Sample Complexity of Auction Design and Optimal Stopping

Zhiyi Huang The University of Hong Kong

Based on:

Huang, Mansour, Roughgarden (EC 2015)

Huang, Devanur, Psomas (STOC 2016)

Bubeck, Devanur, Huang, Niazadeh (EC 2017)

Guo, Huang, Zhang (STOC 2019)

Guo, Huang, Tang, Zhang (COLT 2021)

Auctions

- 1 item for sale to *n* bidders
- Each bidder i has a private value v_i independently drawn from a prior D_i
- Bidders report values
- Seller picks a winner based on the reported values
- Seller picks a price that the winner pays

Example Second Price Auction with a Reserve Price

Myerson's Solution

Myerson 1981

Optimal auction is characterized by virtual values

• For any bidder i, any value v_i , the virtual value is:

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

- Bidder with highest non-negative virtual value wins
 - We will omit a caveat called ironing in this talk
- Winner pays the threshold value above which she wins

Sample Complexity of Optimal Auctions

Cole, Roughgarden 2014

- Assume only sample oracle access to the prior
- Algorithm takes N i.i.d. samples, returns an auction

How many samples are sufficient and necessary to learn an auction that is a $1 - \epsilon$ approximation?

Define approximation ratio to be

$$\mathbb{E}_{v_1, v_2, \dots, v_N \sim D} \left[\frac{\mathsf{Rev}(A(v_1, v_2, \dots, v_N), D)}{\mathsf{Opt}(D)} \right]$$

The learning process is a process of choosing an appropriate function from a given set of functions.

-Vladimir Vapnik

Learning

- Type space T
- Hypothesis space \mathcal{H} ; hypothesis $h \in \mathcal{H}$ is a mapping from \mathcal{T} to [0,1]
- Distribution D over \mathcal{T}
- Learn $h \in \mathcal{H}$ via i.i.d. samples from D to minimize or maximize:

$$\mathbb{E}_{t\sim D} h(t)$$

Example: Binary Classification

- Type space \mathcal{T} : feature-label pairs, e.g., $\{(x,y):x\in\mathbb{R}^n,y=\pm 1\}$ feature label
- Hypothesis space \mathcal{H} : e.g., linear classifiers
 - Each $h \in \mathcal{H}$ corresponds to some $a \in \mathbb{R}^n, b \in \mathbb{R}$
 - Let h(x, y) = 1 if $\langle a, x \rangle + b$ and y disagree on signs, and 0 otherwise
- Distribution D over T
- Learn $h \in \mathcal{H}$ via i.i.d. samples from D to minimize $\mathbb{E}_{(x,y)\sim D} h(x,y)$ classification error

Sample Complexity

What is the number of samples needed to learn $h \in \mathcal{H}$ up to ϵ -optimal?

Conventional wisdom: decided by degree of freedom of ${\mathcal H}$

Classification

If \mathcal{H} has VC-dimension d, $\Theta(de^{-2})$ samples are sufficient and necessary.

Vapnik and Chervonenkis 1969, and follow up works

Sample Complexity of Bayesian Optimization Problems

Auctions, Prophet Inequality, and Pandora's Problem

Example: Auctions

Cole and Roughgarden 2014

- Type space \mathcal{T} : value vectors $v \in [0,1]^n$
- Hypothesis space \mathcal{H} : truthful auctions
 - Each $h \in \mathcal{H}$ corresponds to a (truthful) auction
 - Let h(v) be the revenue of running the auction on value vector v
- Distribution D over T
- Learn $h \in \mathcal{H}$ via i.i.d. samples from D to maximize $\mathbb{E}_{v \sim D} h(v)$

Sample Complexity

- What is the number of samples needed to learn $h \in \mathcal{H}$ up to ϵ -optimal?
- Conventional wisdom: decided by degree of freedom of ${\mathcal H}$
- Degree of freedom is $\tilde{O}(n\epsilon^{-1})$, unclear if it gives tight sample complexity

Auction: 1 Item, n Buyers

We need at most $\tilde{O}(n\epsilon^{-3})$ samples, and at least $\Omega(\epsilon^{-2})$ samples.

Morgenstern and Roughgarden 2015 Huang, Devanur, and Psomas 2016 Gonczarowski and Nisan 2017 Syrgkanis 2017 Huang, Mansour, and Roughgarden 2015

Example: Prophet Inequality

- Positive rewards $v_i \sim D_i$, $1 \le i \le n$, independently
- One reward arrives at a time, must immediate decide to accept it or not
- Aim to maximize reward

Can get at least 0.5 $\mathbb E$ $\max_{1 \le i \le n} v_i$ in general; for i.i.d. at least 0.745 $\mathbb E$ $\max_{1 \le i \le n} v_i$.

Krengel, Sucheston, and Garling 1978 Samuel-Cahn 1984 Hill and Kertz 1982 Correa et al. 2017

 Much recent attention, partly due to applications in auction design Chawla, Hartline, Malec, and Sivan 2010

Example: Prophet Inequality

Correa, Dütting, Fischer, and Schewior 2019

- Type space \mathcal{I} : reward vectors $r \in [0,1]^n$
- Hypothesis space \mathcal{H} : algorithms for prophet inequality
 - Each $h \in \mathcal{H}$ corresponds to such an algorithm
 - Let h(r) be the accepted reward by algorithm w.r.t. reward vector r
- Distribution D over T
- Learn $h \in \mathcal{H}$ via i.i.d. samples from D to maximize $\mathbb{E}_{r \sim D} h(r)$

Sample Complexity

- What is the number of samples needed to learn $h \in \mathcal{H}$ up to ϵ -optimal?
- Conventional wisdom: decided by degree of freedom of ${\mathcal H}$
- SOTA uses problem specific arguments

Prophet Inequality

We need at most $\tilde{O}(n^2 \epsilon^{-2})$ samples; also at most $\tilde{O}(n\epsilon^{-7})$ samples.

Correa et al. 2019

Rubinstein, Wang, and Weinberg 2020

Example: Pandora's Problem

- n boxes, with independent rewards $r_i \sim D_i$, and cost c_i , $1 \le i \le n$
- Algorithm in each step opens another box, or accepts best reward so far
- Aim to maximize reward minus total cost

Optimal strategy has simple structure:

- 1. Set a reserve price for each box
- 2. Open boxes in descending order of reserve prices
- 3. Accept first reward exceeding the reserve price

Weitzman 1979 (recently in AGT, see Beyhaghi and Kleinberg 2019; Chawla et al. 2020)

Example: Pandora's Problem

- Type space \mathcal{T} : reward vectors $r \in [0,1]^n$ (costs are fixed)
- Hypothesis space \mathcal{H} : algorithms for Pandora's problem
 - Each $h \in \mathcal{H}$ corresponds to such an algorithm
 - Let h(r) be the reward minus cost by algorithm w.r.t. reward vector v
- Distribution D over T
- Learn $h \in \mathcal{H}$ via i.i.d. samples from D to maximize $\mathbb{E}_{r \sim D} h(r)$

One theory to rule them all

Even without knowing much about the problems themselves

Theory of Independent Data Dimensions

- Part 1: Bounded, finite-support, product distribution
- Part 2: Bounded product distribution and strongly monotone problems
- Part 3: Product distribution and strongly monotone problems

Theory of Independent Data Dimensions

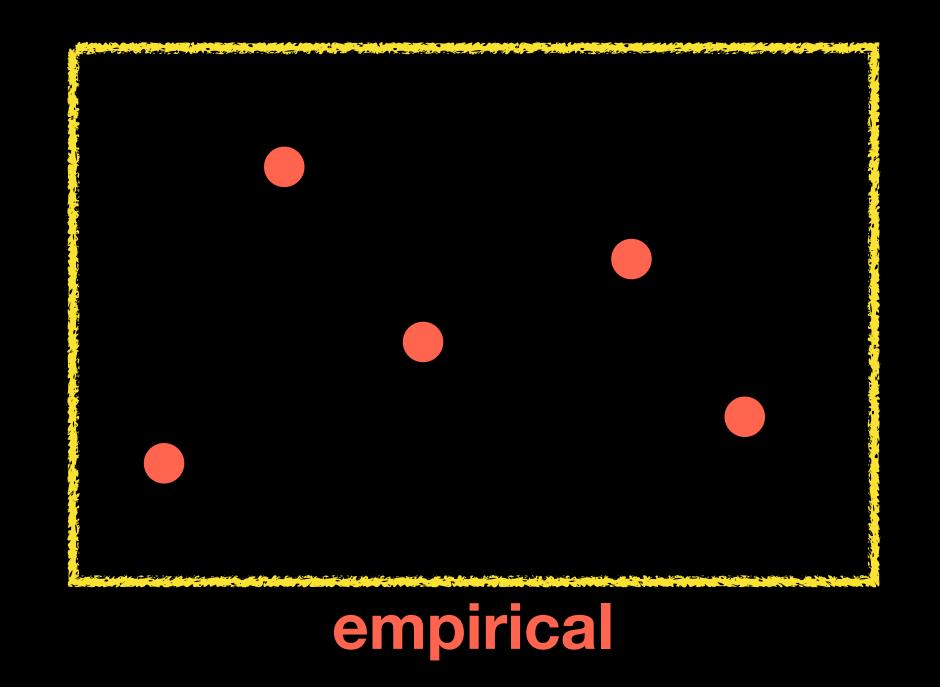
Part 1: If D is a product distribution over n dimensions, each of which has support size $\leq k$, then $O(nk\epsilon^{-2}\log\delta^{-1})$ samples can learn an ϵ -optimal $h \in \mathcal{H}$ with probability at least $1 - \delta$.

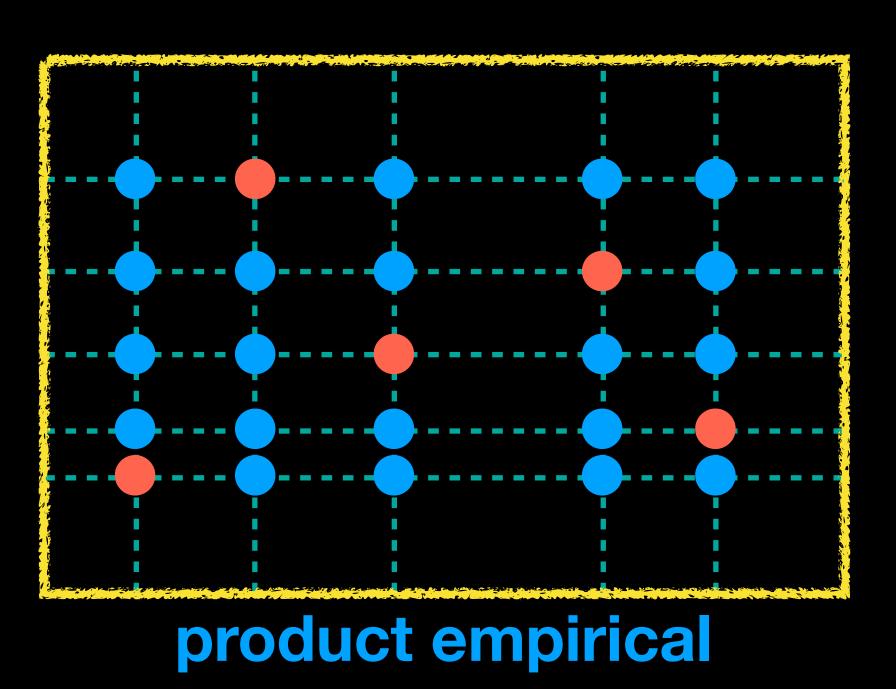
Guo, Huang, Tang, and Zhang 2020 (slightly worse bound implicitly in Gonczarowski and Weinberg 2018)

	discretized support size	sample complexity	previous bound
Auction	ϵ^{-1}	$O(n\epsilon^{-3}\log\delta^{-1})$	$\tilde{O}(n\epsilon^{-3})$
Prophet Inequality	ϵ^{-1}	$O(n\epsilon^{-3}\log\delta^{-1})$	$\tilde{O}(n^2\epsilon^{-2}), \tilde{O}(n\epsilon^{-7})$
Pandora's Problem	ϵ^{-1}	$\tilde{O}(n\epsilon^{-3})$	

Product Empirical

- x_1, x_2, \dots, x_N i.i.d. from product distribution $D = \times_{i=1}^n D_i$
- Let E_i be uniform over $x_{1i}, x_{2i}, \ldots, x_{Ni}$ from D_i
- Let product empirical distribution be $E = \times_{i=1}^{n} E_i$





PERM

Product Empirical Risk Minimizer/Reward Maximizer

- x_1, x_2, \ldots, x_N i.i.d. from product distribution $D = \times_{i=1}^n D_i$
- Let E_i be uniform over $x_{1i}, x_{2i}, \ldots, x_{Ni}$ from D_i
- Let product empirical distribution be $E = \times_{i=1}^n E_i$
- Let product empirical risk minimizer/reward maximizer be:

$$\underset{h \in \mathcal{H}}{\text{arg min}} \mathbb{E}_{x \sim E} h(x) \quad \text{and} \quad \underset{h \in \mathcal{H}}{\text{arg max}} \mathbb{E}_{x \sim E} h(x)$$

Product Distributions are Learnable

If D is a product distribution over n dimensions, each of which has support size $\leq k$, the product empirical E from $O(nke^{-2}\log\delta^{-1})$ samples satisfies:

$$Hellinger(D, E) \leq \epsilon$$

Guo, Huang, Tang, and Zhang 2020

$$\text{Hellinger}(D, E)^2 \approx \sum_{i=1}^n \sum_{t_i \in \mathcal{T}_i} \left(\sqrt{D_i(t_i)} - \sqrt{E_i(t_i)} \right)^2$$
 additivity

Implication: For any $f: \mathcal{T} \mapsto [0,1]$, we have $\mathbb{E}_{t \sim D} f(t) \approx_{\epsilon} \mathbb{E}_{t \sim E} f(t)$

Reduction to Vector Concentration

Assuming D is uniform

$$\sum_{i,t_i} \left(\sqrt{D_i(t_i)} - \sqrt{E_i(t_i)} \right)^2 = \sum_{i,t_i} \frac{\left(D_i(t_i) - E_i(t_i) \right)^2}{\left(\sqrt{D_i(t_i)} + \sqrt{E_i(t_i)} \right)^2} \leq \sum_{i,t_i} \left(\frac{D_i(t_i) - E_i(t_i)}{\sqrt{D_i(t_i)}} \right)^2$$

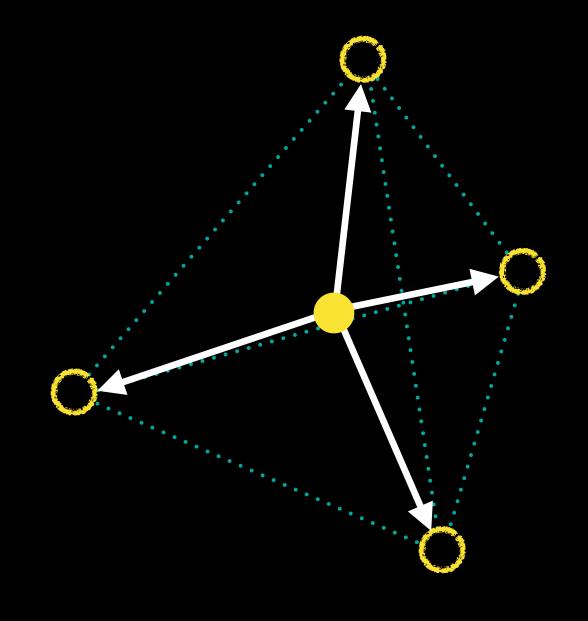
• For each sample x_k , define a random vector v_k with coordinates (i, t_i) :

$$v_{k,i,t_i} = \frac{D_i(t_i) - \mathbf{1}(x_{k,i} = t_i)}{\sqrt{D_i(t_i)}}$$

• It remains to show with $N = O(nke^{-2}\log\delta^{-1})$ samples:

$$\sum_{i,t_i} \left(\frac{D_i(t_i) - E_i(t_i)}{\sqrt{D_i(t_i)}} \right)^2 = \left\| \frac{1}{N} \sum_{k=1}^N v_k \right\|_2^2 \le \epsilon^2$$

average of i.i.d. zero-mean random vectors



$$\left\| \frac{1}{N} \sum_{k=1}^{N} v_k \right\|_2 = \left(\left\| \frac{1}{N} \sum_{k=1}^{N} v_k \right\|_2 - \mathbb{E} \left\| \frac{1}{N} \sum_{k=1}^{N} v_k \right\|_2 \right) + \mathbb{E} \left\| \frac{1}{N} \sum_{k=1}^{N} v_k \right\|_2 \le \epsilon$$

vector concentration inequality

simple exercise via Cauchy-Schwarz

Chernoff-Hoeffding for Random Vectors

arbitrary norm

For independent v_k s.t. $\mathbb{E} |v_k| = 0$, $||v_k|| \le L$, with probability at least $1 - \delta$:

$$\left\| \frac{1}{N} \sum_{k=1}^{N} v_k \right\| - \mathbb{E} \left\| \frac{1}{N} \sum_{k=1}^{N} v_k \right\| \le L \cdot \sqrt{\frac{\log \delta^{-1}}{N}}$$

Ledoux and Talagrand 1991

zero in original Chernoff-Hoeffding

$$v_{k,i,t_i} = \frac{D_i(t_i) - \mathbf{1}(x_{k,i} = t_i)}{\sqrt{D_i(t_i)}} \Rightarrow L \approx \sqrt{nk}$$
 $N = O(nke^{-2}\log\delta^{-1})$

Theory of Independent Data Dimensions

- Part 1: Bounded, finite-support, product distribution
- Part 2: Bounded product distribution and strongly monotone problems
- Part 3: Product distribution and strongly monotone problems

Theory of Independent Data Dimensions

Part 2: If D is a product distribution over n dimensions, and the class of hypotheses \mathcal{H} is strongly monotone, then $\tilde{O}(n\epsilon^{-2})$ samples can learn an ϵ -optimal $h \in \mathcal{H}$ with probability at least $1 - \delta$.

Guo, Huang, and Zhang 2019; Guo, Huang, Tang, and Zhang 2020

stochastic dominance

 \mathcal{H} is strongly monotone if for any $D' \succeq D$ and the optimal h^* w.r.t. D:

$$\mathbb{E}_{t \sim D'} h^*(t) \ge \mathbb{E}_{t \sim D} h^*(t) = \max_{h \in \mathcal{H}} \mathbb{E}_{t \sim D} h(t)$$

Auctions, Prophet Inequality, and Pandora's Problem are strongly monotone!

matching lower bound

current lower bound $\Omega(n)$

matching lower bound

D uniform on [0,1]

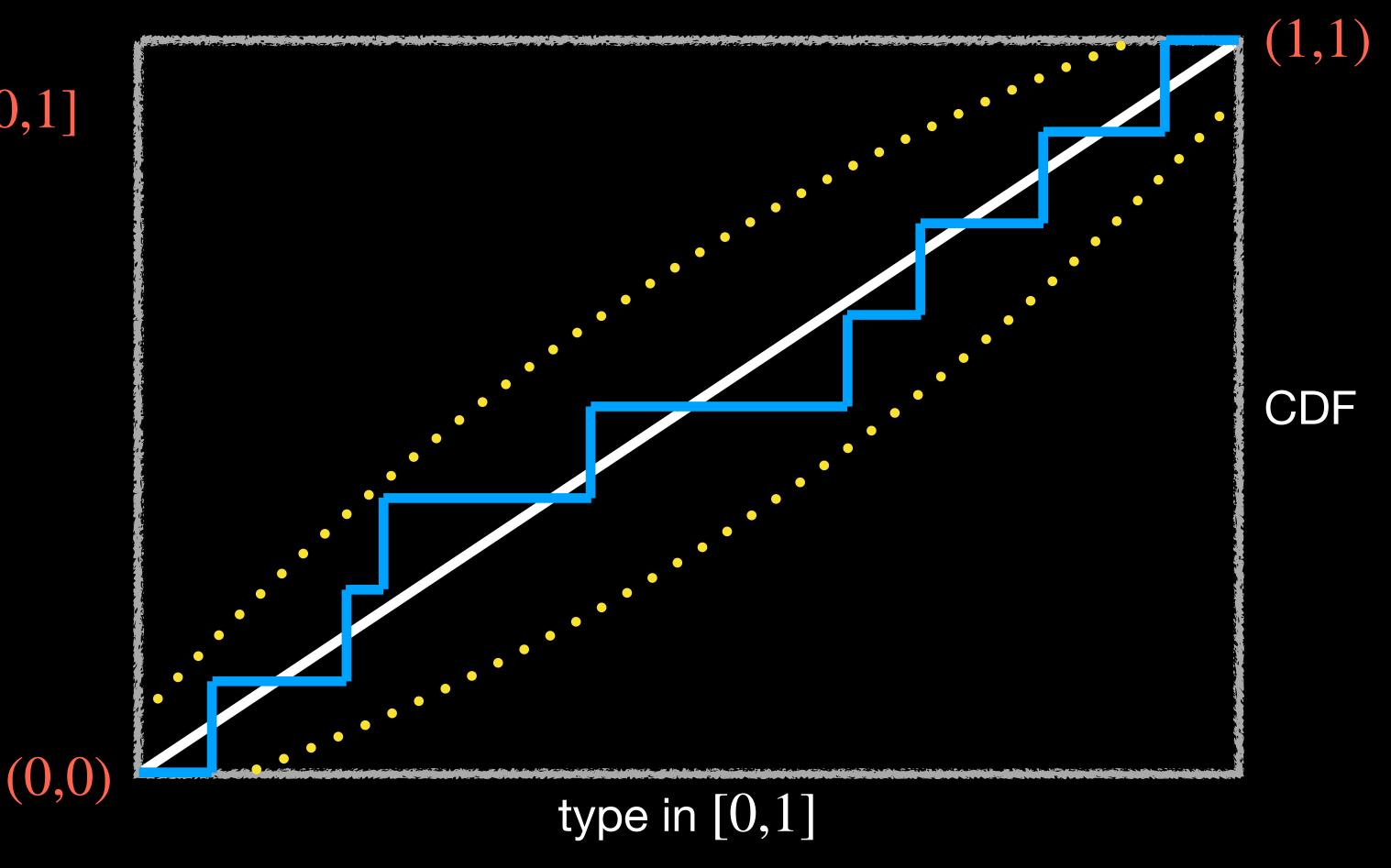
E empirical

• • • •

$$\hat{D} \succeq E$$

$$\check{D} \leq E$$

Bernstein and union bound



- Hellinger(D, E) = 1 for any finite number of samples
- $\qquad \text{Hellinger}(D,\hat{D}), \text{Hellinger}(D,\check{D}) \leq \epsilon \text{ with } N = \tilde{O}(n\epsilon^{-2}) \text{ samples }$

True distribution D

Product empirical *E*

$$\operatorname{PERM} h^* = \arg \max_{h \in \mathcal{H}} \mathbb{E}_{t \sim E} h(t)$$

Auxiliary distributions $\hat{D} \geq E \geq \check{D}$

$$Hellinger(D, \hat{D}) \leq \epsilon$$

$$\mathsf{Hellinger}(D, \check{D}) \leq \epsilon$$

Goal:

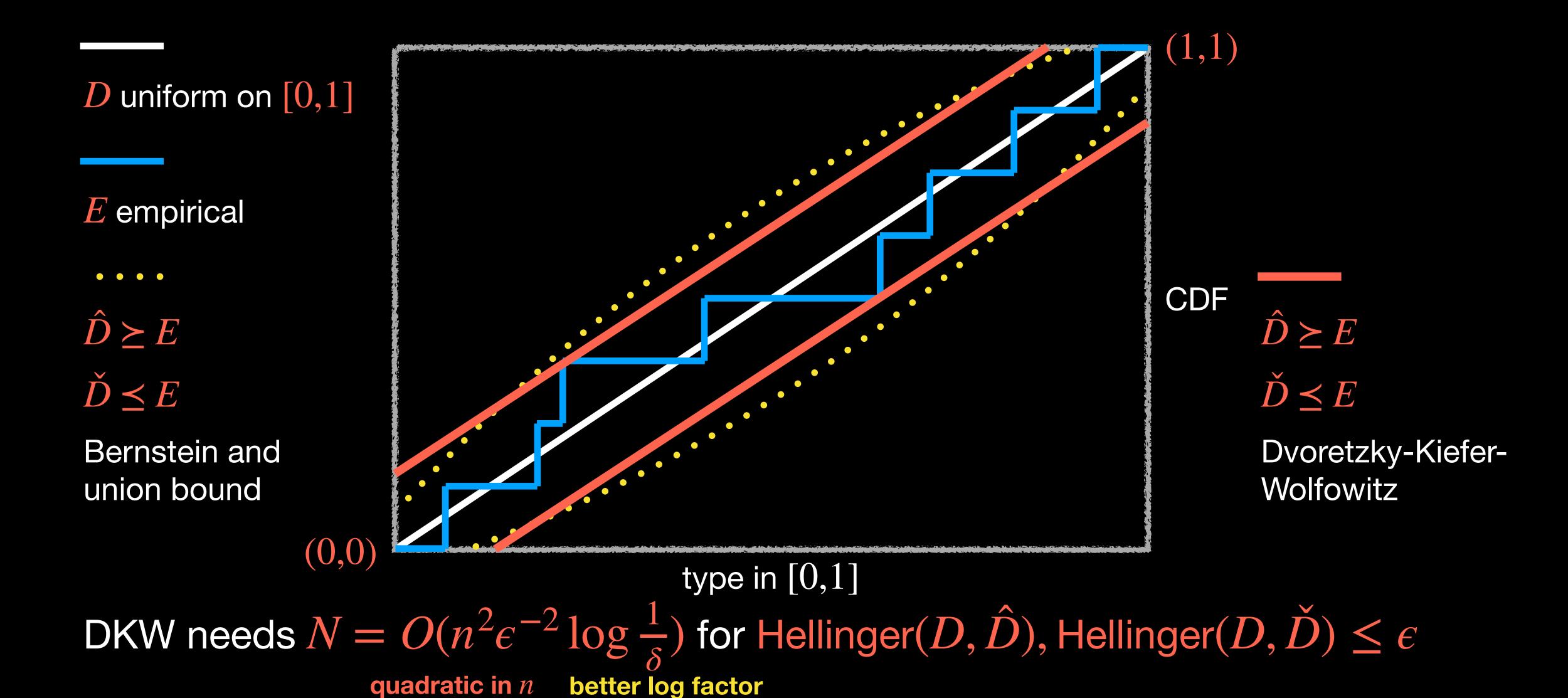
$$\mathbb{E}_{t\sim D}h^*(t) \gtrsim_{\epsilon} \max_{h\in\mathcal{H}} \mathbb{E}_{t\sim D}h(t)$$

$$\mathbb{E}_{t \sim D} h^*(t) \approx_{\epsilon} \mathbb{E}_{t \sim \hat{D}} h^*(t)$$
 strong monotonicity
$$\geq \mathbb{E}_{t \sim E} h^*(t)$$

$$= \max_{t \sim E} \mathbb{E}_{t \sim E} h(t)$$
 strong $h \in \mathcal{H}$ monotonicity
$$\geq \max_{t \in \mathcal{H}} \mathbb{E}_{t \sim \hat{D}} h(t)$$

$$h \in \mathcal{H}$$
 Hellinger $(D, \check{D}) \leq \epsilon$
$$\approx_{\epsilon} \max_{h \in \mathcal{H}} \mathbb{E}_{t \sim D} h(t)$$

$$h \in \mathcal{H}$$



Open Question: Is there a Bernstein-style DKW inequality?

$$\int_{N} F_D(x)(1 - F_D(x)) \log N/\delta$$

Bernstein and Union Bound

$$\forall x \in [0,1]: |F_D(x) - F_E(x)| \le$$

$$\sqrt{\frac{\log 1/\delta}{N}}$$

Dvoretzky-Kiefer-Wolfowitz

$$\sqrt{\frac{F_D(x)(1 - F_D(x)) \log 1/\delta}{N}}$$

Bernstein-style Dvoretzky-Kiefer-Wolfowitz (?)

Theory of Independent Data Dimensions

- Part 1: Bounded, finite-support, product distribution
- Part 2: Bounded product distribution and strongly monotone problems
- Part 3: Product distribution and strongly monotone problems

Theory of Independent Data Dimensions

Part 3: We can learn a dominated product empirical $\tilde{E} \leq D$ using

 $N = \tilde{O}(n\epsilon^2)$ samples such that there is $\tilde{D} \leq \tilde{E}$ satisfying:

$$\mathsf{Hellinger}(D, \tilde{D}) \leq \epsilon$$

Guo, Huang, and Zhang 2019; Guo, Huang, Tang, and Zhang 2020

Handle unbounded distributions in Auctions, Prophet Inequality

One-sided error, using the same number of samples as product empirical

You get what you expect: If $\tilde{h} = \arg\max_{h \in \mathcal{H}} \mathbb{E}_{t \sim \tilde{E}} h(t)$, then $\mathbb{E}_{t \sim D} \tilde{h}(t) \geq \mathbb{E}_{t \sim \tilde{E}} \tilde{h}(t)$

D uniform on [0,1]

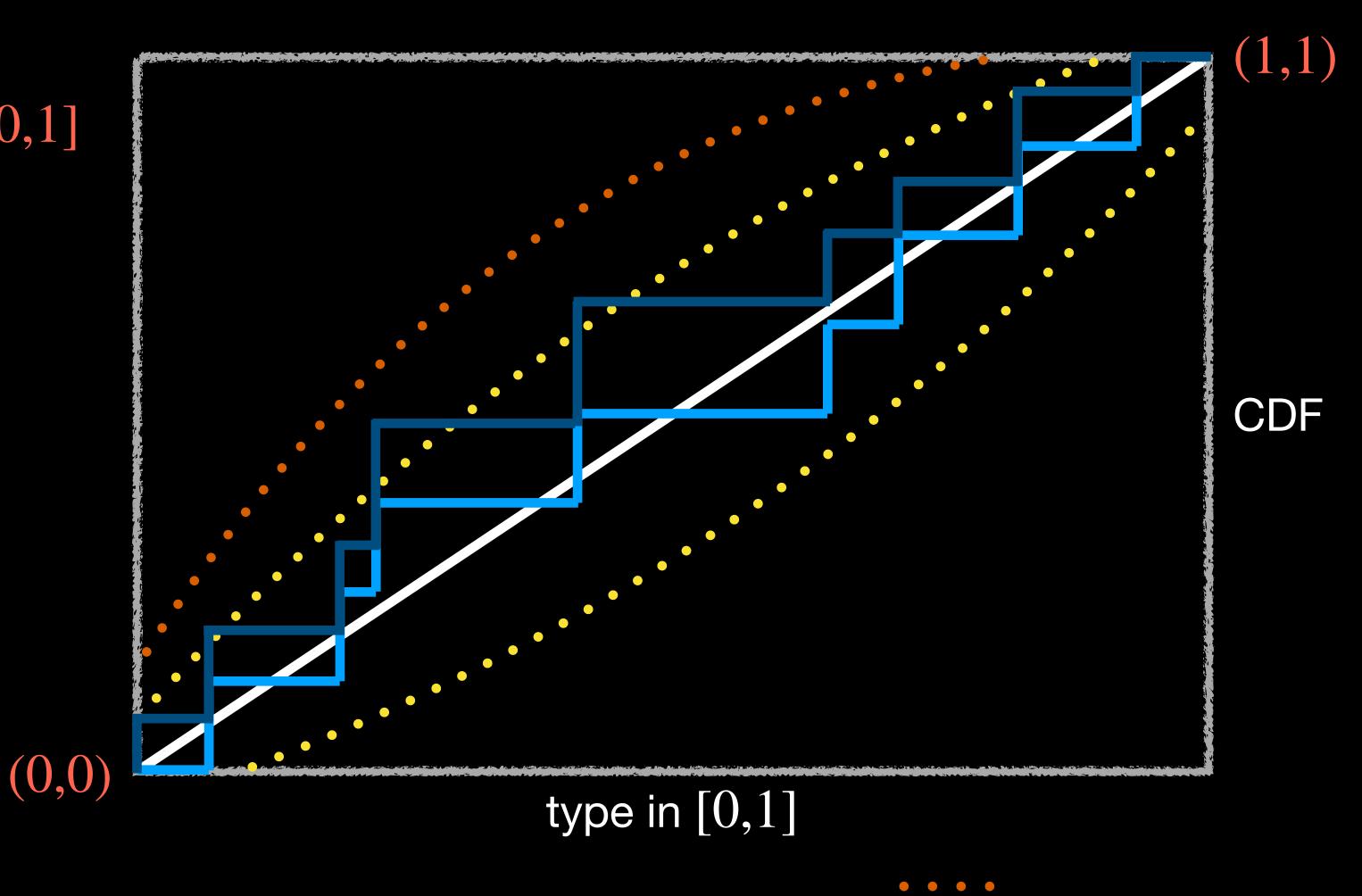
E empirical

• • • •

$$\hat{D} \succeq E$$

$$\check{D} \leq E$$

Bernstein and union bound



 \tilde{E} dominated empirical

i.e., empirical minus Bernstein error term

 $\tilde{D} \leq E$

i.e., doubled Bernstein error term

Summary Theory of Independent Data Dimensions

Part 1: Bounded, finite-support, product distribution

Most general, give best-to-date sample complexity for multi-item auctions

Part 2: Bounded product distribution and strongly monotone problems

 Nearly optimal sample complexity for single-item auctions, prophet inequality, Pandora's problem

Part 3: Product distribution and strongly monotone problems

 Nearly optimal sample complexity for single-item auctions, prophet inequality with unbounded distributions

Next Step

Structured Correlated Distributions

- Learning high dimensional arbitrarily correlated distributions is hard
- How about correlated distributions with structures? Recent works in:
 - Auctions
 Brustle, Cai, and Daskalakis 2020
 - Pandora's problem
 Chawla, Gergatsouli, Teng, Tzamos, and Zhang 2020
- Can we learn a data representation that is independently distributed?

Next Step Problem Structure Other than Monotonicity

- Multi-item auction does not even satisfy weak monotonicity
 i.e., optimal revenue could decrease as value distributions get "bigger"
- We believe the current sample complexity is suboptimal
- Is there another structural property that could help?

Next Step

Computational Complexity

- Bayesian optimization problems are mostly studied assuming independence
 - Single-item auction Myerson 1981
 - Prophet inequality
 Krengel, Sucheston, and Garling 1978
 - Pandora's problem
 Weitzman 1979
- Some mathematical-program-based algorithms require small-support
 - Multi-item auctions
 Cai, and Daskalakis, and Weinberg 2012, 2013
- Computational complexity of ERM vs. PERM?

Thank you! Questions?

