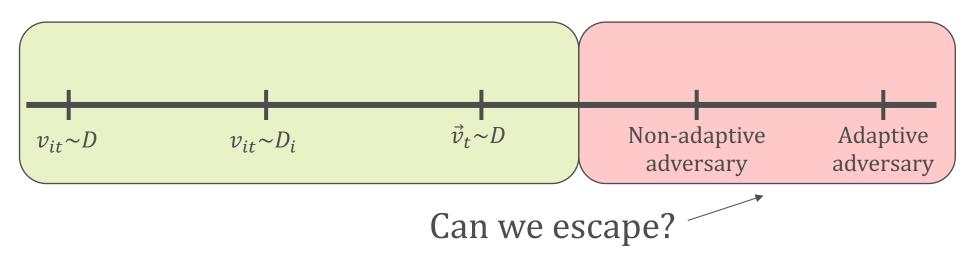
FAIR AND EFFICIENT ONLINE ALLOCATIONS: PART II

Alexandros (Alex) Psomas

Purdue University



OLD SETUP

- n additive agents and T indivisible items.
- For each agent i and each item $t \in T$, let v_{it} be the preference/valuation agent i for item t.
- The items arrive online (one per round) and the agents' values are revealed when the items arrive (and are chosen by a non-adaptive adversary)

NEW SETUP

- Two agents and T divisible items.
- For each agent i and each item $t \in T$, let v_{it} be the preference/valuation agent i for item t.
- The items arrive online (one per round) and the agents' values are revealed when the items arrive (and are chosen by a non-adaptive adversary).
- Agents' valuations are normalized so that $\sum_{t \in T} v_{it} = 1$.
- A fractional allocation \mathbf{x} defines fraction \mathbf{x}_{it} of item t agent i is going to receive.
- The values are additive, given an allocation rule x, the utility of agent i
 is defined as:

$$u_i(\mathbf{x}) = \sum_{t \in T} v_{it} x_{it}$$

SETUP

Our Goal: Maximize Social Welfare

$$\max_{\mathbf{X}} \sum_{i \in N} u_i(\mathbf{X})$$

Fairness Constraint: Fair share

$$u_i(\mathbf{x}) \ge 1/2$$
 for all i

Feasibility Constraint:

$$\sum_{i \in N} x_{it} \le 1 \text{ for all } t$$

• Performance Measurement: we say some algorithm \mathcal{A} is an α -approximation to the **optimal social welfare** if:

$$\min_{\mathbf{V}} \frac{SW\left(\mathbf{x}^{\mathcal{A}}(\mathbf{v})\right)}{SW\left(\mathbf{x}^{\mathsf{OPT}}(\mathbf{v})\right)} \ge \alpha$$

ONLINE VS OFFLINE

Allocations	Agent 1	Agent 2	
Item 1	1	0	

Values	Agent 1	Agent 2	
Item 2	0.1	0.4	

Values	Agent 1	Agent 2
Item 1	0.9	0.6

What should we do?

Allocations	Agent 1 Agent 2		
Item 1	0.5	0.5	
Values	Agent 1	Agent 2	
Item 2	0.1	0.4	
Allocations	0.5	0.5	

Fair share is violated

Optimal Social Welfare =
$$0.9 + 0.4 = 1.3$$

Algorithm Output = 1
 $\alpha = 76.9\%$

ONLINE VS OFFLINE

Values	Agent 1	Agent 2	Allocations	Agent 1	Agent 2
Item 1	0.9	0.6		5/6	1/6
Item 2	0.1	0.4		0	1

Optimal Social Welfare = 0.9 + 0.4 = 1.3

Fair-share Optimal Welfare = 0.75 + 0.5 = 1.25

$$\alpha = 96.2\%$$

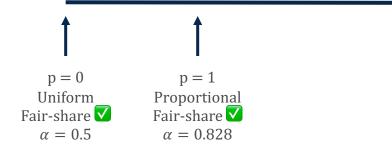
POLY-PROPORTIONAL ALGORITHM

Definition: Poly-proportional algorithms are a family of **non-adaptive**, **anonymous** algorithms that allocate an

item "proportionally" with some power p:
$$x_{it} = \frac{v_{it}^p}{\sum_{j=1}^n v_{jt}^p}$$

	Agent 1	Agent 2
Item 1	1	0
Item 2	0	1

Line of p values



p = 1: FAIR SHARE PROOF

Milne's inequality:

$$\sum_{j=1}^{m} \frac{x_j y_j}{x_j + y_j} \le \frac{(\sum_{j=1}^{m} x_j)(\sum_{j=1}^{m} y_j)}{\sum_{j=1}^{m} x_j + \sum_{j=1}^{m} y_j}$$

- Plugging in $x_j = v_{1,j}$ and $y_j = v_{2,j}$:
- LHS is the value of agent 1 for agent 2's allocation
- RHS = 1/2

POLY-PROPORTIONAL ALGORITHM

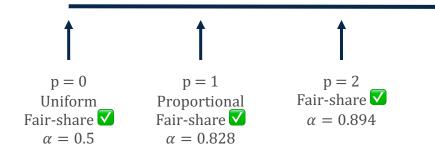
Definition: Poly-proportional algorithms are a family of **non-adaptive**, **anonymous** algorithms that allocate an

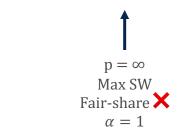
item "proportionally" with some power p: $x_{it} = \frac{v_{it}^p}{\sum_{j=1}^n v_{jt}^p}$

	Agent 1	Agent 2
Item 1	1	0
Item 2	0	1

Line of p values

p > 2
Fair-share





CRITICAL POINT

• Let's consider p = 3 on the following instance:

Values	Agent 1	Agent 2	Allocations	Agent 1	Agent 2	Utility of agent 2
Item 1	0.6386	0.5		0.6757	0.3243	0.1622
Item 2	0.3065	0.24		0.6756	0.3244	0.24
Item 3	0.0549	0.26		0	1	

Utility

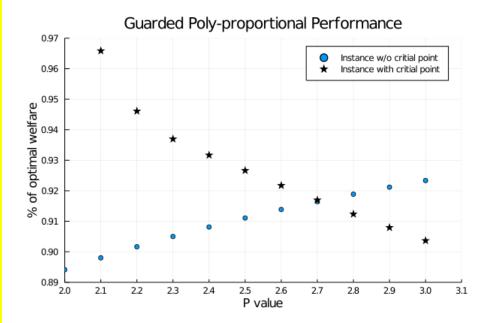
0.6386 0.5

GUARDED POLY-PROPORTIONAL

• **Critical Point**: At the end of some round *c*, the utility that agent *i* has received so far plus her value for all the remaining items is exactly 1/2, i.e.,

$$\sum_{t=1}^{c} v_{it} x_{it} + \sum_{t=c+1}^{T} v_{it} = 1/2$$

- Guarded Poly-Proportional Algorithms: Perform poly-proportional until one of the agent reaches critical point(if there is one), then fully allocates all the remaining items to that agent.
- Lemma: The guarded poly-proportional algorithm with any $p \ge 0$ satisfies fairshare.
- For $p \le 2$, critical point never occurs

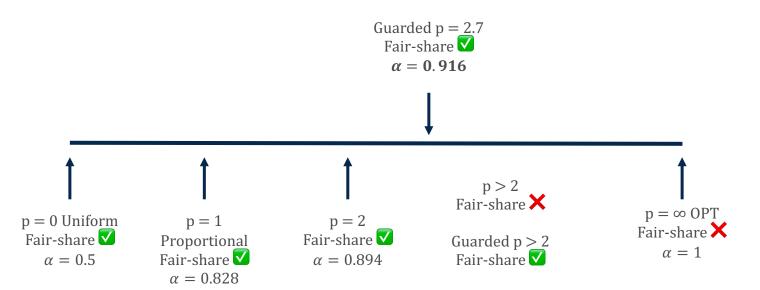


Guarded poly-proportional with p = 2.7:

$$\alpha = 0.916$$

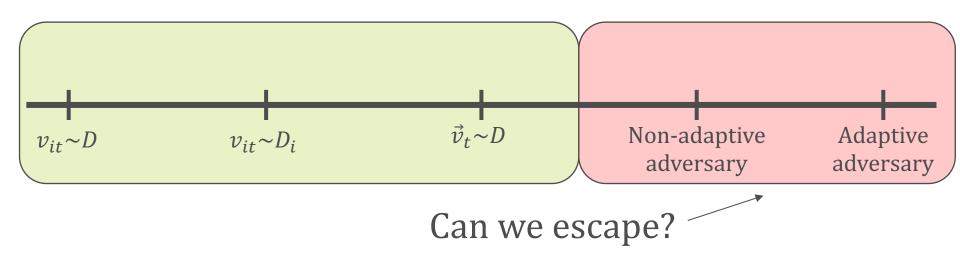
SUMMARY

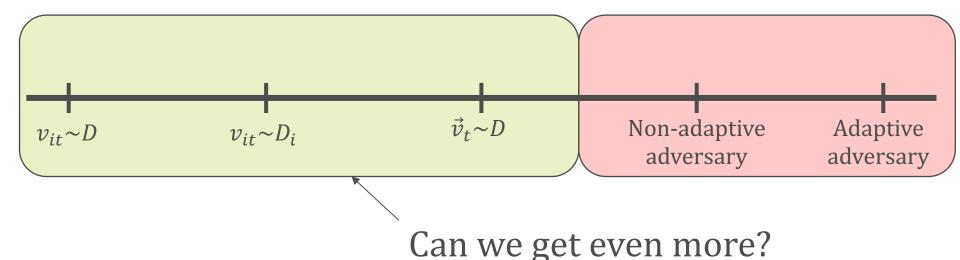
Theorem[GPT 2021]: There is no online fair-share algorithm that achieves an approximation to the optimal welfare better than **0.933**



MULTIPLE AGENTS CASE

- Caragiannis et al.(2012) prove that even if we knew all the values in advance, the *price of fairness* is $O\left(\frac{1}{\sqrt{n}}\right)$.
- The proportional algorithm matches this bound in an online manner, and therefore achieves the optimal approximation.
- If we were to restrict the benchmark to be the **optimal** social welfare subject to the fair-share constraint, still no online algorithm could achieve an approximation better than $\Omega\left(\frac{1}{\sqrt{n}}\right)$.





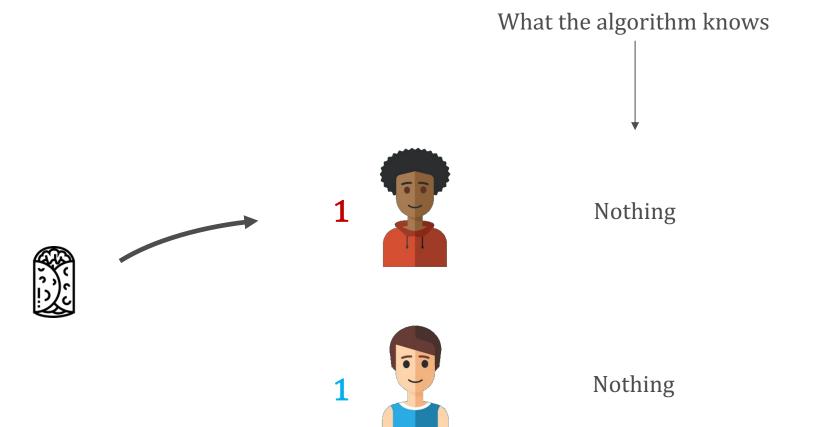
- Major issue with model so far: agents must be expressive
 - Reporting an exact numerical value for each item is too much for many applications of interest

OLD SETUP

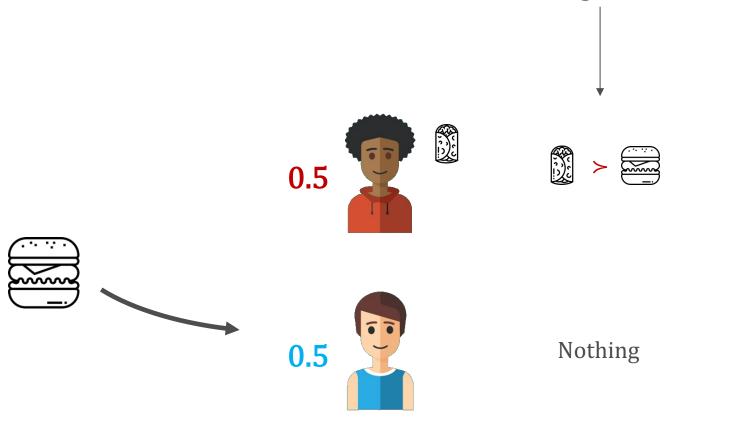
- n additive agents and T indivisible items.
- For each agent i and each item $t \in T$, let v_{it} be the preference/valuation agent i for item t.
- The items arrive online (one per round) and the agents' values are revealed when the items arrive
- There is a known distribution D_i for each agent i from which her values are drawn from

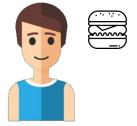
NEW SETUP: PARTIAL INFORMATION [BHP 2022; UNPUBLISHED]

- *n* additive agents and *T* indivisible items.
- For each agent i and each item $t \in T$, let v_{it} be the preference/valuation agent i for item t.
- The items arrive online (one per round) and the agents' values are realized when the items arrive
- There is a unknown distribution D_i for each agent i from which her values are drawn from
- · Our algorithms never learn the value of an item
- Instead, we learn the relative rank of agent i for item t,
 with respect to previously allocated items

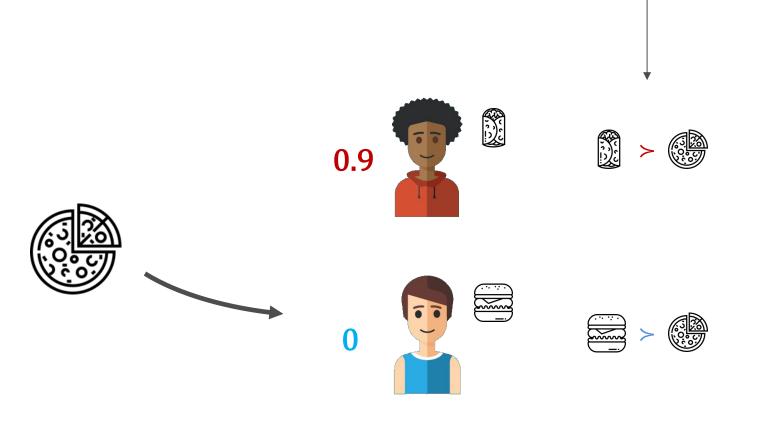


What the algorithm knows





What the algorithm knows



WHAT CAN WE DO?

- Empirical quantiles will be important for us
- Given a fresh item t, we will try to estimate its true quantile value $q_{i,t} = \Pr[D_i \le v_{i,t}]$
- We will do almost as well as an ideal algorithm that has access to true quantiles

IDEAL ALGORITHMS

- Quantile maximization: allocate each item to the agent with the highest quantile)
- *q*-threshold: allocate each item uniformly at random among agents whose quantile is at least *q*.
- <u>Lemma[DGKPS 14]</u>: Both algorithms are **strongly** envy-free with high probability.
- <u>Lemma:</u> The $\frac{n-1}{n}$ -threshold algorithm guarantees a $\left(1-\frac{1}{e}\right)^2 \approx 0.4$ approximation to welfare in the i.i.d. setting
- Property \mathcal{P}^* : if there is exactly one agent whose quantile is at least 1-1/n, she gets the item
- <u>Lemma:</u> Every algorithm that satisfies \mathcal{P}^* guarantees a $1/e \approx 0.36$ approximation to welfare in the non-i.i.d. setting.

WHAT CAN WE NOT DO?

• **Theorem**: Even for n = 2 agents, there is no algorithm \mathcal{A} that is **one-swap Pareto** efficient and envy-free whp, even when agents values are drawn i.i.d. from a known distribution D.

Proof sketch:

- The first item must be allocated arbitrarily (e.g. to agent 1 wlog), since no information is available
- With a constant probability, agent 2 really likes the item (her value is in the top 0.1 quantile), but agent 1 does not (her value is in the bottom 0.1 quantile).
- Our first decision is an irrevocable mistake: the first item we give to agent 2 has a constant probability of having the opposite quantiles (high for 1, low for 2)
 - And, agent 2 should get items in order to satisfy EF whp

Algorithm 1

- For epoch k = 1, 2, ...:
 - Explore $(n \cdot k^4 \text{ items})$:
 - Give k^4 to each agent
 - Exploit (k^8 items):
 - Each item g goes to the agent with the highest empirical quantile, with respect to the exploration phase of epoch k

- Giving m (random) items to each agent, we can get (probabilistic) bounds on the empirical quantile of fresh items
 - "The sample is ϵ -accurate with probability at least $1-\delta$ "
 - \circ ϵ -accurate: the relative rank of a fresh item is correct with probability at least $1-\epsilon$
- However, we still need epochs!
- The underlying distribution is unknown, so we cannot fix a target accuracy even when shooting for a constant approximation to efficiency

Algorithm 1

- For epoch k = 1, 2, ...:
 - Explore $(n \cdot k^4 \text{ items})$:
 - Give k^4 to each agent
 - Exploit (k^8 items):
 - Each item g goes to the agent with the highest empirical quantile, with respect to the exploration phase of epoch k

Lemma: The allocation of Algorithm 1 differs from that of the quantile maximization algorithm after T steps by at most f(T) items, where $f(T) \in O\left(poly(n) \cdot T^{\frac{15}{16}}\right)$.

Algorithm 1

- For epoch k = 1, 2, ...:
 - Explore $(n \cdot k^4 \text{ items})$:
 - Give k^4 to each agent
 - Exploit (k^8 items):
 - Each item g goes to the agent with the highest empirical quantile, with respect to the exploration phase of epoch k

Theorem: In the i.i.d. model Algorithm 1 gives a $(1 - \epsilon)$ -approximation to welfare for all $\epsilon > 0$, and is envy-free, with high probability.

Algorithm 1

- For epoch k = 1, 2, ...:
 - Explore $(n \cdot k^4 \text{ items})$:
 - Give k^4 to each agent
 - Exploit (k^8 items):
 - Each item g goes to the agent with the highest empirical quantile, with respect to the exploration phase of epoch k

<u>Theorem:</u> In the non i.i.d. model Algorithm 1 gives a 1/e-approximation to welfare for all $\epsilon > 0$, and is envy-free, with high probability.

A MATCHING LOWER BOUND

- Theorem: In the non i.i.d. model, no algorithm is EF and 0.81-PO with probability p > 2/3, even for n = 2 agents
- Sketch:
 - We consider two distributions $D_{flat} = U[1 w, 1]$ and $D_{skewed} = 1$ w.p. z (and 0 w.p. 1 z)
 - ∘ The algorithm must be EF + c-PO with probability 2/3 at time $t \ge T^*$, for some T^* , for each combo of distributions for the agents
 - With constant probability, at time t, the number of items with high quantiles for each agent is near its expectation
 - E.g. Number of items of agent 1 with quantile at least 1-z is $z\pm\delta$
 - Via union bound, there must exist a sequence of items, where a number of things happen: the algorithm satisfies the properties for all combos of distributions, and the sample is "nice"
 - Envy-freeness implies a certain distribution of the high quantile items; we give a Pareto improvement.

PUSHING THE LIMITS EVEN MORE

- Partial information is great
- However, perhaps it is still unreasonable to expect comparisons with all previously allocated items
- What can we do with a fixed memory?
 - An agent can compare fresh items only with items in her memory
 - An algorithm in this model can decide to replace an item in memory with a fresh item
- What can we do with a memory of one item?

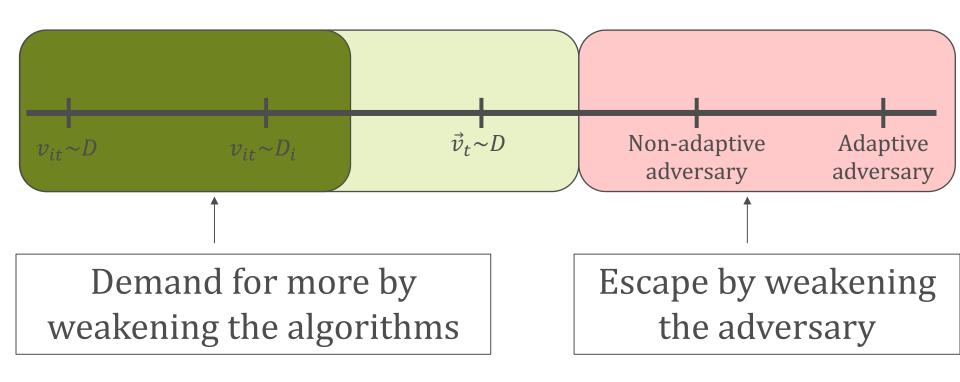
A LOWER BOUND

- Theorem: In the i.i.d. model, given a memory of one item per agent, there is no algorithm \mathcal{A} that is 0.999-welfare maximizing with high probability
- So, constant approximations are necessary

A MATCHING UPPER BOUND

- Theorem: There exists an algorithm that achieves envy-freeness and a $\left(1-\frac{1}{e}\right)^2\approx 0.4$ approximation to welfare, with high probability, in the i.i.d. model.
 - \circ The approximation is 1/e in the non-i.i.d. model
- Algorithm 2 is similar to Algorithm 1: exploration & exploitation phases
 - We update the memory, and then check if the quantile of the item in memory is useful (close to the ideal $q^* = 1 1/n$)
 - But, we need to account for more things going wrong
 - Could be that the item in memory is bad, or that the sample we use to check is bad

SUMMARY



REFERENCES

- Fair and Efficient Online Allocations with Normalized Valuations. Gkatzelis, Psomas, Tan. AAAI 2021
- Dynamic Fair Division with Partial Information. Benade, Halpern, Psomas. Under submission.
- The efficiencyof fair division. Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou. TCS 2012

THANK YOU!