FAIR AND EFFICIENT ONLINE ALLOCATIONS:
PART I

Alexandros (Alex) Psomas
Purdue University
FAIR DIVISION

TEXTBOOK TREATMENT

• INPUT:
 ◦ The resources we are dividing
 • E.g. \(m \) indivisible items
 ◦ The agents and their utility structure
 • E.g. \(n \) additive agents and a value \(v_{i,j} \) for each agent \(i \) and item \(j \)
 ◦ Constraints on the output (fairness, efficiency, etc)
 • E.g. EF1

• OUTPUT:
 ◦ An allocation of the resources that (approximately) satisfies the constraints
FAIR DIVISION

• Standard real-world motivations:
 ◦ Inheritance, Divorce settlements
 ◦ Housing
 ◦ Dividing land/airspace
 ◦ Computational resources
 ◦ Food donations
 ◦ Kidney exchanges
 ◦ Organ/blood donations
FAIR DIVISION

• Standard real-world motivations:
 ◦ Inheritance, Divorce settlements
 ◦ Housing
 ◦ Dividing land/airspace
 ◦ Computational resources
 ◦ Food donations
 ◦ Kidney exchanges
 ◦ Organ/blood donations

Not really one-shot problems
DYNAMIC FAIR DIVISION

<table>
<thead>
<tr>
<th>Static resources, Dynamic Agents</th>
<th>Dynamic resources, Static Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividing land/airspace</td>
<td>Food donations</td>
</tr>
<tr>
<td>Computational resources</td>
<td>Blood donations</td>
</tr>
<tr>
<td>Housing</td>
<td></td>
</tr>
</tbody>
</table>

| Hybrids | Kidney exchanges |
| | Organ/blood donations |
DYNAMIC FAIR DIVISION

<table>
<thead>
<tr>
<th>Static resources, Dynamic Agents</th>
<th>Dynamic resources, Static Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividing land/airspace</td>
<td>Food donations</td>
</tr>
<tr>
<td>Computational resources</td>
<td>Blood donations</td>
</tr>
<tr>
<td>Housing</td>
<td></td>
</tr>
</tbody>
</table>

This talk

<table>
<thead>
<tr>
<th>Hybrids</th>
<th>Kidney exchanges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Organ/blood donations</td>
</tr>
</tbody>
</table>
A FIRST PROBLEM

• There are n additive agents
• Indivisible items arrive over time
 ◦ One in each stage for T stages
• Agent i has value $v_{it} \in [0,1]$ for item t that we learn when the item arrives
My value for my stuff

My value for your stuff
\[ENVY_{RB}^R = 1.5 - 1 = 0.5 \]

\[ENVY_{BR}^R = 1 - 0.5 = 0.5 \]
A FIRST PROBLEM

• For the static version, we can keep the maximum envy at most 1 (since $v_{i,t} \in [0,1]$)

• First goal:
 ◦ Minimize the maximum envy at the final step T
A MODELING DECISION

• How is v_{it} generated?
 ◦ Classic online algorithms: adaptive and non-adaptive adversary
 ◦ Bayesian adversaries: values are drawn from a distribution
ADVERSARY MODELS

Stronger

\[v_{it} \sim D \quad v_{it} \sim D_i \quad \tilde{v}_t \sim D \quad \text{Non-adaptive adversary} \quad \text{Adaptive adversary} \]
We write down an algorithm
The adversary decides the items’ values after seeing our code, and the random outcomes of any coin flipping the algorithm does
ADVERSARY MODELS

- We write down an algorithm
- The adversary decides the items’ values after seeing our code, but **not** the random outcomes of the coin flipping the algorithm does
• Items’ values are drawn independently and identically from a known distribution D, the same for all agents and all items
ADVERSARY MODELS

- Agent i’s values are drawn independently and identically from a known, agent specific distribution D_i
At each time step t, a vector of values $\tilde{v}_t = (v_{1,t}, ..., v_{n,t})$ is drawn from a known distribution D.

Values can be correlated in a given step (but independent over different time steps).
WHAT TO EXPECT: FAIRNESS

• Linear ($\Theta(T)$) envy is trivial
 ◦ E.g. giving all items to the same agent

• Vanishing envy: $\lim_{T \to \infty} \frac{\mathbb{E}[\max_{i,j} ENVY_{T}^{ij}]}{T} = 0$
 ◦ $\mathbb{E} \left[\max_{i,j} ENVY_{T}^{ij} \right] \in o(T)$

• Envy free up to one item (EF1) with probability 1

• Envy free with high probability
WHAT TO EXPECT: EFFICIENCY

• Pareto efficiency:
 ◦ An allocation is Pareto efficient if there is no allocation where all agents get more utility (with at least one agent getting strictly more utility)

• α-Pareto efficiency (Ruhe and Fruhwirth, 1990):
 ◦ An allocation is α-Pareto efficient if no allocation improves the utility of all agents by a factor of $1/\alpha$
 • E.g., a dictatorship is $\frac{1}{n} + \epsilon$ Pareto efficient
Algorithm: Random allocation

Fairness: $\mathbb{E} \left[\max_{i,j} Envy_{i,j}^T \right] \in \tilde{O}(\sqrt{T/n})$ [BKPP 2018]

Efficiency: $\frac{1}{n}$ Pareto efficient ex-ante
Theorem[BKPP 18]: An adaptive adversary can always ensure $\max_{i,j} \text{ENVY}_{T}^{i,j} \in \Omega\left(\sqrt{T/n}\right)$.

- Thus, random allocation is **asymptotically optimal**!
- **Good news:** We can get the same guarantee with a deterministic algorithm!
 - Define a potential function $\phi(t)$
 - Allocate in a way that $\phi(t)$ is minimized
- **Question:** Can we improve the efficiency guarantee while maintaining optimal fairness?
What about efficiency?

Theorem [ZP 20]: There is no algorithm that guarantees vanishing envy \(T^{1-\epsilon} \) and is \(\left(\frac{1}{n} + \epsilon \right) \)-Pareto efficient for any \(\epsilon > 0 \)
PROOF SKETCH OF THEOREM FOR ADAPTIVE ADVERSARY

• Assume algorithm A had envy $f(T) \in o(T)$ on all inputs, and was $\frac{1}{n} + \epsilon$ Pareto efficient.

• **Instance I^*:** each agent i has values
 - $v_{i,t} = 1$ for the T/n-th segment
 - Items $t \in \left[\frac{T}{n}(i-1) + 1, ..., \frac{T}{n}i \right]$
 - $v_{i,t} = \epsilon$ for all other items

• An adaptive adversary can always stop showing I^* and make all remaining items worthless

• Therefore envy at step t must be at most $f(T)$ for all agents

• This implies that in each segment i, every agent must get $\frac{T}{n^2} \pm \frac{f(T)}{\epsilon} \left(1 + \frac{2}{\epsilon} \right)^{i-1}$ items

• Thus, final utility for each agent is at most $\left(\frac{T}{n^2} + \frac{f(T)}{\epsilon} \left(1 + \frac{2}{\epsilon} \right)^{n-1} \right) \cdot (1 + (n-1)\epsilon)$

• But, it is possible to give all agents utility T/n
PROOF SKETCH OF THEOREM FOR NON-ADAPTIVE ADVERSARY

• The non-adversary has n instances in their arsenal.

• I_i’s first $\frac{T}{n}$ items follow I^*, and the rest have zero value.

• Again, we bound the number of items the algorithm can allocate to each agent in each segment.

• The new bound is looser and probabilistic, but gets the job done.
WHAT ABOUT EFFICIENCY?

$v_{it} \sim D$

$v_{it} \sim D_i$

$\hat{v}_t \sim D$

Non-adaptive adversary

Adaptive adversary
INDEPENDENT AND IDENTICAL DISTRIBUTION

Algorithm: Give each item to the agent with the highest valuation

 Guarantees (under mild conditions on D) [KPW, AAAI 16]:
• Pareto efficient (ex-post)
• Envy-freeness with high probability
GREEDY ALGORITHM

$U[0,1]$
GREEDY ALGORITHM

- Everyone roughly receives the same number of items
 - But when i receives an item, it is more valuable
 - Chernoff Bounds
- Can replace $U[0,1]$ with any distribution with constant variance
Proposed Algorithm:
Give each item to the agent with the highest quantile??

- $U(0,1)$ and $U(0.49, 0.51)$
 - Agent 2 essentially only cares about the number of items
- This algorithm is envy-free whp, but not efficient
Algorithm [Bai, Gölz 2022]:

- Find β_i for each agent i, such that $\Pr[\beta_i v_{i,t} = \arg\max_j \beta_j v_{j,t}] = 1/n$
 - i.e. Allocating to $\arg\max_j \beta_j v_{j,t}$ gives i the next item with probability $1/n$

Properties:
- Envy free with high probability
- Pareto optimal (since it maximizes weighted welfare)
Theorem [ZP 20]: There is an ex-post Pareto optimal algorithm that guarantees to each pair of agents i, j:
- Either i does not envy j with high probability
- Or, i envies j by at most one item (with probability 1)
Theorem [ZP 20]: There is an ex-post Pareto optimal algorithm that guarantees to each pair of agents i, j:

- Either i does not envy j with high probability
- Or, i envies j by at most one item (with probability 1)

Main structural result:
Given n agents and m items, there is a Pareto efficient fractional allocation such that each agent i:

- Either strictly prefers her own bundle to the bundle of agent j
- Or i and j have identical allocations and the same value for all the items that are allocated to them
INTUITION

• How could you ever be ex-post Pareto?
INTUITION

• How could you ever be ex-post Pareto?

```
<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```

w.p. 0.1 w.p. 0.9
INTUITION

• How could you ever be ex-post Pareto?
• Idea 1: every time item 1 comes, give it to red agent, o.w. give item to blue agent
 ◦ Efficient, but not fair!

```
+---+---+
| 2 |   |
+---+---+
|   | 1 |
+---+---+
| 1 | 2 |
+---+---+
```

w.p. 0.1 w.p. 0.9
INTUITION

- How could you ever be ex-post Pareto?
- Issue: if you **ever** allocate item 2 to the red agent, you **cannot** allocate item 1 to the blue agent

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>w.p. 0.9</td>
</tr>
</tbody>
</table>

w.p. 0.1
INTUITION

• How could you ever be ex-post Pareto?
• Insight: we should Pareto efficient and fair in the instance where values are multiplied by probabilities

<table>
<thead>
<tr>
<th></th>
<th>0.2</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>
BLUEPRINT

• Construct this static instance I from the correlated distribution

• Find a fractional allocation x

• For the online problem, every time item k comes, allocate to agent i with probability x_{ik}
ALGORITHM

• Fact 1: Being Pareto efficient in I turns out to be enough for Pareto efficiency ex-post for the online problem!

• Fact 2: Being envy-free in I will give vanishing envy

• Question: Can we do better?
ALGORITHM

• The dream: Pareto efficiency and strong envy-freeness for I
 ◦ Then, Chernoff would give EF w.h.p.
• Pretty much impossible
 ◦ Agents could be identical...
• CISEF:
 ◦ Either agent i strictly prefers her own bundle to the bundle of agent j
 ◦ Or i and j have identical allocations and the same value (up to a scaling factor) for all the items that are allocated to either of them
• How?
 ◦ Start from CEEI, and try to create strong-envy, without messing up efficiency
TAKE AWAYS

$v_{it} \sim D$

$v_{it} \sim D_i$

$\tilde{v}_t \sim D$

Non-adaptive adversary

Adaptive adversary
TAKE AWAYS

$v_{it} \sim D$
$v_{it} \sim D_i$
$\tilde{v}_t \sim D$

Non-adaptive adversary
Adaptive adversary

Can we escape?
TAKE AWAYS

Can we escape?
See second half of tutorial.
Can we get even more?

$\mathbf{v}_{it} \sim D$ $\mathbf{v}_{it} \sim D_i$ $\hat{\mathbf{v}}_t \sim D$

Non-adaptive adversary Adaptive adversary
Can we not cheat?
Can we not cheat?

- What if the adversary distribution can depend on T?
- Theorem [Bansal et al. 2020]: $O(\log T)$ envy w.h.p for two agents, against the correlated distribution adversary.
WHAT I DIDN’T TALK ABOUT

• Dynamic resources & static agents & incentives!
 ◦ See references at the end of slides for a biased selection of papers
 ◦ Highlights:
 • Infinite horizons, so more tricks available
 • Artificial currencies
• How to Make Envy Vanish Over Time. Benade, Kazachkov, Procaccia, Psomas. EC 2018
• Fairness-Efficiency Tradeoffs in Dynamic Fair Division. Zeng, Psomas. EC 2020
• From monetary to nonmonetary mechanism design via artificial currencies. Gorokh, Banerjee and Iyer. MOR 2021
• Multiagent mechanism design without money. Balseiro, Gurkan, and Sun. OR 2019
• Dynamic mechanisms without money. Guo and Horner. 2009
• Competitive repeated allocation without payments. Guo, Conitzer, and Reeves. WINE 2019