microprocessor u Printer
0011111001100011
1101010101011004 :1 t
0011041010000011

1101000111100000
1001011111100001
0010010110001110

11104101001 00010

Inputs

cune O

Ciovse [l Keyons| onor

2.2 Why computer uses binary representation?

https://www.youtube.com/embed/Xpk67YzOn5w (7 minutes)
0:00 Intro

0:25 What's binary

2:40 Transisters

3:05 Bit vs Byte

3:45 Text representation and ASCII

5:00 Byte, 8-bits vs 16-bits, etc..

the ENIAC was not binary, but decimal! It used 10 vacuum tubes to represent the digits 0-9.
Let's consider the number 128 . Here is how ENIAC stored this number (.: the vacuum tube is on):

(o]
(o]
O

00000000
@0000000
00000000

https://cs.calvin.edu/activities/books/rit/chapter2/history/electronic.htm

____decimals can be represented by 10 bits?

1 bit represents 2 values: 0 or 1

2 bits represent 4 values: 00, 01, 10, 11

3 bits represent 8 values: 000,001,010,011,100,101,110,111
10 bits represents __ values?

10 bits represents 2**10 = 1024 values?
30 bits represents 2**30 = 1024x1024x1024

https://www.youtube.com/embed/Xpk67YzOn5w
https://cs.calvin.edu/activities/books/rit/chapter2/history/electronic.htm

=~1,000,000,000 values!

ASCII Tabl

¢ Hex Oct Char |Dec Hex 0Oct Char |Dec Hex Oct Char |Dec Hex 0Oct Char

0 0 0 32 20 40 [space] |64 40 100 @ 9% 60 140

1 1 1 33 21 a1 | 65 41 101 A 97 61 141 a
2 2 2 34 22 42 " 66 42 102 B o8 62 142 b
3 3 3 35 23 43 @ 67 43 103 C 99 63 143 ¢
4 4 4 36 24 44 s 68 44 104 D 100 64 144 d
5 5 5 37 25 45 % 69 45 105 E 101 65 145 e
6 6 6 38 26 46 & T0 46 106 F 102 66 146 f
7 7 T 39 27 47 X 71 a7 107 G 103 67 147 a
B 8 10 40 28 50 { 72 48 110 H 104 68 150 h
9 9 11 41 29 51] 73 49 111 | 105 69 151 i
10 A 12 42 2a 52 * 74 aA 112 | 106 6A 152 |
11 B 13 43 2B 53 + 75 48 113 K 107 (13 153 k
12 C 14 4 2¢ 54 76 4C 114 L 108 6C 154 |
13 D 15 45 2D 1 . 77 4D 115] 109 6D 155 m
14 E 16 46 2E 56 1 78 4E 116 N 110 6E 156 n
15 F 17 a7 2F 57 ! 79 4F 117 (8] 111 &F 157]
16 10 20 48 30 60 0 B0 50 120 P 112 70 160]
17 1 2 49 31 6 1 B1 51 121 Q 113 71 161 q
18 12 22 50 32 62 2 82 52 122 R 114 T2 162 r
19 13 23 51 33 63 3 83 53 123 § 115 73 163 s
20 14 24 52 34 64 4 84 54 124 T 116 T4 164 t
21 15 25 53 35 65 5 85 55 125 U 117 75 165 u
22 16 26 54 36 66 6 B6 56 126 v 118 76 166 v
23 17 27 55 37 67 oy 87 57 127 w 119 77 167 W
24 18 30 56 38 70 8 88 s8 130 X 120 78 170 «x
25 19 31 57 39 71 9 B9 59 131 Y 121 79 171 ¥
26 1A 32 s8 3 72 90 54 132 Z 122 74 172 z
27 1B 33 59 3B 73)} 91 58 133 [123 7B 173 {
28 1C 34 60 3C 74 < 92 5C 134 \ 124 7C 174 |
29 1D 35 61 3D 75 = 93 5D 135 1 125 0 175 }
30 1E 36 62 3E 76 = 94 5E 136 £ 126 TE 176 -
31 1IF 37 63 3F 77 1 @5 5F 137 _ 127 7F 177

Why Hexadecimal is often used?
Reason: It is easy convert between FDFC(16) and 2)

Hexadecimal <=> Binary (4 bits)

0 0000
1 0001
2 0010
3
4
5
6
7
8
9
A
B
C
D
E
F 1111

FDFC 111111011111 1100

|Graphiccharactersymbol | Hexadecimal character value |

0020| O 0030 @ oo40| P ooso| * ooso| p 0o70| ooao|°® ooBo| A ooco|B oooo|d ooeo| B ooro
! 0021| 1 0031| A ooa1| Qoos1| @ oos1| g 0o71| j ooat|+ oo1| A coci|Noob1| & ookr| A ooFt
“ 0022| 2 0032| B 0042| R o0s2| b oosz2| r oo72| ¢ o00A2| 2 ooB2| A coc2| Ooop2| & ooe2| & ooF2
0023| 3 0033| C o043| S o00s3| € oos3| S 0073| £ 00A3|3 ooes| A oocz| Qoop3| @ ooes| & ooF3
$ 0024| 4 003a| D ooaa| T oosa| d oosa| t 0074 | B ooaa| ~ ooa| A ooca| Ooopa| & ooks| & oors
% 0025| 3 o0035| E ooas| U ooss| € ooss| U oo7s| ¥ ooas| K ooBs A oocs| O oops| & ooes| & oors
& 0026| 6 0036| F o04s| V oose| f ooes| v 0076| | ooas| 91 ooBs| ZE ooce| O oope | @@ ooes| & oors

0027| 7 0037| G ooa7| W 00s7| g 0067| W 0077 | § 00A7| - o00B7| € 00C7|X 00D7| G 00E7| <+ 00F7
(0028 8 oo3s| H oo4s| X ooss| h ooss| X 0o78| ~ ooas| , ooes| E oocs| @ oops| & ooes| @ oors
) 0029 9 o039| | ooss| Y ooso| i oos9| Y 0079|© ooas| ' ooso| E coce| U oops| € ooks| U ooFe
* o02a| : 003A| J o00an| Z cosA| j oosA| Z oo7a| ® ooaa| © ocoa| E oocalUoopa| & coea| G cora
+ ooz8| ; o038| K oose| [oose| K oose| { oo7e|« ooae|> ooe| E ooce|U oove| & ooes| O cors
, o02c| < ooac| L ooac| \ oosc| | oosc | 007¢ | = ooAc| ¥4 ooec| 1 oocc| U oonc| 1 ooec| @ oorc
= 0020| = 003D| M 004D|] 005D M 006D| } 007D| = 00AD| V2 00BD| [oocp| ¥ ooop| i o0ED| ¥ 00FD

0026| > 0036| N 004E| A 00sE| N 00sE| ~ 007E| ® 00AE| 34 ooBE| | ococE| P ooDE| T ookE| b ooFE
/ o002F| 7 o03F| O oosr| _ oosF| O oosr [oo7F| = ooaF|; oogF| T oock| B oonF| T ookF| ¥ ooFF

https://unicode.org/charts/PDF/U4EQ0Q.pdf

[0 The Unicode Standard, Version = X =+

C {} & unicodeorg/charts/PDF/UAECO.pdf B % & @& » 0 H

= The Unicode Standard, Version 14.0 2 /533 - 100%

CJK Unified Ideographs

HEX
4E14
u

4E15
1

4E16
1

4E17
"

I3

im

=
¢

e
;

i
§

B
E

.y

i
97

| R R K& A R
FEEEEZE

https://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=%E6%BC%A2
w = O *

[Unihan data for U+6F22 x +

&« c O a un|c0deorg{cg| -bin/GetUniha.. & +# M 0

F'age : T -
Glyphs
Related Links
Code Charts The Unico_de Standard Your
(PDF Version) (Version 3.2) Browser
Unicode N
Character "i .
Names Index i)
S~
Where is my
Character?
The Unicode Encoding Forms
Standa_rd
el Decimal|| UTF-8 |UTF-16] UTF-32
28450 ||[E6 BCAZ2 || 6F22 ||00006F22
Additional
Charts-Related IRG Sources
Resources
Normalization Data type Value
charts kllCaore ATIHKMP
Collation Charts
Case Mapping K|RG_GSOUFCG G1-3434
L Charts kKIBRG HSnurce HE1-BATE -

UTF-8 takes 1 to 4 bytes
UTF-16 takes 2 or 4 bytes
UTF-32 takes 4 bytes

UTF-8/16: variable lengths
UTF-32: fixed length

https://www.compart.com/en/unicode/block/U+1F600

Character List
U+1F600 U+1F601 U+1
(
Grinning Face Grinning Face with Face with
Smiling Eyes

print("\UO0O01F602")

https://unicode.org/charts/PDF/U4E00.pdf
https://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=%E6%BC%A2
https://www.compart.com/en/unicode/block/U+1F600

3. Different generations of programming languages
Assembly language is platform-specific

Different instruction sets - examples:

https://en.wikipedia.org/wiki/Motorola_68000_series#Architecture
https://en.wikipedia.org/wiki/X86_assembly language#Syntax

g [ff;l W %86 assembly language - Wikipec X =

fﬁ] @l https://en.wikipedia.org/wiki/X86_assembly_language#Syntax
P P 9 Y guageway

A W N S

HILETITEL UNIZIENUY. UsIY SULT UPLUUES Lall Lause d piuygialll W Uelidave IHOUNsIsenuy Ul evell yeleidle eALepuuls Uil sullig

ssors.

Syntax [edi]

x86 assembly language has two primary syntax branches: Intel syntax and AT&T syntax.[%! Intel syntax is dominant in the DOS and
Windows environments, while AT&T syntax is dominant in Unix-like systems, as Unix was originally developed at AT&T Bell Labs []
Below is a summary of the main differences between Intel syntax and AT&T synitax

AT&T

Parameter movl $5, %eax
order

Source before the destination.

addl $0x24, %esp
movslg %ecx, fHrax
paddd %xmml, %xmm2

Mnemonics are suffixed with a letter indicating the size of
the operands: g for gword (64 bits), / for long (dword, 32

Parameter | pits) w for word (16 bits), and b for byte (8 bits).[®]
size

Intel

mov eax, 5

Destination before source.

add esp, 24h
movsxd rax, ecx
paddd xmm2, xmml

Derived from the name of the register that is used
(e.g. rax, eax, ax, al imply q, |, w, b, respectively).

Width-based names may still appear in instructions
when they define a different operation.

» MOVSXD refers to sign extension with dword
input, unlike MOVSX.

» SIMD reqgisters have width-named instructions
that determine how to split up the register. AT&T
tends to keep the names unchanged, so
PADDD is not renamed to "padd|”.

11

https://en.wikipedia.org/wiki/Motorola_68000_series#Architecture
https://en.wikipedia.org/wiki/X86_assembly_language#Syntax

The Art of Writing Software https://www.youtube.com/watch?v=QdVFvsCWXrA
skip to 2:11 why not machine/assembly language

4. High-level Language
4.1 What is a high-level language?

FORTRAN

High Level Language

High Level Language ' m
T T

S R R TR e o

Assembly Language

Low Level Language =

Machine Language

Hardware

Computer Language and its Types

Ref: https://www.youtube.com/watch?v=aYjGXzktatA (1:18 - 3:05)

Compilation
We write program source code.

Then via Compilation: We will get a executable file.
Run the executable file (not the program source code)!

Interpretation
We write program source code.

Execute on the fly
4.2 What programming language will you learn?

Video
Why Python: 2:11

https://www.youtube.com/watch?v=QdVFvsCWXrA
https://www.youtube.com/watch?v=aYjGXzktatA

import datetime # Library to obtain current year

cohort = input("In which year did you join CityU? [e.g., 2028]1")
year = datetime.datetime.now().year - int(cohort) + 1
print(“"So you are a year", year, "student.")

In which year did you join CityU? [e.g., 20208] 1988
So you are a year 36 student.

import datetime # library to obtain current year
cohort = input("In which year did you join CityU? ")
year = datetime.datetime.now().year - int(cohort) + 1
print("So you are a year", year, "student.")

In which year did you join CityU? 2020
So you are a year 4 student.

Python Turtle Example

Go https://pythonsandbox.com/turtle
Try the code below:

import turtle

t = turtle.Turtle()

t.color('red’, 'yellow')

t.begin_fill()

i=0

while i< 10:
t.forward(200)
t.left(170)
i+=1

t.end_fill()

t.done()

4.3 What is the next generation language?

Donald Ervin Knuth (born January 10, 1938)
is an American computer scientist, mathematician, and professor emeritus at Stanford University.
He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of
computer science.
Knuth has been called the "father of the analysis of algorithms".

Literate Programming (Literate: able to read and write)
a computer program is given an explanation of its logic in a natural language
"how could | write a program that people enjoy reading it; could be presentable, nice type-set"

13

https://pythonsandbox.com/turtle

