Strategyproof Mechanisms for Multiple Facility Location Games

Dimitris Fotakis

School of Electrical and Computer Engineering
National Technical University of Athens, Greece

Based on joint work with Panagiotis Patsilinakos (NTUA) and Christos Tzamos (UW-Madison, NKUA)

Summer School on Game Theory and Social Choice, June 20 - June 24, 2022
Public Good Allocation for Strategic Agents with Linear Preferences

- Agents $N = \{1, \ldots, n\}$ on the real line.
- Agent i wants a facility close to x_i, which is private information.
Public Good Allocation for Strategic Agents with Linear Preferences

- Agents $N = \{1, \ldots, n\}$ on the real line.
- Agent i wants a facility close to x_i, which is private information.

(Randomized) Mechanism

Mechanism F maps reported ideal locations $y = (y_1, \ldots, y_n)$ to (probability distribution over) set(s) of k facilities.
Public Good Allocation for Strategic Agents with Linear Preferences

- Agents $N = \{1, \ldots, n\}$ on the real line.
- Agent i wants a facility close to x_i, which is private information.
- Each agent i reports y_i that may be different from x_i.

(Randomized) Mechanism

Mechanism F maps reported ideal locations $y = (y_1, \ldots, y_n)$ to (probability distribution over) set(s) of k facilities.
Connection Cost

(Expected) distance of agent i’s **true location** to the **nearest** facility:

\[\text{cost}[x_i, F(y)] = \text{dist}(x_i, F(y)) = \min_{c \in F(y)} |x_i - c| \]
Preferences and Truthfulness

Connection Cost

(Expected) distance of agent i’s true location to the nearest facility:

$$\text{cost}[x_i, F(y)] = \text{dist}(x_i, F(y)) = \min_{c \in F(y)} |x_i - c|$$

Truthfulness

For any location profile x, agent i, and location y:

$$\text{cost}[x_i, F(x)] \leq \text{cost}[x_i, F(y, x_{-i})]$$
Candidate Facility Locations:

- **Unrestricted**: Any point (esp. agent locations) can be facility.
- **Restricted**: Facilities selected from \(m \) candidate locations \(C \).

Motivation from multi-winner elections: Chamberlin-Courant.

Social Objective:

\[F(x) \text{ should optimize (or approximate) a given objective function} \]

Social Cost:

\[\min \sum_{i=1}^{n} \text{cost}\left[x_i, F(x)\right] \]

Social Welfare:

\[\max \sum_{i=1}^{n} L - \text{cost}\left[x_i, F(x)\right] \]

Maximum Cost:

\[\min \max \\{ \text{cost}\left[x_i, F(x)\right]\} \]
Variants and Social Efficiency

Candidate Facility Locations:
- **Unrestricted**: Any point (esp. agent locations) can be facility.
- **Restricted**: Facilities selected from m candidate locations C

 Motivation from multi-winner elections: Chamberlin-Courant.

Social Objective

$F(x)$ should optimize (or approximate) a given **objective function**.

- **Social Cost**: minimize $\sum_{i=1}^{n} \text{cost}[x_i, F(x)]$
- **Social Welfare**: maximize $\sum_{i=1}^{n} (L - \text{cost}[x_i, F(x)])$
- **Maximum Cost**: minimize $\max\{\text{cost}[x_i, F(x)]\}$
Median Mechanism

- **Median** of \((x_1, \ldots, x_n)\): truthful and optimal, when unrestricted.
Median Mechanism

- **Median** of \((x_1, \ldots, x_n)\): **truthful** and **optimal**, when unrestricted.
- Candidate location closest to \(\text{med}(x_1, \ldots, x_n)\): truthful and **3-approximate**, when restricted.
Median Mechanism

- **Median** of \((x_1, \ldots, x_n)\): **truthful** and **optimal**, when unrestricted.
- Candidate location closest to \(\text{med}(x_1, \ldots, x_n)\): truthful and **3-approximate**, when restricted.
 - OPT social cost \(\approx n/4\). OPT social welfare \(\approx 3n/4\).
 - Median social cost \(\approx 3n/4\). Median social welfare \(\approx n/4\).

Anonymity and truthfulness iff generalized median [Moulin 80]
Median Mechanism

- **Median** of \((x_1, \ldots, x_n)\): **truthful** and **optimal**, when unrestricted.
- Candidate location closest to \(\text{med}(x_1, \ldots, x_n)\): truthful and **3-approximate**, when restricted.
 - OPT social cost \(\approx \frac{n}{4}\). OPT social welfare \(\approx \frac{3n}{4}\).
 - Median social cost \(\approx \frac{3n}{4}\). Median social welfare \(\approx \frac{n}{4}\).
- Anonymity and truthfulness iff **generalized** median [Moulin 80]
Optimal Sensitive to Deviations!

The optimal solution for social cost (and welfare) is **not truthful**!
The optimal solution for social cost (and welfare) is **not truthful**!
Three (+ One) Roads to Truthfulness (with Reasonable Efficiency)

- **Order Statistics**: (generalized) median, two-extremes, percentile mechanisms.
- **Align Incentives** with Optimal (for maximum cost): (randomized) equal-cost mechanism.
- **Restriction to Stable** instances: optimal, almost rightmost, random.
A Tale about Truthfulness in k-Facility Location

Three (+ One) Roads to Truthfulness (with Reasonable Efficiency)

- **Order Statistics**: (generalized) median, two-extremes, percentile mechanisms.
- **Align Incentives** with Optimal (for maximum cost): (randomized) equal-cost mechanism.
- **Restriction to Stable** instances: optimal, almost rightmost, random.
- **Winner Imposing** verification: if declared location gets facility, agent must be served by that [F. Tzamos, WINE 10]
Percentile Mechanisms [Sui Boutilier Sandholm, IJCAI 13]

Optimal is not truthful: optimal clustering sensitive to deviations!

Percentile mechanisms are anonymous and truthful (only one?).

For any $k \geq 2$, $(\frac{1}{2^k}, \frac{3}{2^k}, \ldots, \frac{2^k - 1}{2^k})$-percentile mechanism is $(1 + O(\frac{1}{k}))$-approximate for social welfare [F. Gourvès Monnot, WINE 16].
Percentile Mechanisms [Sui Boutilier Sandholm, IJCAI 13]

Optimal is \textbf{not} truthful: optimal clustering \textit{sensitive} to deviations!

\((\alpha_1, \ldots, \alpha_k)\)-\textit{percentile} mechanism \((0 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_k \leq 1)\):

- \(\text{vote}(\ell) = \#\text{agents preferring } \ell \in C \text{ to other candidates in } C\).
- \(j\)-th facility at leftmost \(\ell \in C\) with \(\geq \alpha_j\) \textit{fraction} of vote on \(\ell\) and its left.

 - Median is 0.5-percentile. Two-Extremes is (0, 1)-percentile.

\[n = 80 \quad k = 4 \quad (0.1, 0.3, 0.5, 0.9)\)-percentile\]
Percentile Mechanisms [Sui Boutilier Sandholm, IJCAI 13]

Optimal is not truthful: optimal clustering sensitive to deviations!

\((\alpha_1, \ldots, \alpha_k)\)-percentile mechanism \((0 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_k \leq 1)\):

- \(\text{vote}(\ell) = \#\text{agents preferring } \ell \in C \text{ to other candidates in } C\).
- \(j\)-th facility at leftmost \(\ell \in C\) with \(\geq \alpha_j\) fraction of vote on \(\ell\) and its left.
 - Median is 0.5-percentile. Two-Extremes is \((0, 1)\)-percentile.

Percentile mechanisms are anonymous and truthful (only one?).

For any \(k \geq 2\), \((1/(2k), 3/(2k), \ldots, (2k - 1)/(2k))\)-percentile mechanism is \((1 + O(1/k))\)-approximate for social welfare [F. Gourvés Monnot, WINE 16].
Truthful Location of 2 Facilities

Two-Extremes is **truthful** and \((n - 2)\)-**approximate** (best possible).

[Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]
Truthful Location of 2 Facilities

Two-Extremes is **truthful** and \((n - 2)\)-**approximate** (best possible). [Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]

Truthful Location of \(k \geq 3\) Facilities

- **Deterministic** anonymous mechanisms have unbounded (in terms of \(n\) and \(k\)) approximation ratio [F. Tzamos, ICALP 13]
- Best known **randomized** mechanism is \(n\)-**approximate** for social cost [F. Tzamos, EC 13]
Equal-Cost Mechanism for k-Facility Location

- **Optimal maximum** cost of declared instance $= C/2$.
- **Cover** all agents with k disjoint intervals of length C.

Agents' Cost and Approximation Ratio

Agent i has expected cost $= (C - x_i)/2 + x_i/2 = C/2$.

Approx. ratio: 2 for the maximum cost, n for the social cost.
Equal-Cost Mechanism for \(k \)-Facility Location

- **Optimal maximum** cost of declared instance = \(C/2 \).
- **Cover** all agents with \(k \) disjoint intervals of length \(C \).
- Place a facility to an **end** of each interval.
 - With prob. \(1/2 \), facility at L - R - L - R - . . .
 - With prob. \(1/2 \), facility at R - L - R - L - . . .
Equal-Cost Mechanism for k-Facility Location

- **Optimal maximum** cost of declared instance $= C/2$.
- **Cover** all agents with k disjoint intervals of length C.
- Place a facility to an **end** of each interval.
 - With prob. $1/2$, facility at $L - R - L - R - \ldots$
 - With prob. $1/2$, facility at $R - L - R - L - \ldots$

Agents’ Cost and Approximation Ratio

- Agent i has expected cost $= (C - x_i)/2 + x_i/2 = C/2$.

\[
\begin{align*}
\text{probability 0.5} & \quad \text{probability 0.5} \\
\text{probability 0.5} & \quad \text{probability 0.5}
\end{align*}
\]

\[
\begin{align*}
 x_1 & \quad x_2 \quad x_3 \quad x_4 \quad \ldots \quad x_i \quad \ldots \quad x_{n-1} \quad x_n
\end{align*}
\]
Equal-Cost Mechanism for \(k \)-Facility Location

- **Optimal maximum** cost of declared instance = \(C/2 \).
- Cover all agents with \(k \) disjoint intervals of length \(C \).
- Place a facility to an **end** of each interval.
 - With prob. 1/2, facility at L - R - L - R - \ldots
 - With prob. 1/2, facility at R - L - R - L - \ldots

Agents’ Cost and Approximation Ratio

- Agent \(i \) has expected cost = \((C - x_i)/2 + x_i/2 = C/2\).
- Approx. ratio: 2 for the **maximum** cost, \(n \) for the **social** cost.
Agents do not have incentive to lie and increase optimal maximum cost, i.e. $C/2$. Let agent i declare y_i and decrease optimal maximum cost to $C'/2 < C/2$. Then, i's expected cost $= 1/2 C + 1/2 (C - C') > C/2$.

\[x_1 \ x_2 \ x_3 \ x_4 \ y_i \ x_i \]

\[\text{length } C \]

\[\text{length } C' \]
Truthfulness

- Agents do not have incentive to lie and increase optimal maximum cost, i.e. $C/2$.
- Let agent i declare y_i and decrease optimal maximum cost to $C'/2 < C/2$.
- Then, i’s expected cost $= \frac{1}{2}C + \frac{1}{2}(C - C') > C/2$.
Truthful Location of 2 Facilities

Two-Extremes is \((n - 2)\)-approximate and best possible.
[Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]

Truthful Location of \(k \geq 3\) Facilities

- **Deterministic** anonymous mechanisms have **unbounded** approximation ratio [F. Tzamos, ICALP 13]
- Best known **randomized** mechanism is \(n\)-approximate
 [F. Tzamos, EC 13]
- Bounded approximation requires facility in **each optimal** cluster. But optimal clustering is **sensitive** to agent deviations.
- Focus on instances with **stable** optimal clustering.
Perturbation Stability in Clustering [Bilu Linial, ITCS 10]

- \(\gamma \)-stability: scaling down any distances by factor \(\leq \gamma \) (while maintaining metric property) does not affect optimal solution.

For \(\gamma \geq 2 \), \(k \)-Facility Location solvable in poly-time.

For \(\gamma \leq 2 - \varepsilon \), \(k \)-Facility Location remains hard.

Real-world instances are supposed to be stable: "Clustering is hard when it doesn't matter" [Roughgarden 17].
Perturbation Stability in Clustering [Bilu Linial, ITCS 10]

- **γ-stability**: scaling down any distances by factor $\leq \gamma$ (while maintaining metric property) does not affect optimal solution.

- For $\gamma \geq 2$, (metric) k-Facility Location solvable in poly-time!

 [Angelidakis Makarychev Makarychev, STOC 17]

 k-Facility Location remains hard for $\gamma \leq 2 - \varepsilon$.

Real-world instances are supposed to be stable: "Clustering is hard when it doesn't matter" [Roughgarden 17]
Perturbation Stability for k-Facility Location

Perturbation Stability in Clustering [Bilu Linial, ITCS 10]

- **γ-stability**: scaling down any distances by factor $\leq \gamma$ (while maintaining metric property) does not affect optimal solution.

- For $\gamma \geq 2$, (metric) k-Facility Location solvable in poly-time!
 [Angelidakis Makarychev Makarychev, STOC 17]
 k-Facility Location remains **hard** for $\gamma \leq 2 - \varepsilon$.

- Real-world instances are supposed to be **stable**: “Clustering is hard when it doesn’t matter” [Roughgarden 17]
Question [F. Patsilinakos, WINE 21]

Assume that "true" instances are indeed stable. How much stability for **truthfulness** and **reasonable** approximation?
Question [F. Patsilinakos, WINE 21]

Assume that “true” instances are indeed stable.
How much stability for *truthfulness* and *reasonable* approximation?

Some Negative Observations

- Optimal solution *not truthful* for any stability $\gamma \geq 1$.
Question [F. Patsilinakos, WINE 21]
Assume that “true” instances are indeed stable.
How much stability for truthfulness and reasonable approximation?

Some Negative Observations
- Optimal solution not truthful for any stability $\gamma \geq 1$.
- For $k \geq 3$, deterministic anonymous truthful mechanisms for $(\sqrt{2} - \varepsilon)$-stable instances have unbounded approximation (based on [F. Tzamos, ICALP 13])
Remedy and Main Results

- **Optimal** clustering \((C_1, \ldots, C_k)\) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if
 \[\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} < d(C_i, C_{i+1}) \]

For \((\sqrt{2} + 3)\)-stable instances without singleton clusters, optimal solution is truthful.

For 5-stable instances, facility at the second from the right in each optimal cluster is truthful and \((n - 2)/2\)-approximate.

For 5-stable instances, facility at a random agent in each optimal cluster is truthful and 2-approximate.
Truthful k-Facility Location in Stable Instances

Remedy and Main Results

- **Optimal** clustering (C_1, \ldots, C_k) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if
 \[
 \max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} < d(C_i, C_{i+1})
 \]
- For $(\sqrt{2} + 3)$-stable instances **without singleton** clusters, **optimal** solution is **truthful**.
Remedy and Main Results

- **Optimal** clustering \((C_1, \ldots, C_k)\) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if
 \[
 \max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} < d(C_i, C_{i+1})
 \]
- For \((\sqrt{2} + 3)\)-stable instances **without singleton** clusters, **optimal** solution is **truthful**.
- For 5-stable instances, facility at **second from the right** in each optimal cluster is **truthful** and \((n - 2)/2\)-approximate.
Truthful k-Facility Location in Stable Instances

Remedy and Main Results

- **Optimal** clustering (C_1, \ldots, C_k) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if
 \[\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} < d(C_i, C_{i+1}) \]
- For $(\sqrt{2} + 3)$-stable instances **without singleton** clusters, **optimal** solution is **truthful**.
- For 5-stable instances, facility at **second from the right** in each optimal cluster is **truthful** and $(n - 2)/2$-**approximate**.
- For 5-stable instances, facility at **random** agent in each optimal cluster is **truthful** and **2-approximate**.
Optimal Mechanism and Approach to Truthfulness

If optimal clustering \((C_1, \ldots, C_k)\) has **singleton** clusters or
\[\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} \geq d(C_i, C_{i+1})\], do **not allocate** facilities!

Otherwise, facilities at \((\text{med}(C_1), \ldots, \text{med}(C_k))\).
Optimal Mechanism and Approach to Truthfulness

If optimal clustering \((C_1, \ldots, C_k)\) has **singleton** clusters or \(\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} \geq d(C_i, C_{i+1})\), do **not allocate** facilities!

Otherwise, facilities at \((\text{med}(C_1), \ldots, \text{med}(C_k))\).

- Key deviation: rightmost agent of \(C_i\) deviates to \(C_j\), causing \(C_j\) to **split** and \(C_i\) to **merge** with \(C_{i+1}\).
- “Simulate” increase in cost of \(C_j\) by \(\gamma\)-perturbation and decrease in cost of \(C_i\) by agent’s **cost improvement**.
Optimal Mechanism and Approach to Truthfulness

If optimal clustering \((C_1, \ldots, C_k)\) has **singleton** clusters or
\[\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} \geq d(C_i, C_{i+1})\], **do not allocate** facilities!

Otherwise, facilities at \((\text{med}(C_1), \ldots, \text{med}(C_k))\).

- Key deviation: rightmost agent of \(C_i\) deviates to \(C_j\), causing \(C_j\) to split and \(C_i\) to merge with \(C_{i+1}\).
- “Simulate” increase in cost of \(C_j\) by \(\gamma\)-perturbation and decrease in cost of \(C_i\) by agent’s **cost improvement**.
- Stability: optimal clustering **not affected** by deviation.
Increase Stability to $\gamma \geq 5$ to Resist Singleton Deviations

If optimal (C_1, \ldots, C_k) has $\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} \geq d(C_i, C_{i+1})$, do not allocate facilities!

Almost Rightmost: Facility at second to the right in each optimal C_i.
Random: Facility at random in each optimal C_i.

Dimitris Fotakis
Strategyproof Mechanisms for Multiple Facility Location
Increase Stability to $\gamma \geq 5$ to Resist Singleton Deviations

If optimal (C_1, \ldots, C_k) has $\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} \geq d(C_i, C_{i+1})$, do not allocate facilities!

Almost Rightmost: Facility at second to the right in each optimal C_i.

Random: Facility at random in each optimal C_i.

- Cluster merge not profitable due to robust facility allocation.
Increase Stability to $\gamma \geq 5$ to Resist Singleton Deviations

If optimal (C_1, \ldots, C_k) has $\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} \geq d(C_i, C_{i+1})$, do not allocate facilities!

Almost Rightmost: Facility at second to the right in each optimal C_i.

Random: Facility at random in each optimal C_i.

- Cluster merge not profitable due to robust facility allocation.
- 5-stable instances: $x \in C_i$ needs to deviate by $\geq \text{diam}(C_i)$ for singleton cluster.
- $x \in C_i$ cannot deviate to singleton and be served by that facility.
Restriction to Stable Instances Necessary

“Global” Truthfulness and Bounded Approximation Only for Stable

γ-nice mechanism \equiv deterministic mech. truthful for all instances with bounded approximation (in terms of n, k) only for γ-stable instances.

For any $k \geq 3$ and any $\gamma \geq 1$, there are no anonymous γ-nice mechanisms for k-Facility Location (even on the line).

Well-Separated Instances

Instance with $k + 1$ agents is well-separated if it consists of $k - 1$ isolated and 2 nearby agents.

well-separated instance for $k = 3$
Restriction to Stable Instances Necessary

“Global” Truthfulness and Bounded Approximation Only for Stable

γ-nice mechanism \equiv deterministic mech. truthful for all instances with bounded approximation (in terms of n, k) only for γ-stable instances.

For any $k \geq 3$ and any $\gamma \geq 1$, there are no anonymous γ-nice mechanisms for k-Facility Location (even on the line).
Restriction to Stable Instances Necessary

“Global” Truthfulness and Bounded Approximation Only for Stable γ-nice mechanism \equiv deterministic mech. truthful for all instances with bounded approximation (in terms of n, k) only for γ-stable instances.

For any $k \geq 3$ and any $\gamma \geq 1$, there are no anonymous γ-nice mechanisms for k-Facility Location (even on the line).

Well-Separated Instances

Instance with $k + 1$ agents is well-separated if it consists of $k - 1$ isolated and 2 nearby agents.

well-separated instance for $k = 3$
Consistent Allocation for Well-Separated Instances

The Nearby Agents Slide on the Left

- Let x be a well-separated instance with k-th facility on x_{k+1}.
- For any well-separated instance $x' = (x_{\{k,k+1\}}, x'_k, x'_{k+1})$ with $x'_{k+1} \leq x_{k+1}$, k-th facility stays with x'_{k+1}.

$k = 3$

Dimitris Fotakis
Strategyproof Mechanisms for Multiple Facility Location
Consistent Allocation for Well-Separated Instances

The Nearby Agents Slide on the Left

- Let \(x \) be **well-separated** instance with \(k \)-th facility on \(x_{k+1} \).
- For any well-separated instance \(x' = (x_{-\{k,k+1\}}, x'_k, x'_{k+1}) \) with \(x'_{k+1} \leq x_{k+1} \), \(k \)-th facility stays with \(x'_{k+1} \).

The Nearby Agents Slide on the Right

- Let \(x \) be **well-separated** instance with \(k \)-th facility on \(x_k \).
- For any well-separated instance \(x' = (x_{-\{k,k+1\}}, x'_k, x'_{k+1}) \) with \(x_k \leq x'_k \), \(k \)-th facility stays with \(x'_k \).

\(k = 3 \)

\[x_1 \quad x_2 \quad x_3 \quad x_4 \]
No Anonymous γ-Nice Mechanisms for $k \geq 3$

Theorem

For any $k \geq 3$ and any $\gamma \geq 1$, there are no anonymous γ-nice mechanisms for k-Facility Location (even on the line).
Theorem

For any $k \geq 3$ and any $\gamma \geq 1$, there are no anonymous γ-nice mechanisms for k-Facility Location (even on the line).

Proof Sketch for $k = 3$ and $n = 4$

- **Option set** $I_3(x_{-3}) = \{a : F(x_{-3}, y) = a$ for some location $y\}$
 Set of locations where a facility can be forced by agent 3 in x_{-3}.
- F truthful iff all agents get the best in their option set.
Theorem

For any $k \geq 3$ and any $\gamma \geq 1$, there are no anonymous γ-nice mechanisms for k-Facility Location (even on the line).

Proof Sketch for $k = 3$ and $n = 4$

- **Option set** $I_3(x_{-3}) = \{a : F(x_{-3}, y) = a \text{ for some location } y\}$
 Set of locations where a facility can be forced by agent 3 in x_{-3}.
- F truthful iff all agents get the best in their option set.
No Anonymous γ-Nice Mechanisms for $k \geq 3$

Theorem

For any $k \geq 3$ and any $\gamma \geq 1$, there are no anonymous γ-nice mechanisms for k-Facility Location (even on the line).

Proof Sketch for $k = 3$ and $n = 4$

![Diagram showing the proof sketch for $k = 3$ and $n = 4$]
Theorem
For any $k \geq 3$ and any $\gamma \geq 1$, there are no anonymous γ-nice mechanisms for k-Facility Location (even on the line).

Proof Sketch for $k = 3$ and $n = 4$
- F truthful iff all agents get the best in their option set.
No Anonymous γ-Nice Mechanisms for $k \geq 3$

Theorem

For any $k \geq 3$ and any $\gamma \geq 1$, there are no anonymous γ-nice mechanisms for k-Facility Location (even on the line).

Proof Sketch for $k = 3$ and $n = 4$

- F truthful iff all agents get the best in their option set.
No Anonymous γ-Nice Mechanisms for $k \geq 3$

Theorem

For any $k \geq 3$ and any $\gamma \geq 1$, there are no anonymous γ-nice mechanisms for k-Facility Location (even on the line).

Proof Sketch for $k = 3$ and $n = 4$

- F truthful iff all agents get the best in their option set.
- Contradiction to consistent allocation for well-separated inst.!
Approaches to **truthfulness** with reasonable **efficiency**:
- Order statistics – percentile mechanisms.
- Align incentives with optimal – randomized equal cost mechanism.
- Restriction to stable instances – optimal, almost rightmost, random.
Approaches to truthfulness with reasonable efficiency:
- Order statistics – percentile mechanisms.
- Align incentives with optimal – randomized equal cost mechanism.
- Restriction to stable instances – optimal, almost rightmost, random.

Close the gap in stability for bounded approximation:
- Lower bound of $\sqrt{2}$ and upper bound of $2 + \sqrt{3}$ (or 5).

Extension to trees and general metrics [F. Pats. Terzoglou 22].

Equal Cost and Random to get randomized truthful for all instances with improved approximation for γ-stable?
Summary - Open Questions

- Approaches to **truthfulness** with reasonable **efficiency**:
 - Order statistics – percentile mechanisms.
 - Align incentives with optimal – randomized equal cost mechanism.
 - Restriction to stable instances – optimal, almost rightmost, random.

- Close the **gap in stability** for bounded approximation:
 lower bound of $\sqrt{2}$ and upper bound of $2 + \sqrt{3}$ (or 5).

- Extension to **trees** and **general metrics** [F. Patsil. Terzoglou 22].

- Equal Cost and Random to get randomized **truthful** for all instances with improved approximation for γ-stable?

- Complexity of **determining** whether a k-Facility Location instance is γ-stable, esp. for line and trees?
Approaches to **truthfulness** with reasonable **efficiency**:
- Order statistics – percentile mechanisms.
- Align incentives with optimal – randomized equal cost mechanism
- Restriction to stable instances – optimal, almost rightmost, random.

Close the **gap in stability** for bounded approximation:
lower bound of $\sqrt{2}$ and upper bound of $2 + \sqrt{3}$ (or 5).

Extension to **trees** and **general metrics** [F. Patsil. Terzoglou 22].

Equal Cost and Random to get randomized **truthful** for all
instances with **improved** approximation for γ-stable?

Complexity of **determining** whether a k-Facility Location
instance is γ-stable, esp. for line and trees?

Learning-augmented truthful mechanisms for $k \geq 3$ facilities.
[Xu Lu, 22], [Agrawal Balkansi Gkatzelis Ou Tan, EC 22] for $k \in \{1, 2\}$.
Thank You!