FAIR AND EFFICIENT ONLINE ALLOCATIONS: PART I

Alexandros (Alex) Psomas
Purdue University

FAIR DIVISION TEXTBOOK TREATMENT

• INPUT:

- The resources we are dividing
 - E.g. *m* indivisible items
- The agents and their utility structure
 - E.g. n additive agents and a value $v_{i,j}$ for each agent i and item j
- Constraints on the output (fairness, efficiency, etc)
 - E.g. EF1

• OUTPUT:

 An allocation of the resources that (approximately) satisfies the constraints

FAIR DIVISION

- Standard real-world motivations:
 - Inheritance, Divorce settlements
 - Housing
 - Dividing land/airspace
 - Computational resources
 - Food donations
 - Kidney exchanges
 - Organ/blood donations

FAIR DIVISION

- Standard real-world motivations:
 - Inheritance, Divorce settlements
 - Housing
 - Dividing land/airspace
 - Computational resources
 - Food donations
 - Kidney exchanges
 - Organ/blood donations

Not really oneshot problems

DYNAMIC FAIR DIVISION

Static resources, Dynamic Agents Dynamic resources,
Static Agents

Dividing land/airspace
Computational resources
Housing

Food donations
Blood donations

Hybrids

Kidney exchanges
Organ/blood donations

DYNAMIC FAIR DIVISION

Static resources, Dynamic Agents Dynamic resources,
Static Agents

Dividing land/airspace
Computational resources
Housing

Food donations
Blood donations

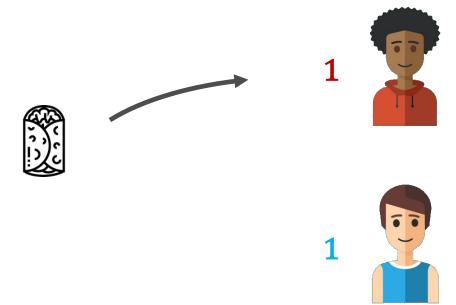
This talk

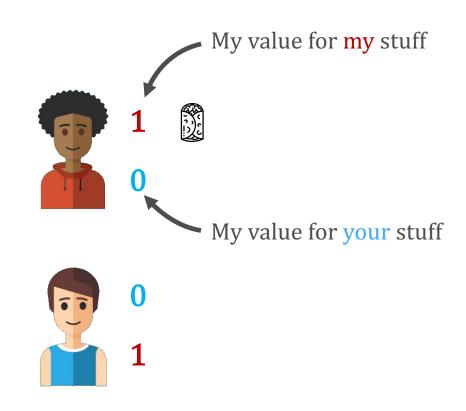
Hybrids

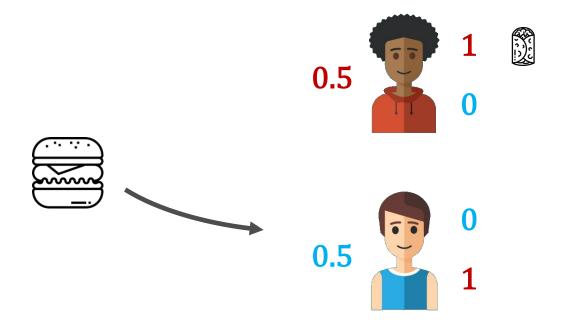
Kidney exchanges
Organ/blood donations

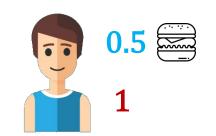
A FIRST PROBLEM

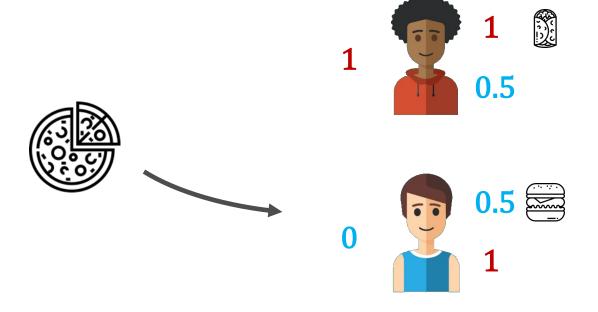
- There are *n* additive agents
- Indivisible items arrive over time
 - One in each stage for T stages
- Agent i has value $v_{it} \in [0,1]$ for item t that we learn when the item arrives











$$ENVY^{BR} = 1 - 0.5 = 0.5$$

A FIRST PROBLEM

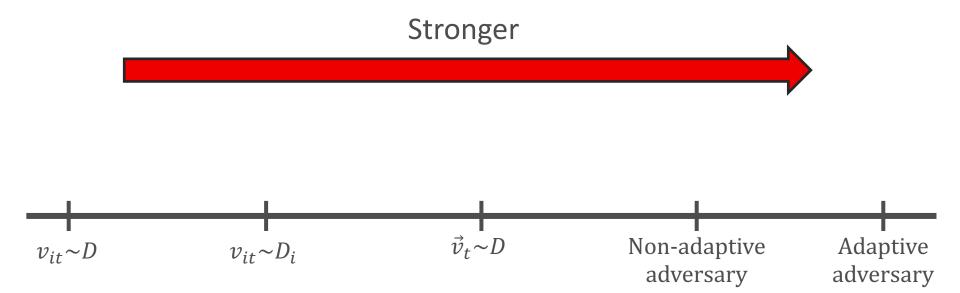
• For the static version, we can keep the maximum envy at most 1 (since $v_{i,t} \in [0,1]$)

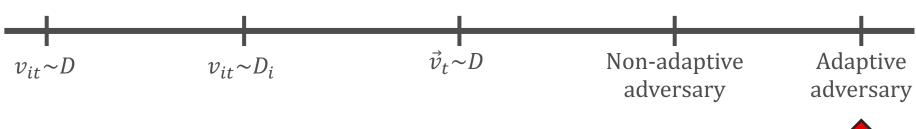
First goal:

 \circ Minimize the maximum envy at the final step T

A MODELING DECISION

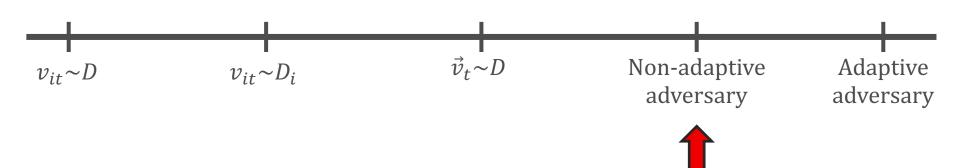
- How is v_{it} generated?
 - Classic online algorithms: adaptive and nonadaptive adversary
 - Bayesian adversaries: values are drawn from a distribution



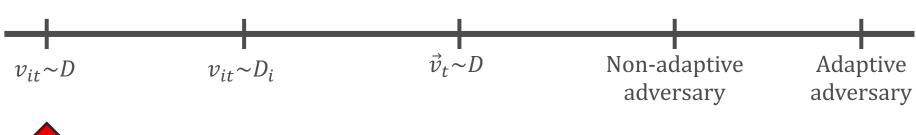


1

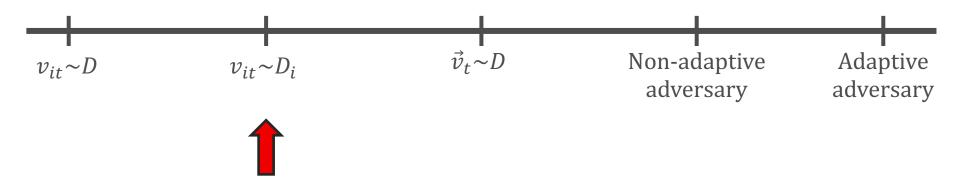
- We write down an algorithm
- The adversary decides the items' values after seeing our code, and the random outcomes of any coin flipping the algorithm does



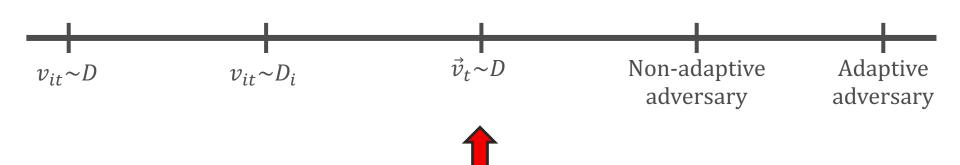
- We write down an algorithm
- The adversary decides the items' values after seeing our code, but not the random outcomes of the coin flipping the algorithm does



• Items' values are drawn independently and identically from a known distribution *D*, the same for all agents and all items



• Agent i's values are drawn independently and identically from a known, agent specific distribution D_i



- At each time step t, a vector of values $\vec{v}_t = (v_{1,t}, \dots, v_{n,t})$ is drawn from a known distribution D
- Values can be correlated in a given step (but independent over different time steps)

WHAT TO EXPECT: FAIRNESS

- Linear $(\Theta(T))$ envy is trivial
 - E.g. giving all items to the same agent
- Vanishing envy: $\lim_{T \to \infty} \frac{\mathbb{E}[\max_{i,j} ENVY_T^{ij}]}{T} = 0$

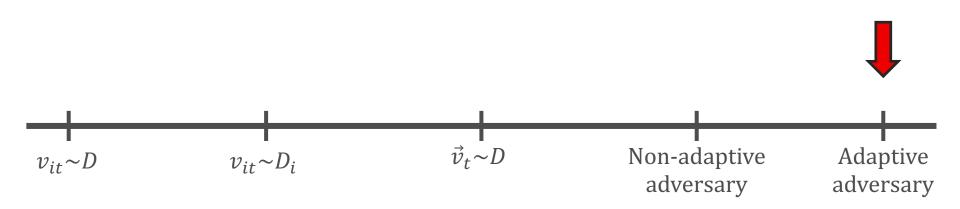
$$\circ \mathbb{E}\left[\max_{i,j} ENVY_T^{ij}\right] \in o(T)$$

- Envy free up to one item (EF1) with probability 1
- Envy free with high probability

WHAT TO EXPECT: EFFICIENCY

- Pareto efficiency:
 - An allocation is Pareto efficient if there is no allocation where all agents get more utility (with at least one agent getting strictly more utility)
- α -Pareto efficiency (Ruhe and Fruhwirth, 1990):
 - $^{\circ}$ An allocation is $\alpha\text{-Pareto}$ efficient if no allocation improves the utility of all agents by a factor of $1/\alpha$
 - E.g., a dictatorship is $\frac{1}{n} + \epsilon$ Pareto efficient

ADAPTIVE ADVERSARY

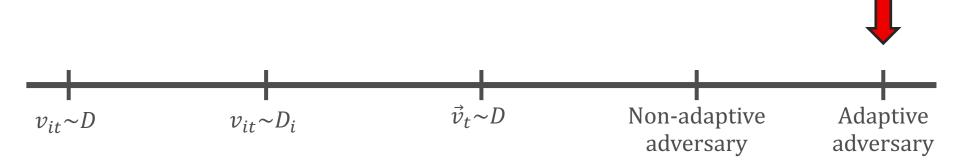


Algorithm: Random allocation

<u>Fairness</u>: $\mathbb{E}\left[\max_{i,j} Envy_{i,j}^T\right] \in \tilde{O}(\sqrt{T/n})$ [BKPP 2018]

<u>Efficiency</u>: $\frac{1}{n}$ -Pareto efficient ex-ante

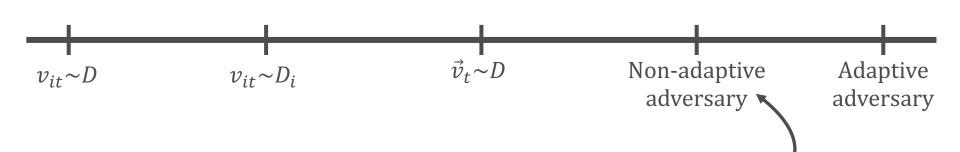
ADAPTIVE ADVERSARY



Theorem[BKPP 18]: An adaptive adversary can always ensure $\max_{i,j} \text{ENVY}_T^{ij} \in \Omega\left(\sqrt{T/n}\right)$.

- Thus, random allocation is asymptotically optimal!
- Good news: We can get the same guarantee with a deterministic algorithm!
 - Define a potential function $\phi(t)$
 - Allocate in a way that $\phi(t)$ is minimized
- *Question*: Can we improve the efficiency guarantee while maintaining optimal fairness?

WHAT ABOUT EFFICIENCY?



Theorem [ZP 20]: There is no algorithm that guarantees vanishing envy $(T^{1-\epsilon})$ and is $\left(\frac{1}{n}+\varepsilon\right)$ -Pareto efficient for any $\varepsilon>0$

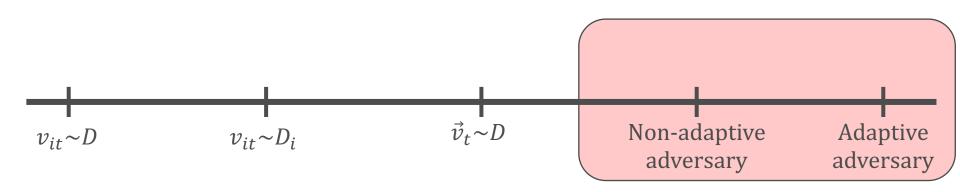
PROOF SKETCH OF THEOREM FOR ADAPTIVE ADVERSARY

- Assume algorithm A had envy $f(T) \in o(T)$ on all inputs, and was $\frac{1}{n} + \epsilon$ Pareto efficient.
- Instance I^* : each agent i has values
 - $v_{i,t} = 1$ for the T/n-th segment
 - Items $t \in \left[\frac{T}{n}(i-1)+1,...,\frac{T}{n}i\right]$
 - $v_{i,t} = \epsilon$ for all other items
- An adaptive adversary can always stop showing I^* and make all remaining items worthless
- Therefore envy at step t must be at most f(T) for all agents
- This implies that in each segment i, every agent must get $\frac{T}{n^2} \pm \frac{f(T)}{\epsilon} \left(1 + \frac{2}{\epsilon}\right)^{i-1}$ items
- Thus, final utility for each agent is at most $\left(\frac{T}{n^2} + \frac{f(T)}{\epsilon} \left(1 + \frac{2}{\epsilon}\right)^{n-1}\right) \cdot (1 + (n-1)\epsilon)$
- But, it is possible to give all agents utility T/n

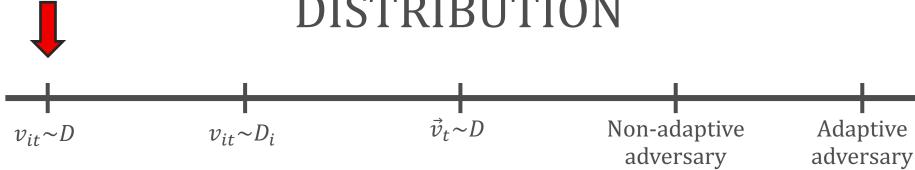
PROOF SKETCH OF THEOREM FOR NON-ADAPTIVE ADVERSARY

- The non-adversary has *n* instances in their arsenal
- I_i 's first $\frac{T}{n}i$ items follow I^* , and the rest have zero value
- Again, we bound the number of items the algorithm can allocate to each agent in each segment
- The new bound is looser and probabilistic, but gets the job done

WHAT ABOUT EFFICIENCY?



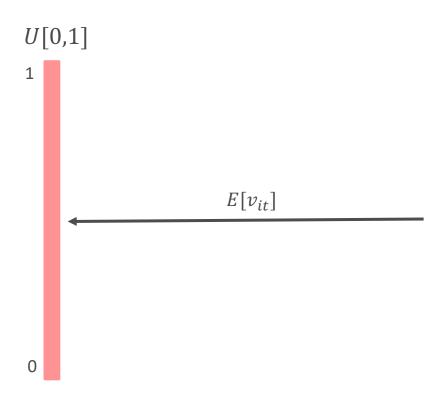
INDEPENDENT AND IDENTICAL DISTRIBUTION



 $\underline{Algorithm}$: Give each item to the agent with the highest valuation $\underline{Guarantees}$ (under mild conditions on D) [KPW, AAAI 16]:

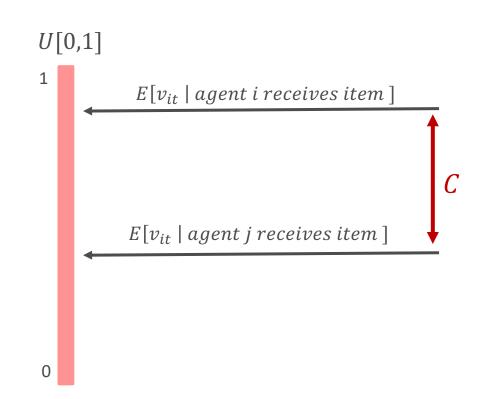
- Pareto efficient (ex-post)
- Envy-freeness with high probability

GREEDY ALGORITHM

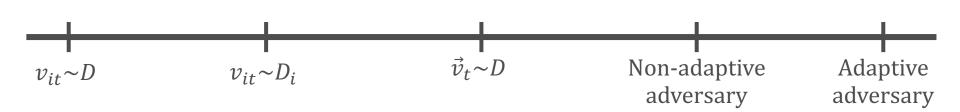


GREEDY ALGORITHM

- Everyone roughly receives the same number of items
 - But when *i* receives an item, it is more valuable
 - Chernoff Bounds
- Can replace *U*[0,1] with any distribution with constant variance



EXTENDING THE GREEDY ALGORITHM

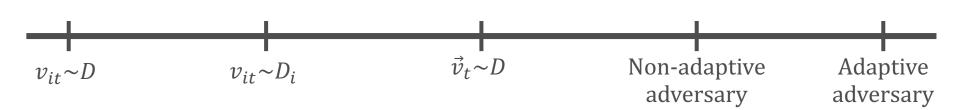


Proposed Algorithm:

Give each item to the agent with the highest quantile??

- *U*(0,1) and *U*(0.49, 0.51)
 - Agent 2 essentially only cares about the number of items
- This algorithm is envy-free whp, but not efficient

EXTENDING THE GREEDY ALGORITHM



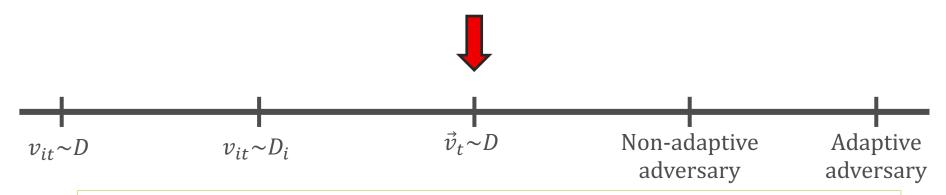
Algorithm [Bai, Gölz 2022]:

- Find β_i for each agent i, such that $\Pr[\beta_i v_{i,t} = argmax_i \beta_i v_{i,t}] = 1/n$
 - i.e. Allocating to $argmax_j\beta_jv_{j,t}$ gives i the next item with probability 1/n

Properties:

- Envy free with high probability
- Pareto optimal (since it maximizes weighted welfare)

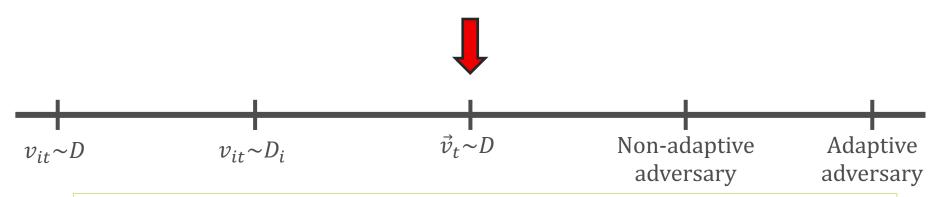
CORRELATED DISTRIBUTIONS



<u>Theorem</u> [ZP 20]: There is an ex-post Pareto optimal algorithm that guarantees to each pair of agents *i*, *j*:

- Either *i* does not envy *j* with high probability
- Or, *i* envies *j* by at most one item (with probability 1)

CORRELATED DISTRIBUTIONS



<u>Theorem</u> [ZP 20]: There is an ex-post Pareto optimal algorithm that guarantees to each pair of agents *i*, *j*:

- Either *i* does not envy *j* with high probability
- Or, *i* envies *j* by at most one item (with probability 1)

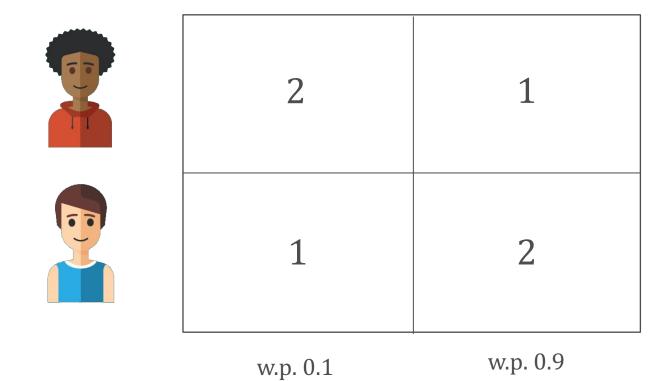
Main structural result:

Given n agents and m items, there is a Pareto efficient fractional allocation such that each agent i:

- Either strictly prefers her own bundle to the bundle of agent j
- Or *i* and *j* have identical allocations and the same value for all the items that are allocated to them

How could you ever be ex-post Pareto?

How could you ever be ex-post Pareto?



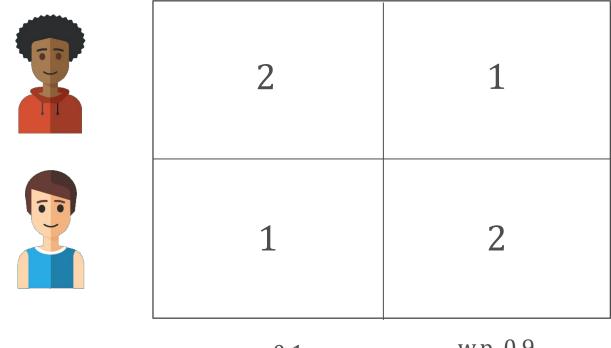
- How could you ever be ex-post Pareto?
- Idea 1: every time item 1 comes, give it to red agent, o.w. give item to blue agent
 - Efficient, but not fair!

2	1
1	2
	0.0

w.p. 0.1

w.p. 0.9

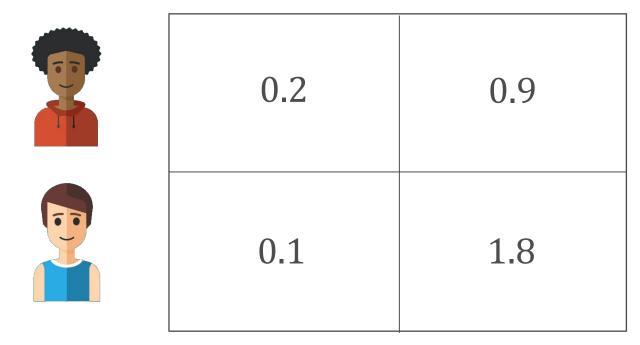
- How could you ever be ex-post Pareto?
- Issue: if you **ever** allocate item 2 to the red agent, you **cannot** allocate item 1 to the blue agent



w.p. 0.1

w.p. 0.9

- How could you ever be ex-post Pareto?
- Insight: we should Pareto efficient and fair in the instance where values are multiplied by probabilities



BLUEPRINT

- Construct this static instance I from the correlated distribution
- Find a fractional allocation x
- For the online problem, every time item k comes, allocate to agent i with probability x_{ik}

ALGORITHM

- Fact 1: Being Pareto efficient in *I* turns out to be enough for Pareto efficiency ex-post for the online problem!
- Fact 2: Being envy-free in *I* will give vanishing envy
- Question: Can we do better?

ALGORITHM

- The dream: Pareto efficiency and strong envyfreeness for I
 - Then, Chernoff would give EF w.h.p.
- Pretty much impossible
 - Agents could be identical...

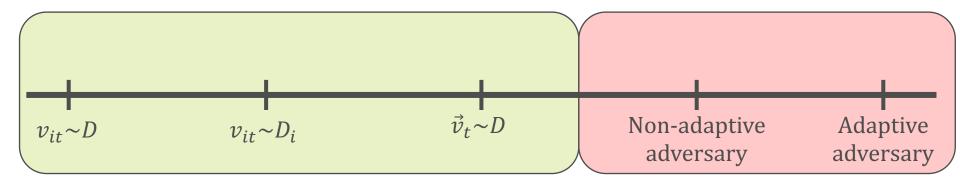
• CISEF:

- Either agent *i* strictly prefers her own bundle to the bundle of agent *j*
- Or i and j have identical allocations and the same value (up to a scaling factor) for all the items that are allocated to either of them

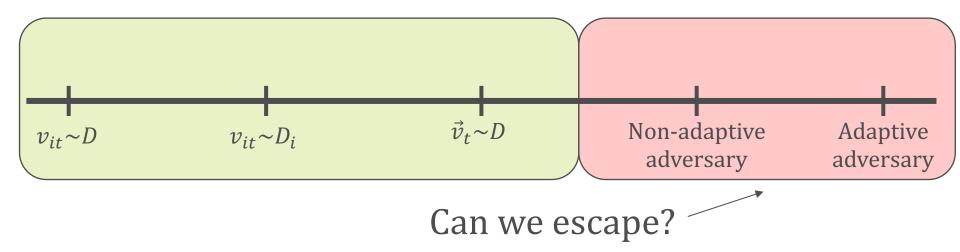
• How?

 Start from CEEI, and try to create strong-envy, without messing up efficiency

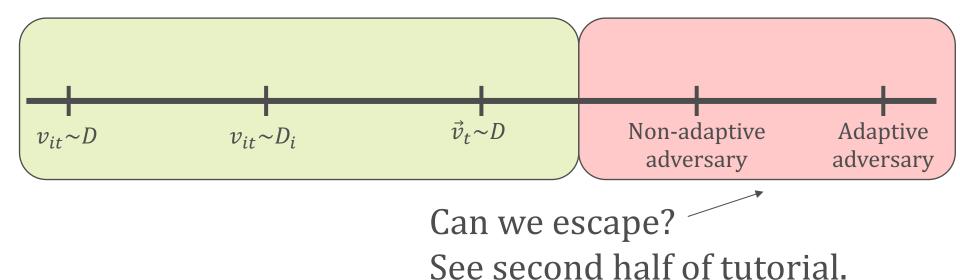
TAKE AWAYS

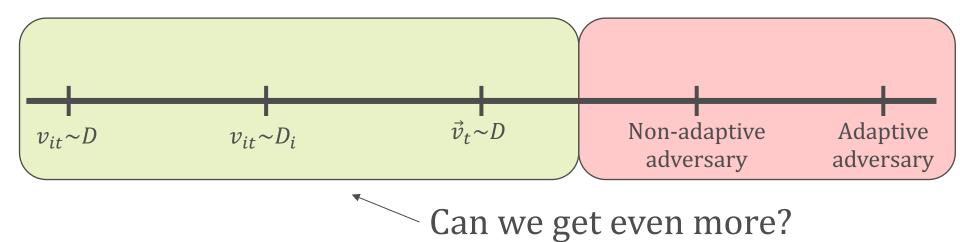


TAKE AWAYS

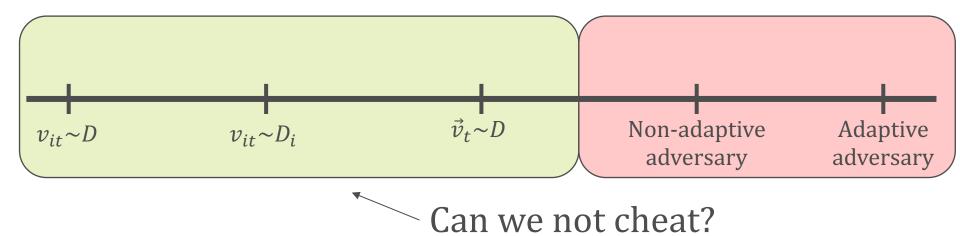


TAKE AWAYS

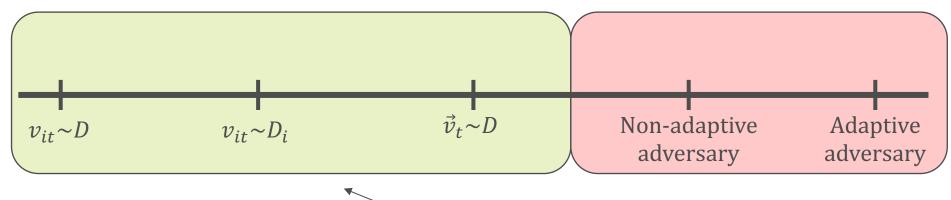




OPEN



OPEN



Can we not cheat?

- What if the adversary distribution can depend on T?
- Theorem [Bansal et al. 2020]: $O(\log T)$ envy w.h.p for two agents, against the correlated distribution adversary.

WHAT I DIDN'T TALK ABOUT

- Dynamic resources & static agents & incentives!
 - See references at the end of slides for a biased selection of papers
 - Highlights:
 - Infinite horizons, so more tricks available
 - Artificial currencies

REFERENCES

- How to Make Envy Vanish Over Time. Benade, Kazachkov, Procaccia, Psomas. EC 2018
- Fairness-Efficiency Tradeoffs in Dynamic Fair Division. Zeng, Psomas. EC 2020
- From monetary to nonmonetary mechanism design via artificial currencies. Gorokh, Banerjee and Iyer. MOR 2021
- Multiagent mechanism design without money.
 Balseiro, Gurkan, and Sun. OR 2019
- Dynamic mechanisms without money. Guo and Horner. 2009
- Competitive repeated allocation without payments.
 Guo, Conitzer, and Reeves. WINE 2019