Optimal Auctions For Correlated Private Values: Ex-Post vs. Ex-Interim Individual Rationality

Ron Lavi

U. Of Bath, UK, and Technion

Joint work with **Ido Feldman** (Technion)

Background and Motivation (1): Cremer-Mclean

- Single-item auctions with correlated private values: n players have private values $v_1,...,v_n$ that are jointly drawn from some n-dimensional distribution F.
- Expected social welfare SW(F) = E[max v₁,...,v_n]

Cremer-Mclean (1988): Under a certain condition on F, there exists a Dominant-Strategy Incentive-Compatible (DSIC) auction whose expected revenue = SW(F).

- The CM auction satisfies Ex-Interim Individual Rationality (EIIR):
 - EIIR: non-negative *expected* utility is guaranteed for a truthful bidder

Background and Motivation (1): Cremer-Mclean

- Single-item auctions with correlated private values: n players have private values $v_1,...,v_n$ that are jointly drawn from some n-dimensional distribution F.
- Expected social welfare SW(F) = E[max v₁,...,v_n]

Cremer-Mclean (1988): Under a certain condition on F, there exists a Dominant-Strategy Incentive-Compatible (DSIC) auction whose expected revenue = SW(F).

- The CM auction satisfies Ex-Interim Individual Rationality (EIIR):
 - EIIR: non-negative *expected* utility is guaranteed for a truthful bidder
- Thus, the maximal-possible revenue among all DSIC and EIIR auctions, $OPT_{EIIR}(F)$, is equal to SW(F) if F satisfies the Cremer-Mclean (CM) condition

Example

• Two players with values v_1, v_2 that are jointly distributed:

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

•
$$Pr(v_2 = 1) = 1/2$$

• Pr(
$$v_2 = 1 | v_1 = 1$$
) = 2/3, Pr($v_2 = 1/2 | v_1 = 1$) = 1/3

- Expected utility of player 1 with v_1 = 1 in a 2nd price auction with random tie-breaking: Pr(v_2 = 1/2 | v_1 = 1) · [1 1/2] + Pr(v_2 = 1 | v_1 = 1) · 0.5 · [1 1] = 1/6
- (everything is symmetric so the same for player 2)

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

- After that, run 2nd price.
- Note: truthful regardless of how we fix c_i(v_i).
- Calculation of $c_1(v_2)$, should satisfy two equations:

Expected entry fee when
$$v_1 = 1$$

$$Pr(v_2 = 1 \mid v_1 = 1) \cdot c_1(v_2 = 1) + Pr(v_2 = 1/2 \mid v_1 = 1) \cdot c_1(v_2 = 1/2) =$$

$$Pr(v_2 = 1 \mid v_1 = 1/2) \cdot c_1(v_2 = 1) + Pr(v_2 = 1/2 \mid v_1 = 1/2) \cdot c_1(v_2 = 1/2) =$$

$$Expected utility in 2^{nd} price when $v_1 = 1/2$

$$Expected utility in 2^{nd} price, v_1 = 1/2$$

$$Expected utility in 2^{nd} price, v_1 = 1/2$$$$

- The CM auction adds 'entry fees' fixed payment $c_i(v_j)$ that is paid by player i when player j bids v_j regardless of player i's bid and whether she wins or losses.
- After that, run 2nd price.

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

- Note: truthful regardless of how we fix c_i(v_i).
- Calculation of $c_1(v_2)$, should satisfy two equations:

$$Pr(v_2 = 1 \mid v_1 = 1) \cdot c_1(v_2 = 1) + Pr(v_2 = 1/2 \mid v_1 = 1) \cdot c_1(v_2 = 1/2) = 1/6$$

$$Pr(v_2 = 1 \mid v_1 = 1/2) \cdot c_1(v_2 = 1) + Pr(v_2 = 1/2 \mid v_1 = 1/2) \cdot c_1(v_2 = 1/2) = 0$$

- The CM auction adds 'entry fees' fixed payment $c_i(v_j)$ that is paid by player i when player j bids v_j regardless of player i's bid and whether she wins or losses.
- After that, run 2nd price.

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

- Note: truthful regardless of how we fix c_i(v_i).
- Calculation of $c_1(v_2)$, should satisfy two equations:

?
$$Pr(v_{2} = 1 \mid v_{1} = 1) \cdot c_{1}(v_{2} = 1) + Pr(v_{2} = 1/2 \mid v_{1} = 1) \cdot c_{1}(v_{2} = 1/2) = 1/6$$

$$Pr(v_{2} = 1 \mid v_{1} = 1/2) \cdot c_{1}(v_{2} = 1) + Pr(v_{2} = 1/2 \mid v_{1} = 1/2) \cdot c_{1}(v_{2} = 1/2) = 0$$

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

- After that, run 2nd price.
- Note: truthful regardless of how we fix c_i(v_i).
- Calculation of $c_1(v_2)$, should satisfy two equations:

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

- After that, run 2nd price.
- Note: truthful regardless of how we fix c_i(v_i).
- Calculation of $c_1(v_2)$, should satisfy two equations:

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

- After that, run 2nd price.
- Note: truthful regardless of how we fix c_i(v_i).
- Calculation of $c_1(v_2)$, should satisfy two equations:

$$(2/3) \cdot c_1(v_2 = 1) + (1/3) \cdot c_1(v_2 = 1/2) = 1/6$$

 $(1/3) \cdot c_1(v_2 = 1) + (2/3) \cdot c_1(v_2 = 1/2) = 0$ $\Rightarrow c_1(v_2 = 1) = 1/3$; $c_1(v_2 = 1/2) = -1/6$

- When $v_2 = 1$, player 1 <u>pays</u> 1/3; when $v_2 = 1/2$, player 1 <u>receives</u> 1/6. Similarly for player 2. After that, run 2nd price.
- Ex-post utility may be negative; ex-interim utility is always non-negative.

Example: revenue calculation

• Second-price expected revenue:

$$(1/3) \cdot (1/2) + 2 \cdot (1/6) \cdot (1/2) + (1/3) \cdot 1 = 2/3$$

• Expected revenue from entry fees

$$[c_i(v_j = 1) = 1/3 ; c_i(v_j = 0) = -1/6]$$
:

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

$$(1/3) \cdot (-1/6 - 1/6) + 2 \cdot (1/6) \cdot (1/3 - 1/6) + (1/3) \cdot (1/3 + 1/3) = (1/3) \cdot 3 \cdot (1/3 - 1/6) = 1/6$$

• \Rightarrow Total expected revenue of the CM auction is 2/3 + 1/6 = SW(F)

Example: revenue calculation

• Second-price expected revenue: $(1/3) \cdot (1/2) + 2 \cdot (1/6) \cdot (1/2) + (1/3) \cdot 1 = 2/3$

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

• Expected revenue from entry fees $[c_i(v_j = 1) = 1/3 ; c_i(v_j = 0) = -1/6]$:

$$(1/3) \cdot (-1/6 - 1/6) + 2 \cdot (1/6) \cdot (1/3 - 1/6) + (1/3) \cdot (1/3 + 1/3) = (1/3) \cdot 3 \cdot (1/3 - 1/6) = 1/6$$

• \Rightarrow Total expected revenue of the CM auction is 2/3 + 1/6 = SW(F)

Example: revenue calculation

• Second-price expected revenue: $(1/3) \cdot (1/2) + 2 \cdot (1/6) \cdot (1/2) + (1/3) \cdot 1 = 2/3$

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

• Expected revenue from entry fees $[c_i(v_j = 1) = 1/3 ; c_i(v_j = 0) = -1/6]$:

$$(1/3) \cdot (-1/6 - 1/6) + 2 \cdot (1/6) \cdot (1/3 - 1/6) + (1/3) \cdot (1/3 + 1/3) = (1/3) \cdot 3 \cdot (1/3 - 1/6) = 1/6$$

• \Rightarrow Total expected revenue of the CM auction is 2/3 + 1/6 = SW(F)

Disadvantages of the CM auction

- Players may be left with a negative utility
- Well defined only when we can solve the set of inequalities for the entry fees. This is not always true (depending on the distribution F).

Background and Motivation (2): the look-ahead auction

- Ex-Post Individual Rationality (EPIR) vs. Ex-Interim Individual Rationality (EIIR):
 - EPIR: non-negative utility is guaranteed for a truthful bidder
 - EIIR: non-negative *expected* utility is guaranteed for a truthful bidder
 - Thus, $OPT_{EIIR}(F) \ge OPT_{EPIR}(F)$

Ronen (2001): For any F, there exists a DSIC and EPIR auction (the "look-ahead" auction) whose expected revenue $\geq 0.5 \cdot \text{OPT}_{\text{EPIR}}(F)$.

 Following Ronen, the AGT/CS literature mostly continue to impose EPIR on suggested auctions & benchmark

The look-ahead auction

- (1) all players bid; (2) highest bidder is offered a take-it-or-leave-it price $p^* = optimal$ price using the conditional distribution of the highest bidder given all other values
- Note: this is truthful

- (1) all players bid; (2) highest bidder is offered a take-it-or-leave-it price p* = optimal price using the conditional distribution of the highest bidder given all other values
- Note: this is truthful
- Obviously, $p^*=1$ when lowest bid is $v_i = 1$
- $p^* = ?$ when lowest bid is $v_j = 1/2$:

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

- (1) all players bid; (2) highest bidder is offered a take-it-or-leave-it price $p^* = optimal$ price using the conditional distribution of the highest bidder given all other values
- Note: this is truthful
- Obviously, $p^*=1$ when lowest bid is $v_i = 1$
- $p^* = ?$ when lowest bid is $v_j = 1/2$:
 - If p*=1, revenue is Pr($v_i = 1 | v_i = 1/2$) · 1 = 1/3

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

- (1) all players bid; (2) highest bidder is offered a take-it-or-leave-it price $p^* = optimal$ price using the conditional distribution of the highest bidder given all other values
- Note: this is truthful
- Obviously, p*=1 when lowest bid is v_i = 1
- $p^* = ?$ when lowest bid is $v_j = 1/2$:
 - If p*=1, revenue is Pr($v_i = 1 | v_j = 1/2$) · 1 = 1/3
 - If p*=1/2, revenue is 1/2

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

- (1) all players bid; (2) highest bidder is offered a take-it-or-leave-it price $p^* = optimal$ price using the conditional distribution of the highest bidder given all other values
- Note: this is truthful
- Obviously, p*=1 when lowest bid is v_i = 1
- $p^* = 1/2$ when lowest bid is $v_i = 1/2$:
 - If p*=1, revenue is Pr($v_i = 1 | v_i = 1/2$) · 1 = 1/3
 - If p*=1/2, revenue is 1/2

v_1	1/2	1
1/2	1/3	1/6
1	1/6	1/3

• Expected revenue = $(1/3) \cdot (1/2) + 2 \cdot (1/6) \cdot (1/2) + (1/3) \cdot 1 = 2/3$

Background and Motivation (2): the look-ahead auction

- Ex-Post Individual Rationality (EPIR) vs. Ex-Interim Individual Rationality (EIIR):
 - EPIR: non-negative utility is guaranteed for a truthful bidder
 - EIIR: non-negative expected utility is guaranteed for a truthful bidder
 - Thus, $OPT_{EIIR}(F) \ge OPT_{EPIR}(F)$

Ronen (2001): For any F, there exists a DSIC and EPIR auction (the "look-ahead" auction) whose expected revenue $\geq 0.5 \cdot \text{OPT}_{\text{EPIR}}(F)$.

- Following Ronen, the AGT/CS literature mostly continue to impose EPIR on suggested auctions & benchmark
- We saw two <u>different</u> benchmarks: OPT_{EPIR}(F) and OPT_{EIIR}(F)

Questions / Motivation

- Does there exist a DSIC+EPIR auction the approximates OPT_{EIIR}(F)? For all F? Under some condition?
- In particular, does OPT_{EPIR}(F) give some approximation of OPT_{EIIR}(F)? For all F? Under some condition?
- Remark: when the CM condition is violated there is an unbounded gap between OPT_{EIIR}(F) and SW(F) – (Albert, Conitzer, Lopomo 2016) – so the latter is not attainable unconditionally.
- Nevertheless, does OPT_{EPIR}(F) and/or OPT_{EIIR}(F) approximate SW(F) under some natural conditions other than the CM-condition?

Main Results (1): An Impossibility

• We study bounded distributions (w.l.o.g. with support in [0,1]ⁿ)

THM: $\forall \beta \in (0,1] \exists F_{\beta} \text{ such that } OPT_{EPIR}(F_{\beta}) < \beta \cdot OPT_{EIIR}(F_{\beta})$

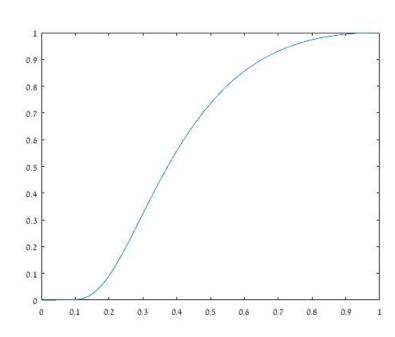
This holds even if $OPT_{EPIR}(F_{\beta})$ optimizes over all truthful-in-expectation auctions This holds even for n=2 players

- Thus, in the worst-case, OPT_{EPIR}(F) cannot extract any bounded fraction of OPT_{EIIR}(F)
- Proof: a corollary of the second main result, as follows.

Main Results (2): A Possibility

- We utilize a certain function $\phi \colon (0,1] \to (0,1]$
 - It is strictly monotone, $\lim_{\beta \to 0} \phi(\beta) = 0$, $\phi(1) = 1$

$$\varphi(\beta) = \frac{e^{1-\frac{1}{\beta}}}{\beta}$$



Main Results (2): A Possibility

- We utilize a certain function φ : (0,1] \rightarrow (0,1]
 - It is strictly monotone, $\lim_{\beta \to 0} \varphi(\beta) = 0$, $\varphi(1) = 1$
- REV(LK,F) denotes the expected revenue of the look-ahead auction for F

THM: $\forall F$, if $SW(F) \ge \varphi(\beta)$ then $REV(LK,F) \ge \beta \cdot OPT_{EIIR}(F)$ In fact, $\forall F$, if $SW(F) \ge \varphi(\beta)$ then $REV(LK,F) \ge \beta \cdot SW(F)$

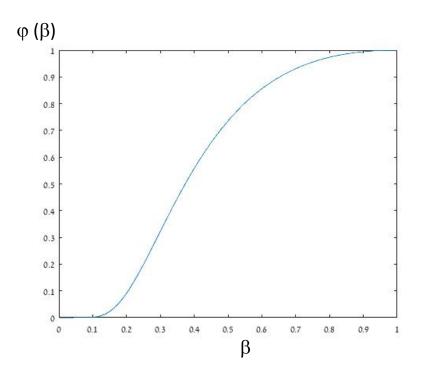
Corollaries

(**Reminder**: $\forall F$, if $SW(F) \ge \varphi(\beta)$ then $REV(LK,F) \ge \beta \cdot SW(F)$)

• We can obtain specific bounds, for example:

Corr: SW(F) \geq 0.0013 \Rightarrow REV(LK,F) \geq 0.1 · SW(F) [since $\varphi(0.1) \approx 0.0013$]

Corr: For any 'marginal-value-symmetric' F, REV(LK,F) \geq 0.37 · SW(F) [since SW(F) = 0.5 \approx ϕ (0.37)]



Main Results (2): A Possibility

- We utilize a certain function $\varphi: (0,1] \to (0,1]$ to be discussed later
 - It is strictly monotone, $\lim_{\beta \to 0} \varphi(\beta) = 0$, $\varphi(1) = 1$
- REV(LK,F) denotes the expected revenue of the look-ahead auction for F

THM:
$$\forall$$
 F, if SW(F) \geq $\phi(\beta)$ then REV(LK,F) \geq β · OPT_{EIIR}(F) In fact, \forall F, if SW(F) \geq $\phi(\beta)$ then REV(LK,F) \geq β · SW(F)

• Obviously, SW(F) $\geq \varphi(\beta)$ is sufficient but not necessary (there are distributions F with SW(F) $< \varphi(\beta)$ and a high look-ahead revenue)

Main Results (2): A Possibility

- We utilize a certain function $\varphi: (0,1] \to (0,1]$ to be discussed later
 - It is strictly monotone, $\lim_{\beta \to 0} \varphi(\beta) = 0$, $\varphi(1) = 1$
- REV(LK,F) denotes the expected revenue of the look-ahead auction for F

THM:
$$\forall$$
 F, if SW(F) \geq $\phi(\beta)$ then REV(LK,F) \geq β · OPT_{EIIR}(F) In fact, \forall F, if SW(F) \geq $\phi(\beta)$ then REV(LK,F) \geq β · SW(F)

- Obviously, SW(F) $\geq \varphi(\beta)$ is sufficient but not necessary (there are distributions F with SW(F) $< \varphi(\beta)$ and a high look-ahead revenue)
- But, the analysis is tight, this bound is the best possible for this criterion:

THM: $\forall \beta \in (0,1], \varepsilon > 0 \ \exists F_{\beta,\varepsilon} \text{ s.t. SW}(F_{\beta,\varepsilon}) \ge \phi(F_{\beta,\varepsilon}) \text{ but OPT}_{EPIR}(F_{\beta,\varepsilon}) < \beta \cdot \mathsf{OPT}_{EIIR}(F_{\beta,\varepsilon}) + \varepsilon$ This holds even for n=2 players, and implies our main negative result.

- 1. The single-dimensional case: worst distribution is an equal-revenue distribution (requires a short but well-known proof), a short calculation gives our bound.
- The "Equal Revenue distribution": For some revenue α , $\forall t \geq \alpha$: $t \cdot P(v \geq t) = \alpha$

- **1. The single-dimensional case**: worst distribution is an equal-revenue distribution (requires a short but well-known proof), a short calculation gives our bound.
- 2. Positive result for the multi-dimensional case: the bound holds for any single-dimensional marginal distribution, then generalize using Jensen's inequality

- 1. The single-dimensional case: worst distribution is an equal-revenue distribution (requires a short but well-known proof), a short calculation gives our bound.
- 2. Positive result for the multi-dimensional case: the bound holds for any single-dimensional marginal distribution, then generalize using Jensen's inequality
- 3. Negative result, first step:
 - Convert a discrete variant of the single-dimensional equal-revenue distribution to a multi-dimensional distribution by adding many players with arbitrary small values.

- 1. The single-dimensional case: worst distribution is an equal-revenue distribution (requires a short but well-known proof), a short calculation gives our bound.
- 2. Positive result for the multi-dimensional case: the bound holds for any single-dimensional marginal distribution, then generalize using Jensen's inequality
- 3. Negative result, first step:
 - Convert a discrete variant of the single-dimensional equal-revenue distribution to a multi-dimensional distribution by adding many players with arbitrary small values.
 - The revenue of the look-ahead auction in this case is very close to the optimal truthful-in-expectation EPIR revenue and the ratio between these two and the social welfare is close to our desired bound.

- **1. The single-dimensional case**: worst distribution is an equal-revenue distribution (requires a short but well-known proof), a short calculation gives our bound.
- 2. Positive result for the multi-dimensional case: the bound holds for any single-dimensional marginal distribution, then generalize using Jensen's inequality
- 3. Negative result, first step:
 - Convert a discrete variant of the single-dimensional equal-revenue distribution to a multi-dimensional distribution by adding many players with arbitrary small values.
 - The revenue of the look-ahead auction in this case is very close to the optimal truthful-in-expectation EPIR revenue and the ratio between these two and the social welfare is close to our desired bound.
- **4. Negative result, second step**: slightly perturb this first-step distribution so that it will satisfy the CM-condition. This does not significantly change SW(F), $OPT_{EPIR}(F)$, REV(LK,F) but ensures that $OPT_{FIIR}(F) = SW(F)$.

Some Open Questions – EPIR vs. EIIR

- We showed an approximation bound for marginal-value symmetric distributions.
 Are there other interesting classes of distributions with a good approximation bound?
- Find other parameters\features of the distribution (besides SW(F)) that can indicate the relation between the optimal revenue of an EPIR vs. EIIR auction.

What is the Optimal EIIR auction (either DSIC or BIC)?

- DSIC and EPIR auction Papadimitriou and Pierrakos (2011)
- DSIC and EIIR auction partially solved by Cremer and Mclean (1988)
- BIC and EIIR auction partially solved by Albert, Conitzer, and Lopomo (2016)
- What about approximating the optimal EIIR revenue unconditionally?
 - DSIC and EPIR approximations: Ronen (2001), Dobzinski et al. (2011), Chen et al. (2011)
 - Nothing is known about EIIR

OPT DSIC+EIIR = An EPIR auction + Entry Fees

- Cremer and Mclean add 'entry fees' to a second price auction:
 - Player i's entry fee, c_i(v_{-i}), depends on others' reports; always charged (win or lose)
 - For distributions that satisfy the CM condition, the expected revenue of a second price auction with optimal entry fees is the expected social welfare (thus optimal)

THM: For any distribution F, there exists a DSIC+EPIR auction and optimal entry fees that together extract the optimal DSIC+EIIR expected revenue.

• Given any DSIC+EPIR auction A, one can compute optimal entry fees for A using a simple and concise linear program. The question is, which A to use?

OPT DSIC+EIIR = An EPIR auction + Entry Fees

- Cremer and Mclean add 'entry fees' to a second price auction:
 - Player i's entry fee, c_i(v_{-i}), depends on others' reports; always charged (win or lose)
 - For distributions that satisfy the CM condition, the expected revenue of a second price auction with optimal entry fees is the expected social welfare (thus optimal)

THM: For any distribution F, there exists a DSIC+EPIR auction and optimal entry fees that together extract the optimal DSIC+EIIR expected revenue.

 Given any DSIC+EPIR auction A, one can compute optimal entry fees for A using a simple and concise linear program. The question is, which A to use?

The second price auction? **NO** (as we show)

The look-ahead auction? **NO** (as we show)

The optimal EPIR+DSIC auction? **NO** (as we show)

A simple approximation

• Let Ai denote the auction that always gives the item for free to player i and charges optimal entry fees from i. Then,

THM: For any F, $OPT_{EIIR}(F) < (n+1) \max \{ OPT_{EPIR}(F), A1, ..., An \}$

- For n=2, OPT_{EPIR}(F) is computationally efficient. For larger n, we can use the lookahead auction instead.
- Weaknesses:
 - Not interesting for large n (but even for n=2 nothing was previously known)
 - OPT_{FIIR}(F) requires DSIC, does this make sense? (BIC is implied by EIIR)

Summary

- Study single-item auctions with correlated private values; compare optimal revenue with ex-post individually rational vs. ex-interim individually rational auctions $(OPT_{EPIR}(F) \text{ vs. } OPT_{EIIR}(F))$
- Most of the AGT/CS literature uses OPT_{EPIR}(F) as the benchmark for optimal revenue with correlated values
- However our main result shows that $OPT_{EPIR}(F)$ might only give an unboundedly small fraction of $OPT_{EIIR}(F)$

Summary

- Study single-item auctions with correlated private values; compare optimal revenue with ex-post individually rational vs. ex-interim individually rational auctions $(OPT_{EPIR}(F) \text{ vs. } OPT_{EIIR}(F))$
- Most of the AGT/CS literature uses OPT_{EPIR}(F) as the benchmark for optimal revenue with correlated values
- However our main result shows that $OPT_{EPIR}(F)$ might only give an unboundedly small fraction of $OPT_{FIIR}(F)$
- But some good news, if the expected social welfare is high enough, the expected revenue of the look-ahead auction gives a bounded approximation of $OPT_{FIIR}(F)$
 - If the expected social welfare (max. value) is at least 0.0013 times the maximal element in the support, then the expected revenue of the look-ahead auction is at least 1/10 of $\mathsf{OPT}_{\mathsf{FIIR}}(\mathsf{F})$
- We're missing a better understanding of the structure of optimal EIIR auctions; entry fees play a key role