Cooperative Game Theory Tutorial

Reshef Meir

Game theory

Non-cooperative Game theory

- actions are taken by individual agents
- No binding agreements

Cooperative/coalitional Game theory

- actions are taken by groups of agents
- binding agreements are possible

7 players

Actions: attack, move, ship...

Utilities: Acquired land. Affected by the joint actions of everyone.

7 players

"Actions": form coalitions

Value: Maximum land the coalition can guarantee

Game theory

Non-cooperative Game theory

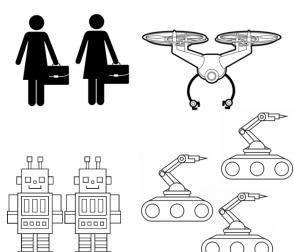
- actions are taken by individual agents
- No binding agreements

Players: rescue workers and robots of different types

Actions: drill, seek, dig, call,

pull, move, ...

Utilities: ?



Cooperative/coalitional Game theory

- actions are taken by groups of agents
- binding agreements are possible

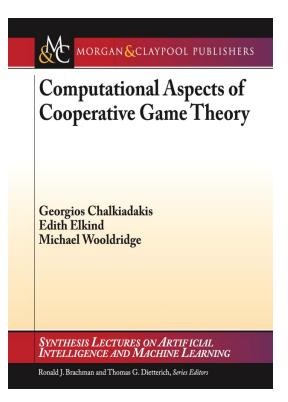
Players: rescue workers and robots of different types

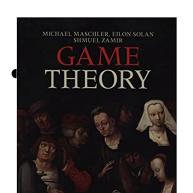
"Actions": form coalitions

Value: ?

Main Reference

- "Computational Aspects of Cooperative Game Theory"
- Chalkiadakis, Elkind, Wooldridge
- Published by Morgan&Claypool in 2011
- Available online
- This tutorial is based on authors' slides





advanced material: Machler Zamir Solan

Phases of a Coalitional Game

- Agents form coalitions (teams)
- Each coalition implicitly chooses its action
- Transferable utility (TU) games: the choice of coalitional actions (by all coalitions) determines the payoff of each coalition
 - the members of the coalition then need to divide this joint payoff

Example 1: Buying Ice-Cream

- n children, each has some amount of money
 - the i-th child has b_i dollars
- three types of ice-cream tubs are for sale:
 - Type 1 costs \$7, contains 500g
 - Type 2 costs \$9, contains 750g
 - Type 3 costs \$11, contains 1kg
- children have utility for ice-cream, and do not care about money
- The payoff of each group: the maximum quantity of ice-cream the members of the group can buy by pooling their money
- The ice-cream can be shared arbitrarily within the group

Example 2: Search-and-Rescue by

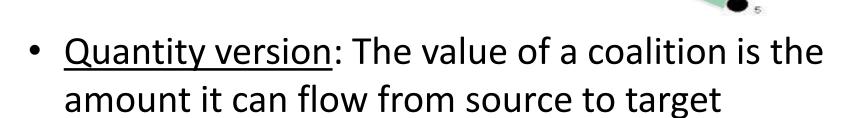
teams of robots

- n robots, each has a set of skills (climb, dig, etc.)
- Each rescue scenario requires a set of skills
- The value of a team of k robots, is the number of different rescue scenarios it can handle

- What is the best partition to teams?
- If robots are made by different companies, how much each company should get?

Example 3: Flow games

 Each agent controls an edge (or several edges) in a weighted flow graph



• Threshold version: The value is 1 if the coalition can flow more than q, and 0 otherwise.

Challenges in TU games

- Representation
 - How to represent the values of all 2^n coalitions?
- Coalition formation
 - What coalitions are likely to form?
- Payoff allocation

Part II:
Stable allocations
the core

Part III:
Fair allocations
Shapley value

Part I: Definitions and Examples

Transferable Utility Games Formalized

- A transferable utility game is a pair (N, v), where:
 - $-N = \{1, ..., n\}$ is the set of players
 - $-v: 2^{N} \rightarrow \mathbb{R}$ is the characteristic function
 - for each subset of players C, v(C) is the amount that the members of C can earn by working together
 - usually it is assumed that v is
 - normalized: $v(\emptyset) = 0$
 - non-negative: $v(C) \ge 0$ for any $C \subseteq N$
 - monotone: $v(C) \le v(D)$ for any C, D such that $C \subseteq D$
- A coalition is any subset of N;
 N itself is called the grand coalition

Ice-Cream Game: Characteristic Function

w = 500

$$p = $7$$

w = 750

$$p = $9$$

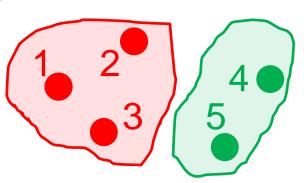
w = 1000

$$p = $11$$

- $v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0$
- $v({C, M}) = 750, v({C, P}) = 750, v({M, P}) = 500$
- $v({C, M, P}) = 1000$

Transferable Utility Games: Outcome

- An outcome of a TU game G = (N, v) is a pair (CS, x), where:
 - $CS = (C_1, ..., C_k)$ is a coalition structure, i.e., partition of N into coalitions:
 - $\cup_i C_i = N$, $C_i \cap C_j = \emptyset$ for $i \neq j$
 - $-\underline{\mathbf{x}} = (\mathbf{x}_1, ..., \mathbf{x}_n)$ is a payoff vector, which distributes the value of each coalition in CS:
 - $x_i \ge 0$ for all $i \in N$
 - $\Sigma_{i \in C} x_i = v(C)$ for each C is CS



Transferable Utility Games: Outcome

Example:

- suppose $v(\{1, 2, 3\}) = 9$, $v(\{4, 5\}) = 4$
- then (({1, 2, 3}, {4, 5}), (3, 3, 3, 3, 1)) is an outcome
- (({1, 2, 3}, {4, 5}), (2, 3, 2, 3, 3))is NOT an outcome: transfersbetween coalitions are not allowed
- An outcome (CS, x) is called an imputation if it satisfies individual rationality:
 x_i ≥ v({i}) for all i ∈ N
- Notation: we will denote $\sum_{i \in C} x_i$ by x(C)

Some classes of games with examples

Simple games

Superadditive games

Convex (supermodular) games

Simple Games

- <u>Definition</u>: a game G = (N, v) is simple if
 - $-v(C) \in \{0, 1\}$ for any $C \subseteq N$
 - v is monotone: if v(C) = 1 and $C \subseteq D$, then v(D) = 1
- A coalition C in a simple game is said to be winning if v(C) = 1 and losing if v(C) = 0

Examples:

The ice cream game with 1 pack

Weighted Voting Games

Weighted Voting Games

- n parties in the parliament
- Party i has w_i representatives



- A coalition of parties can form a government only if its total size is at least q
 - usually q ≥ $\sum_{i=1,...,n} w_i / 2 \rfloor + 1$: strict majority
- Notation: $w(C) = \sum_{i \in C} w_i$
- This setting can be described by a game G = (N, v), where
 - $N = \{1, ..., n\}$
 - -v(C) = 1 if $w(C) \ge q$ and v(C) = 0 otherwise
- Observe that weighted voting games are simple games
- Notation: $G = [q; w_1, ..., w_n]$
 - q is called the quota

Weighted Voting Games: UK

- United Kingdom, 2005:
 - -650 seats, q = 326
 - Conservatives (C): 225
 - Labour (L): 325
 - Liberal Democrats (LD): 62
 - 8 other parties (O), with a total of 38 seats
- $N = \{C, L, LD, O_1, ..., O_8\}$
- for any $X \subseteq N$, v(X) = 1 if and only if $L \in X$
- L is a <u>veto</u> player

Superadditive and Convex Games

- <u>Definition</u>: a game G = (N, v) is called superadditive if v(C U D) ≥ v(C) + v(D) for any two <u>disjoint</u> coalitions C and D
- Definition: a game G = (N, v) is called convex if v(C U D)+v(C ∩ D)≥ v(C) + v(D) for any two coalitions C and D
- In convex [superadditive] games, two [disjoint] coalitions can always merge without losing value; hence, we can assume that players form the grand coalition N

Examples

- Example 1: $v(C) := |C|^2$
 - Convex since

$$v(C \cup D) = (|C| + |D|)^2 \ge |C|^2 + |D|^2 - |C \cap D| = v(C) + v(D) - v(C \cap D)$$

Example 2: The ice cream game

Not convex

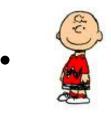
 $v(CM \cup MP) + v(CM \cap MP) = 1000 + 0 < v(CM) + v(MP)$

- Superadditive since any two disjoint sets can still buy the same amount of ice cream (avoid pooling money) Part II: Stability

Overview

- The Core
- Examples in different types of games
- Games on graphs

What Is a Good Outcome?



w = 750

- $v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0$
- $v({C, M}) = 500, v({C, P}) = 500, v({M, P}) = 0$
- $v({C, M, P}) = 750$
- This is a superadditive game
 - Grand coalition is formed (buy the medium pack)
 - outcomes are payoff vectors
- How should the players share the ice-cream?
 - if they share as (200, 200, 350), Charlie and Marcie can get more ice-cream by buying a 500g tub on their own, and splitting it equally
 - the outcome (200, 200, 350) is not stable!

Transferable Utility Games: Stability

 <u>Definition</u>: the core of a game is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from

$$core(G) = \left\{ \begin{array}{l} \underline{\mathbf{x}} & \left[\begin{array}{l} x_i \geq 0 & \text{for any i in N,} \\ \Sigma_{i \in N} \ x_i = v(N), & \text{(all value is allocated)} \\ \Sigma_{i \in C} \ x_i \geq v(C) \ \text{for any C} \subseteq N & \text{(no deviations)} \end{array} \right\}$$

 each coalition earns at least as much as it can make on its own

Ice-Cream Game: Core

w = 750

- $v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0, v(\{C, M, P\}) = 750$
- $v({C, M}) = 500, v({C, P}) = 500, v({M, P}) = 0$
- (200, 200, 350) is not in the core:
 - $v(\{C, M\}) > x_C + x_M$
- (250, 250, 250) is in the core:
 - no subgroup of players can deviate so that each member of the subgroup gets more
- (750, 0, 0) is also in the core:
 - Marcie and Pattie cannot get more on their own!

Games with Empty Core

- The core is a very attractive solution concept
- However, some games have empty cores

- consider an outcome x
- $-x_i > 0$ for some i, so $x(N\{i\}) < 750$, yet $v(N\{i\}) = 750$
- There are also other ways to define stable solutions – this class will focus on the core

The Core - Overview

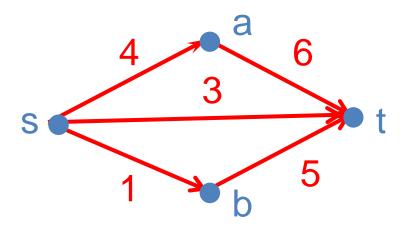
- Definition
- Examples in different types of games
 - Routing (flow) games
 - Weighted voting games
 - Induced subgraph games
 - Assignment games
- General characterization of the core?
- Restricted cooperation

Weighted Voting Games

- WVG are simple games
- Computing the core/checking if an outcome is in the core:
 - Equivalent to check who are the veto players
 - Player i is veto, iff $w(N\{i\}) < q$
 - Easy to compute

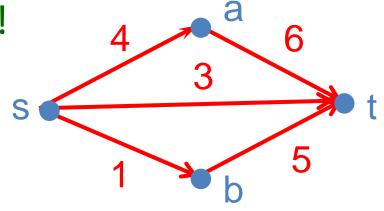
Network Flow Games

- Agents are edges in a network with source s and sink t
 - edge e_i has capacity c_i
- Value of a coalition = amount of s—t flow it can carry
 - $v({sa, at}) = 4, v({sa, at, st}) = 7$
- How to compute the value of a coalition?
- Can the core be empty?
 - Find a min-cut $A \subseteq N$
 - Pay $x_i = c_i$ to each $e_i \in A$
 - \underline{X} is in the core



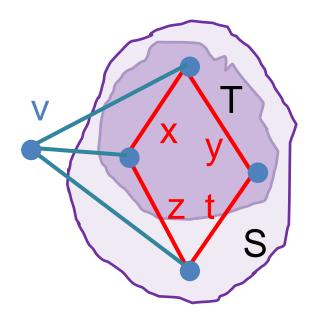
(Threshold) Network Flow Games

- Thresholded network flow games (TNFG): there exists a threshold T such that
 - v(C) = 1 if C can carry ≥ T units of flow
 - v(C) = 0 otherwise
- TNFG with T = 6
 - $v({sa, at}) = 0, v({sa, at, st}) = 1$
- WVG are just simple TNFG!
 - Parallel edges
 - Core may be empty



Induced Subgraph Games

- Players are vertices of a weighted graph
- Value of a coalition = total weight of internal edges
 - -v(T) = x+y, v(S) = x+y+z+t
- Models social networks
 - Facebook, LinkedIn
 - cell phone companies with free in-network calls



Induced Subgraph Games: Core [Deng, Papadimitriou'94]

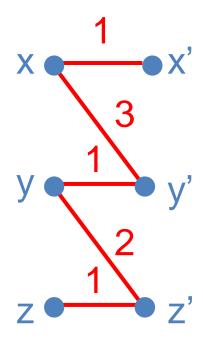
 If all edge weights are non-negative, the core is non-empty

- If weights can be negative, the game is not monotone
 - Theorem: Core is empty iff there is a negative cut

Assignment Games [Shapley & Shubik'72]

- Players are vertices of a bipartite graph (V, W, E)
- Value of a coalition = weight of the max-weight induced matching

$$-v({x, y, z}) = 0, v({x, x', y'}) = 3$$



- Generalization: matching games
 - same definition, but the graph need not be bipartite

General characterizations?

Simple Games

Convex games

Bondareva-Shapley theorem

Simple Games

- <u>Definition</u>: a game G = (N, v) is simple if
 - $-v(C)\in\{0,1\}$ for any $C\subseteq N$
 - v is monotone: if v(C) = 1 and $C \subseteq D$, then v(D) = 1
- A coalition C in a simple game is said to be winning if v(C) = 1 and losing if v(C) = 0
- Definition: in a simple game, a player i is a veto player if v(C) = 0 for any C ⊆ N\{i}
 - For monotone games, equivalent to $v(N\setminus\{i\}) = 0$
- <u>Theorem</u>: a simple game has a non-empty core iff it has a veto player. Further, a payoff vector $\underline{\mathbf{x}}$ is in the core iff $\mathbf{x}_i = \mathbf{0}$ for any non-veto player i.

Simple Games: Characterization of the Core

- Proof (<=):
 - suppose i is a veto player
 - consider a payoff vector $\underline{\mathbf{x}}$ with $\mathbf{x}_i = 1$, $\mathbf{x}_k = 0$ for $\mathbf{k} \neq \mathbf{i}$
 - no coalition C can deviate from x:
 - if $i \in C$, we have $\sum_{k \in C} x_k = 1 \ge v(C)$
 - if $i \notin C$, we have v(C) = 0
- Proof (=>): (no veto players)
 - consider an arbitrary payoff vector x:
 - we have $\sum_{k \in \mathbb{N}} x_k = v(\mathbb{N}) = 1$; thus $x_i > 0$ for some $i \in \mathbb{N}$
 - but then some $C \subseteq N \setminus \{i\}$ can deviate:
 - since i is not a veto, v(C) = 1, yet $x(C) \le x(N \setminus \{i\}) = 1 x_i < 1$

Convex Games: Non-Emptiness of The Core

- Proposition: any convex game has a non-empty core
- Proof:

```
- set x_1 = v(\{1\}),

x_2 = v(\{1, 2\}) - v(\{1\}),

...

x_n = v(N) - v(N\setminus\{n\})
```

• i.e., pay each player his marginal contribution to the coalition formed by his predecessors

```
- \underline{\mathbf{x}} is a payoff vector: x_1 + x_2 + ... + x_n = v(\{1\}) + v(\{1, 2\}) - v(\{1\}) + ... + v(N) - v(N\setminus\{n\}) = v(N)
```

- remains to show that $(x_1, x_2, ..., x_n)$ is in the core

Convex Games Have Non-Empty Core

Proof (continued):

```
-x_1 = v(\{1\}), x_2 = v(\{1, 2\}) - v(\{1\}), ..., x_n = v(N)-v(N\setminus\{n\})
- pick any coalition C = \{i, j, ..., s\}, where i < j < ... < s
– we will prove v(C) \le x_i + x_j + ... + x_s, i.e., C cannot deviate
- v(C) = v(\{i\}) + v(\{i, j\}) - v(\{i\}) + ... + v(C) - v(C\setminus\{s\})
     • v(\{i\}) = v(\{i\}) - v(\emptyset) \le v(\{1, ..., i-1, i\}) - v(\{1, ..., i-1\}) = x_i
     • v(\{i, j\}) - v(\{i\}) \le v(\{1, ..., j-1, j\}) - v(\{1, ..., j-1\}) = x_i
     •
     • v(C) - v(C \setminus \{s\}) \leq v(\{1, ..., s-1, s\}) - v(\{1, ..., s-1\}) = x_s
- thus, v(C) \le x_i + x_i + ... + x_s
```

Consider a superadditive* TU game G=(N,v).
 Recall:

$$core(G) = \left\{ \underbrace{\mathbf{x}}_{i \in N} \begin{array}{l} x_i \geq 0 \quad \text{for any i in N,} \\ \sum_{i \in N} x_i = v(N), \qquad \text{(all value is allocated)} \\ \sum_{i \in C} x_i \geq v(C) \text{ for any } C \subseteq N \quad \text{(no deviations)} \end{array} \right\}$$

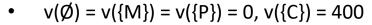
- These are all linear constraints!
- Thus the core is defined by a linear program

w = 400 w = 650 w = 1000

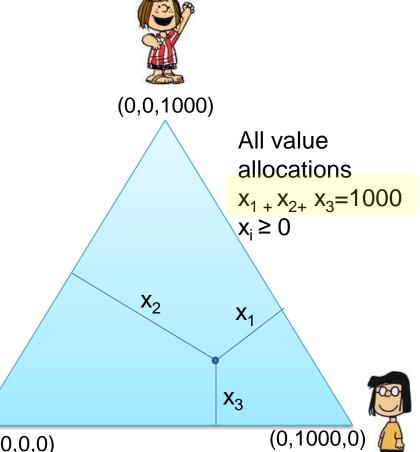
- $v(\emptyset) = v(\{M\}) = v(\{P\}) = 0, v(\{C\}) = 400$
- $v({C, M}) = 650, v({C, P}) = 650, v({M, P}) = 400$
- $v({C, M, P}) = 1000$

w = 400 w = 650 w = 1000

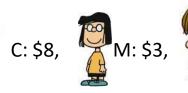
$$p = $13$$



- $v({C, M}) = 650, v({C, P}) = 650, v({M, P}) = 400$
- $v({C, M, P}) = 1000$



(1000,0,0)



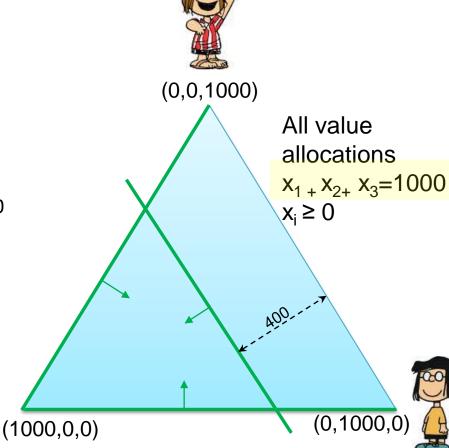
p = \$7

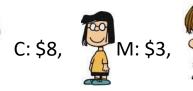
w = 400 w = 650 w = 1000

p = \$9

p = \$13

- $v({C, M}) = 650, v({C, P}) = 650, v({M, P}) = 400$
- $v({C, M, P}) = 1000$





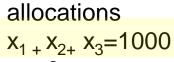
w = 400 w = 650 w = 1000

p = \$9



- $v({C, M}) = 650, v({C, P}) = 650, v({M, P}) = 400$
- $v({C, M, P}) = 1000$

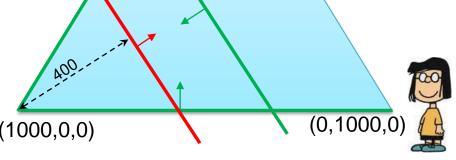
(0,0,1000)

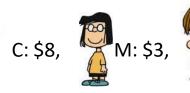


 $x_i \ge 0$

All value

(1000,0,0)





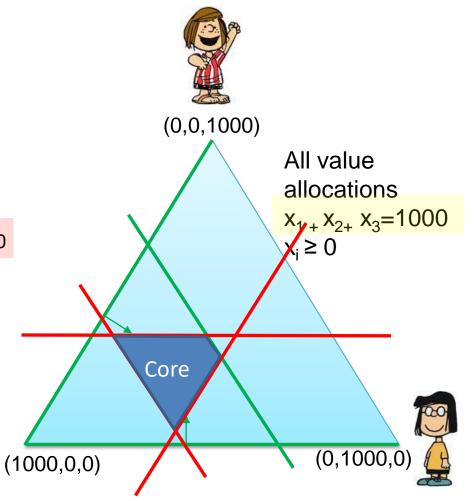
w = 400 w = 650 w = 1000

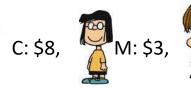
p = \$9

p = \$13

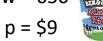
•
$$v(\emptyset) = v(\{M\}) = v(\{P\}) = 0, v(\{C\}) = 400$$

- $v({C, M}) = 650, v({C, P}) = 650, v({M, P}) = 400$
- $v({C, M, P}) = 1000$



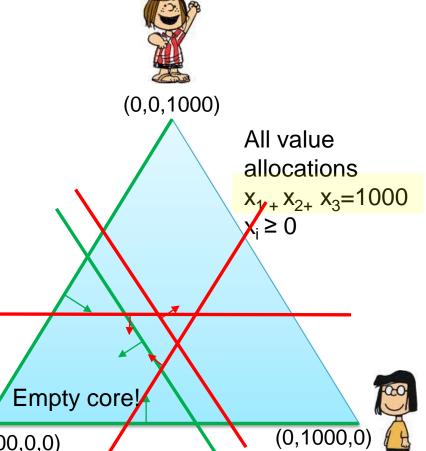


w = 550 w = 650 w = 1000



p = \$13

- $v({C, M}) = 650, v({C, P}) = 650, v({M, P}) = 550$
- $v({C, M, P}) = 1000$



(1000,0,0)

Consider a superadditive* TU game G=(N,v).
 Recall:

$$core(G) = \left\{ \begin{array}{l} \underline{x} & \left| \begin{array}{l} x_i \geq 0 & \text{for any i in N,} \\ \Sigma_{i \in N} \ x_i = v(N), & \text{(all value is allocated)} \\ \Sigma_{i \in C} \ x_i \geq v(C) \ \text{for any C} \subseteq N & \text{(no deviations)} \end{array} \right\}$$

- These are all linear constraints!
- Thus the core is defined by a linear program
- The dual program provides a characretization 52

Consider a weight vector over coalitions

$$\alpha: 2^N \setminus \emptyset \rightarrow [0,1]$$

A weight vector α is *balanced* if

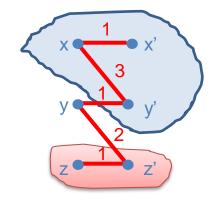
$$\forall i \in N \ \sum_{C:i \in N} \alpha_C = 1$$

BS Theorem: The core of (N,v) is nonempty iff for every balanced weight vector

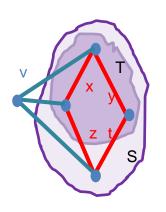
$$\sum_{C \subseteq N} \alpha_C \mathbf{v}(C) \le \mathbf{v}(N)$$

- How to prove that the core of a given game is nonempty?
 - Show an allocation in the core

- How to prove that the core of a given game is empty??
 - Show a (small) balanced weight vector that violates the condition
 - (not shown here: small witnesses exist)



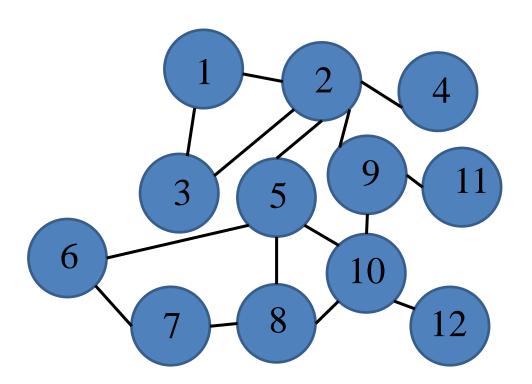
Games on graphs [Myerson'77]

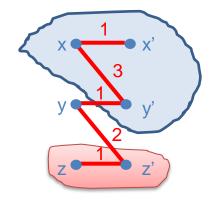


- Consider Induced subgraph games and Assignment games
- In both representations there is a graph (N,E), and
 v(S U T) = v(S) + v(T) if S,T are disconnected in (N,E)
- For any graph H=(N,E) and any game G, we can define a game G|_H.
- A coalition S is valid in G|_H only if S is connected in H.
- Otherwise v|_H (S)=0.

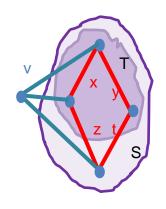
Restricted cooperation - example

- The coalition $\{2,9,10,12\}$ is allowed
- The coalition $\{3,6,7,8\}$ is not allowed





Games on graphs



 For any graph H=(N,E) and any game G, we can define a game G|_H.

<u>Theorem</u> [Demange'04]: if H=(N,E) is a **tree**, and the game G is **superadditive**, then G has a non-empty core

Extended to general graphs in [Meir, Zick, Elkind, Rosenschein'13]

Part III: Fairness

Marginal Contribution

- A fair payment scheme would reward each agent according to his contribution
- First attempt: given a game G = (N, v),
 set x_i = v({1, ..., i-1, i}) v({1, ..., i-1})
 - payoff to each player = his marginal contribution to the coalition of his predecessors
- We have x₁ + ... + x_n = v(N)
 <u>x</u> is a payoff vector
- However, payoff to each player depends on the order
- G = (N, v) - N = {1, 2}, v(\emptyset) = 0, v({1}) = v({2}) = 5, v({1, 2}) = 20 - x₁ = v(1) - v(\emptyset) = 5, x₂ = v({1, 2}) - v({1}) = 15

Average Marginal Contribution

- Idea: to remove the dependence on ordering, can average over all possible orderings
- G = (N, v)
 - $-N = \{1, 2\}, v(\emptyset) = 0, v(\{1\}) = v(\{2\}) = 5, v(\{1, 2\}) = 20$
 - -1, 2: $x_1 = v(1) v(\emptyset) = 5$, $x_2 = v(\{1, 2\}) v(\{1\}) = 15$
 - -2, 1: $y_2 = v(2) v(\emptyset) = 5$, $y_1 = v(\{1, 2\}) v(\{2\}) = 15$
 - $-z_1 = (x_1 + y_1)/2 = 10, z_2 = (x_2 + y_2)/2 = 10$
 - the resulting outcome is fair!
- Can we generalize this idea?

Shapley Value

- Reminder: a permutation of {1,..., n}
 is a one-to-one mapping from {1,..., n} to itself
 - let P(N) denote the set of all permutations of N
- Let $S_{\pi}(i)$ denote the set of predecessors of i in $\pi \in P(N)$

$$S_{\pi}(i)$$
 i ...

- For C \subseteq N, let $\delta_i(C) = v(C \cup \{i\}) v(C)$
- <u>Definition</u>: the Shapley value of player i in a game G = (N, v) with |N| = n is

$$\phi_i(G) = 1/n! \sum_{\pi: \pi \in P(N)} \delta_i(S_{\pi}(i))$$

• In the previous slide we have $\phi_1 = \phi_2 = 10$

Shapley Value: Probabilistic Interpretation

- \$\phi_i\$ is i's average marginal contribution to the coalition of its predecessors, over all permutations
- Suppose that we choose a permutation of players uniformly at random, among all possible permutations of N
 - then ϕ_i is the expected marginal contribution of player i to the coalition of his predecessors

Ice-Cream Game: Shapley Value

C: \$6

M: \$4

P: \$2

w = 500

$$p = $7$$

w = 750

$$p = $9$$

= 1000

= \$11

- C, M, P: $\delta_{C}(S_{\pi}(C)) = 0$
- C, P, M: $\delta_{C}(S_{\pi}(C)) = 0$
- M, C, P: $\delta_{\rm C}(S_{\pi}({\rm C})) = 750$
- P, C, M: $\delta_{\rm C}(S_{\pi}({\rm C})) = 500$
- M, P, C: $\delta_{C}(S_{\pi}(C)) = 1000$
- P, M, C: $\delta_{C}(S_{\pi}(C)) = 1000$

Charlie's Shapley value:

 $3250/6 \approx 542g$

Shapley Value: Properties (1)

- <u>Proposition</u>: in any game G, $\phi_1 + ... + \phi_n = v(N)$ $-(\phi_1, ..., \phi_n)$ is a payoff vector for the grand coalition
- Proof:

for a permutation π , let π_i denote player in position i. Then $\sum_{i=1, ..., n} \varphi_i = 1/n! \sum_{i=1, ..., n} \sum_{\pi: \pi \in P(N)} [v(S_{\pi}(i) \cup \{i\}) - v(S_{\pi}(i))] = 1/n! \sum_{\pi: \pi \in P(N)} \sum_{i=1, ..., n} [v(S_{\pi}(i) \cup \{i\}) - v(S_{\pi}(i))] = 1/n! \sum_{\pi: \pi \in P(N)} [v(\{\pi_1\}) - v(\emptyset) + ... + v(N) - v(N \setminus \{\pi_n\})] = 1/n! \sum_{\pi: \pi \in P(N)} v(N) = v(N)$

Shapley Value: Properties (2)

- Definition: a player i is a null player in a game
 G = (N, v) if v(C) = v(C U {i}) for any C ⊆ N
- <u>Proposition</u>: if a player i is a null player in a game G = (N, v) then $\phi_i = 0$
- Proof: if i is a null player, all summands in $\sum_{\pi:\pi\in P(N)} [v(S_{\pi}(i) \cup \{i\}) v(S_{\pi}(i))]$ equal 0
 - converse is only true if the game is monotone:
 - N = $\{1, 2\}$, $v(\{1\}) = v(\{2\}) = 1$, $v(\emptyset) = v(\{1, 2\}) = 0$
 - $\phi_1 = \phi_2 = 0$, but 1 and 2 are not null players

Shapley Value: Properties (3)

- Definition: given a game G = (N, v), two players i and j are said to be symmetric if v(C U {i}) = v(C U {j}) for any C ⊆ N\{i, j}
- Proposition: if i and j are symmetric then $\phi_i = \phi_i$
- Proof sketch:
 - given a permutation π , let π' denote the permutation obtained from π by swapping i and j
 - mapping $\pi \to \pi'$ is a one-to-one mapping
 - we can show $\delta_i(S_{\pi}(i)) = \delta_i(S_{\pi'}(j))$

... j...i ..

Shapley Value: Properties (4)

- Definition: Let G₁ = (N, u) and G₂ = (N, v) be two games with the same set of players.
 Then G = G₁ + G₂ is the game with the set of players N and characteristic function w given by w(C) = u(C) + v(C) for all C⊆N
- Proposition: $\phi_i(G_1+G_2) = \phi_i(G_1) + \phi_i(G_2)$
- Proof: $\phi_i(G_1 + G_2) =$ $1/n! \sum_{\pi} [u(S_{\pi}(i) \cup \{i\}) + v(S_{\pi}(i) \cup \{i\}) u(S_{\pi}(i)) v(S_{\pi}(i))]$ $= 1/n! \sum_{\pi} [u(S_{\pi}(i) \cup \{i\}) u(S_{\pi}(i))] +$ $1/n! \sum_{\pi} [v(S_{\pi}(i) \cup \{i\}) v(S_{\pi}(i))] = \phi_i(G_1) + \phi_i(G_2)$

Axiomatic Characterization

- Properties of Shapley value:
 - 1. Efficiency: $\phi_1 + ... + \phi_n = v(N)$
 - 2. Null player: if i is a null player, $\phi_i = 0$
 - 3. Symmetry: if i and j are symmetric, $\phi_i = \phi_i$
 - 4. Additivity: $\phi_i(G_1+G_2) = \phi_i(G_1) + \phi_i(G_2)$
- Theorem: Shapley value is the only payoff distribution scheme that has properties
 (1) (4)

From Permutations to Coalitions

- $\phi_i(G) = 1/n! \sum_{\pi: \pi \in P(N)} \delta_i(S_{\pi}(i))$
- n! terms
- Equivalent definition:

$$\phi_{i}(G) = \sum_{C \subset N \setminus \{i\}} |C|!(n-|C|-1)!/n! \ \delta_{i}(C)$$

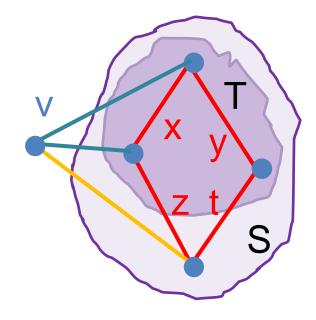
- i appears right after C in |C|!(n-|C|-1)! permutations
- 2ⁿ⁻¹ terms

C i N\(C U {i})

Induced Subgraph Games

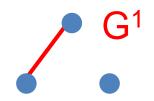
- Players are vertices of a weighted graph
- Value of a coalition = total weight of internal edges

$$-v(T) = x + y, v(S) = x + y + z + t$$



Induced Subgraph Games: Shapley Value

- Shapley value in ISGs is easy to compute:
 - let E = {e¹, ..., e^k} be the list of edges of the graph
 - let G^j be the induced subgraph game on the graph that contains edge e^j only
 - we have $G = G^1 + ... + G^k$
 - $-\phi_i(G^j) = w(e^j)/2$ if e^j is adjacent to i and 0 otherwise
 - $-\phi_i(G)$ = (weight of edges adjacent to i)/2



Shapley Value in Weighted Voting Games

- In a simple game G = (N, v), a player i is said to be pivotal
 - for a coalition $C \subseteq N$ if v(C) = 0, $v(C \cup \{i\}) = 1$
 - for a permutation $\pi \in P(N)$ if he is pivotal for $S_{\pi}(i)$
- In simple games player i's Shapley value =
 Pr[i is pivotal for a random permutation]
 - measure of voting power
- Shapley value is widely used to measure power in various voting bodies

- United Kingdom, 2010:
 - -650 seats, q = 326
 - Conservatives (C): 306
 - Labour (L): 258
 - Liberal Democrats (LD): 57
 - Scottish National Party (SNP): 6
 - Democratic Unionist Party (DUP): 8
 - 6 other parties (O), with a total of 15 seats
- DUP is pivotal for {L, LD, SNP} and {C, O}
- $\phi_{\text{DUP}} = 1/(720)(3!2!+2!3!) = 1/30$

- United Kingdom, 2010:
 - -650 seats, q = 326
 - Conservatives (C): 306
 - Labour (L): 258
 - Liberal Democrats (LD): 57
 - Scottish National Party (SNP): 6
 - Democratic Unionist Party (DUP): 8
 - 6 other parties (O), with a total of 15 seats
- L and LD are symmetric, so have same Shapley values

- United Kingdom, 2015:
 - -650 seats, q = 326
 - Conservatives (C): 330
 - Labour (L): 232
 - Scottish National Party (SNP): 56
 - Liberal Democrats (LD): 8
 - Democratic Unionist Party (DUP): 8
 - 7 other parties (O), with a total of 16 seats
- C is a veto player, all others are null players
- $\phi_C = 1$, other parties' values are 0

- United Kingdom, 2017:
 - -650 seats, q = 326
 - Conservatives (C): 317
 - Labour (L): 262
 - Scottish National Party (SNP): 35
 - Liberal Democrats (LD): 12
 - Democratic Unionist Party (DUP): 10
 - 9 other parties (O), with a total of 14 seats
- C is pivotal for every coalition apart from {L, SNP, LD, DUP, O} and Ø
- $\phi_C = 1/(720)(6! 2*5!) \approx 0.67$

- United Kingdom, 2017:
 - -650 seats, q = 326
 - Conservatives (C): 317
 - Labour (L): 262
 - Scottish National Party (SNP): 35
 - Liberal Democrats (LD): 12
 - Democratic Unionist Party (DUP): 10
 - 9 other parties (O), with a total of 14 seats
- players L, SNP, LD, DUP, O are symmetric
- $\phi_1 = 1/(720)(6! 4*5!)/5 \approx 0.06$

Computational Issues in Coalitional Games

- Problem 1: the naive representation of a coalitional game is exponential in the number of players n
 - need to list values of all coalitions
- Problem 2: We are usually interested in algorithms whose running time is polynomial in n
 - Checking stability → go over 2ⁿ coalitions
- So what can we do?

Part IV:
Representation
and
Computation

Overview

- Introduction
- Definitions
- The Core
- Representations of games
 - Representation types
 - Simple games
 - Characterization of the core
- Computational and algorithmic questions
- Examples in different types of games

How to Deal with Representation Issues?

- Strategy 1: oracle representation
 - assume that we have a black-box poly-time algorithm that, given a coalition $C \subseteq N$, outputs its value v(C)
 - Useful for proofs on general games
- Strategy 2: restricted classes
 - consider games on combinatorial structures
 - Examples: Routing games, Rescue teams
 - problem: not all games can be represented in this way
- Strategy 3: give up on worst-case succinctness
 - devise complete representation languages that allow for compact representation of interesting games
 - (next 2 slides)

Synergy Coalition Games [Conitzer & Sandholm'06]

- Superadditive game: v(C U D) ≥ v(C) + v(D) for any two disjoint coalitions C and D
- <u>Idea</u>: if a game is superadditive, and $v(C) = v(C_1) + ... + v(C_k)$ for any partition $(C_1, ..., C_k)$ of C (no synergy), no need to store v(C)
- Representation: list v({1}), ... v({n}) and all synergies
- Succinct when there are few synergies
- This representation allows for efficient checking if an outcome is in the core.
- However, it is still hard to check if the core is non-empty.

Marginal Contribution Nets [leong&Shoham'05]

- Idea: represent the game by a set of rules of the form pattern → value
 - pattern is a Boolean formula over N
 - value is a number
- A rule applies to a coalition if its fits the pattern
- v(C) = sum of values of all rules that apply to C
- Example:

```
R<sub>1</sub>: (1 \land 2) \lor 5 \rightarrow 3

R<sub>2</sub>: 2 \land 3 \rightarrow -2

v(\{1, 2\}) = 3, v(\{2, 3\}) = -2, v(\{1, 2, 3\}) = 1
```