
1

CS1302 - Lecture 1
By Dr Helena WONG
======================================

Please get Supplementary files from
Canvas => CS1302 => Home => Contact => Dr Helena WONG

 (e.g. Slides, Helena's cheat sheets)

======================================

*.ipynb
a Jupyter Notebook file
- It can contain text, program code, etc.
- It is the format of our lecture and lab files
- popular among people doing Data Science projects etc. using Python

JupyterHub (~JupyterLab)
a platform that we open the jupyter notebook files
 (like a virtual computer, has storage space)

==============================

Working with *.ipynb
• *.ipynb contains "cells" for code and Markdown (narration).
• Select a cell: Click on it. A blue color bar appears at the left.

cshwong
Pencil

2

Generative AI is available. We use a cell magic named "ai".

1) Initialization:
%reload_ext jupyter_ai

2) To ask a question, for example:
%%ai
What defines a computer? Explain in one line.

3

Agenda

(a) Course Introduction

(b) Lecture 1 Introduction to Computer Programming

 1. Computer
 1.1 What is a computer
 1.2 What is the architecture of a computer?
 1.2.1 Peripherals - Input and Output devices
 1.2.2 Central Processing Unit

 2. Programming
 2.1 What is Programming? What is Machine Language?
 2.2 How code and data is stored in a computer?
 2.3 Why computer uses binary representation?

 3. Different generations of programming languages

 4. High-level Language
 4.1 Compilation vs Interpretation
 4.2 What programming language will you learn?

Q: Do I need to submit the answers inside the lecture notebook?
A: No. But you will have E-Quiz and CE-Quiz.

4

 1. Computer
 1.1 What is a computer
 1.2 What is the architecture of a computer?

John von Neumann developed the computer model,
then called von Neumann architecture (in the 1940s)
which is still the most common computer model nowadays.

CA: Central Arithmetical Part; CC: Central Control
(https://nanopdf.com/download/ahmedabdelmailkmohammed1_pdf)

 1.2.1 Input and Output devices

Input devices are typically devices which take aspects from the physical world and digitizes
those sensations so that a computer can make use of that information, like a keyboard
takes physical keystrokes and interprets those strokes to control a computer. A digital
camera takes light from the physical world, digitizes that light, and generates a digital data
through the CCD.
Output devices are typically devices that take computer signals and render them in a way
that we can understand, like how a monitor is fed display information through the graphics
card so we can physically see what the computer is doing. Since pretty much all digital
cameras have a viewscreen, this would be considered the output device showing menu
options and/or digital interpretations of what the camera is collecting through the lens.
(https://www.quora.com/How-can-a-digital-camera-be-considered-an-input-and-output-device)

 1.2.2 Central Processing Unit

https://nanopdf.com/download/ahmedabdelmailkmohammed1_pdf
https://www.quora.com/How-can-a-digital-camera-be-considered-an-input-and-output-device

5

1.2.3 Memories

For reference:

 RAM

SRAM : Static Random-Access Memory
 to store static data,
 faster, expensive, used as a cache memory
DRAM : Dynamic Random-Access Memory
 For the dynamic storage of data,
 smaller size, shorter life, needs to continuously refreshed to keep data

SRAM's data remains active as long as the computer system has a power supply. However, data is lost in
SRAM when power failures have occurred.

DRAM can hold more data than an SRAM of the same size. However, the capacitor needs to be continuously
refreshed to retain information because DRAM is volatile. If the power is switched off, the data store in
memory is lost.

 ROM

PROM : Programmable Read-Only Memory

EPROM : Erasable Programmable Read-Only Memory

It is the type of read only memory in which stored data can be erased and re-programmed only once
in the EPROM memory. It is a non-volatile memory chip that holds data when there is no power
supply and can also store data for a minimum of 10 to 20 years. In EPROM, if we want to erase any
stored data and re-programmed it, first, we need to pass the ultraviolet light for 40 minutes to erase
the data; after that, the data is re-created in EPROM.

EEPROM : Electrically Erasable Programmable Read-Only Memory

https://www.javatpoint.com/classification-of-memory

https://www.javatpoint.com/classification-of-memory

6

CPU Simulation (https://tools.withcode.uk/cpu)
Under Settings, click Examples: Add two numbers. Observe that the values
in the RAM have changed. Click Run at the bottom right-hand corner.

Explanation of doing 2+3

Instruction Cycles: fetch, decode, execute for 2+3

Can you find these in the simulation?

Memory (RAM)
ALU (Arithmetic Logic Unit)
CU (Control unit)
Decode unit (Opcode, Operand) => Instruction
PC (Program Counter)
MAR (Memory Address Register)
MDR (Memory Data Register)
ACC (Accumulator Register)
CIR (Current Instruction Register)

* Both code and data are in RAM
The demo actually has 5 main steps:
1. fetch, decode, execute (input into the Accumulator register)
2. fetch, decode, execute (store the value in the Acc into memory)
3. fetch, decode, execute (input into the Accumulator register)
4. fetch, decode, execute (add value in ACC to the data at the memory
 location (brought to MDR), Result saved in ACC)
5. fetch, decode, execute (output from the Accumulator register)
[6. end]

Recall:

* ALU performs arithmetics like a calculator,
* CU directs the operations of the processor in

executing a program.

Although CS1302 mainly focuses on programming with
a high level programming language (Python), the
learning of how the CPU works could give a good idea
(though not most detail) of how actually the
translated machine instructions run step by step.

Well, you don't need to dictate every details in the
simulation (like what is the complete name of ACC),
and you don't need to worry about writing down the
detail instructions (5 steps) of adding 2 numbers, and
you don't need to explain precisely how the fetch-
decode-execute cycle runs with using the registers and
the bus etc.. It is sufficient if you understand:

 i) how program and data are stored in the main
memory (RAM)

 ii) for carrying out each instruction, the CU directs
the operations in a fetch-decode-execute cycle.

7

 2. What is Programming?
 2.1 How code and data is stored in a computer?

 2.2 Why computer uses binary representation?

https://www.youtube.com/embed/Xpk67YzOn5w (7 minutes)
0:00 Intro
0:25 What's binary
2:40 Transisters
3:05 Bit vs Byte
3:45 Text representation and ASCII
5:00 Byte, 8-bits vs 16-bits, etc..

the ENIAC was not binary, but decimal! It used 10 vacuum tubes to represent the digits 0–9.
Let's consider the number 128 . Here is how ENIAC stored this number (= the vacuum tube is on):

https://cs.calvin.edu/activities/books/rit/chapter2/history/electronic.htm

___decimals can be represented by 10 bits?

1 bit represents 2 values: 0 or 1
2 bits represent 4 values: 00, 01, 10, 11
3 bits represent 8 values: 000,001,010,011,100,101,110,111
10 bits represents __ values?

10 bits represents 2**10 = 1024 values?
30 bits represents 2**30 = 1024x1024x1024

https://www.youtube.com/embed/Xpk67YzOn5w
https://cs.calvin.edu/activities/books/rit/chapter2/history/electronic.htm

8

= ~1,000,000,000 values!

Why Hexadecimal is often used?

Reason: It is easy convert between FDFC(16) and ___(2)

Hexadecimal <=> Binary (4 bits)
0 0000
1 0001
2 0010
3
4
5
6
7
8
9
A
B
C
D
E
F 1111

FDFC 1111 1101 1111 1100

9

10

https://unicode.org/charts/PDF/U4E00.pdf

https://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=%E6%BC%A2

UTF-8 takes 1 to 4 bytes
UTF-16 takes 2 or 4 bytes
UTF-32 takes 4 bytes

UTF-8/16: variable lengths
UTF-32: fixed length

https://www.compart.com/en/unicode/block/U+1F600

print("\U0001F602")

https://unicode.org/charts/PDF/U4E00.pdf
https://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=%E6%BC%A2
https://www.compart.com/en/unicode/block/U+1F600

11

 3. Different generations of programming languages

Assembly language is platform-specific

Different instruction sets - examples:
https://en.wikipedia.org/wiki/Motorola_68000_series#Architecture
https://en.wikipedia.org/wiki/X86_assembly_language#Syntax

https://en.wikipedia.org/wiki/Motorola_68000_series#Architecture
https://en.wikipedia.org/wiki/X86_assembly_language#Syntax

12

The Art of Writing Software https://www.youtube.com/watch?v=QdVFvsCWXrA
skip to 2:11 why not machine/assembly language

 4. High-level Language
 4.1 What is a high-level language?

Ref: https://www.youtube.com/watch?v=aYjGXzktatA (1:18 - 3:05)

Compilation
We write program source code.
Then via Compilation: We will get a executable file.

 Run the executable file (not the program source code)!

Interpretation
We write program source code.
Execute on the fly

 4.2 What programming language will you learn?

Video
Why Python: 2:11

https://www.youtube.com/watch?v=QdVFvsCWXrA
https://www.youtube.com/watch?v=aYjGXzktatA

13

import datetime # library to obtain current year
cohort = input("In which year did you join CityU? ")
year = datetime.datetime.now().year - int(cohort) + 1
print("So you are a year", year, "student.")

In which year did you join CityU? 2020
So you are a year 4 student.

Python Turtle Example

Go https://pythonsandbox.com/turtle
Try the code below:

import turtle
t = turtle.Turtle()
t.color('red', 'yellow')
t.begin_fill()
i = 0
while i < 10:
 t.forward(200)
 t.left(170)
 i += 1
t.end_fill()
t.done()

 4.3 What is the next generation language?

Donald Ervin Knuth (born January 10, 1938)

is an American computer scientist, mathematician, and professor emeritus at Stanford University.
He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of
computer science.
 Knuth has been called the "father of the analysis of algorithms".

Literate Programming (Literate: able to read and write)
 a computer program is given an explanation of its logic in a natural language
"how could I write a program that people enjoy reading it; could be presentable, nice type-set"

https://pythonsandbox.com/turtle

