Myerson's Lemma and VCG mechanism in Mechanism Design

Jialin Zhang
Institute of Computing Technology, CAS
zhangjialin@ict.ac.cn

Summer School on Game Theory and Social Choice

@ City University of Hong Kong

June 21, 2022

Outline

In this tutorial, we will introduce

- What is mechanism design
- Two useful tools to design truthful mechanism
 - Myerson's lemma
 - VCG mechanism

In this tutorial, we

- assume no prior knowledge about mechanism design
- go through the detailed proof
- do not mention recent results

Warm up example - Single item auction

- An auction house wants to auction a valuable item among n bidders
- Each bidder i has a private value v_i for the item.
- Auction process:
 - Auctioneer asks the bidders for their private value.
 - For each bidder i, he/she claims b_i as the private value simultaneously. We call b_i the bid of bidder i.
 - Auctioneer decides winner and the price p according to $\{b_1, \dots, b_n\}$ and a specific mechanism.
- The utility for bidder i is $v_i p$ if he/she is the winner and 0 otherwise.
- Question: how to design a "good" mechanism?

Second Price Auction Mechanism

- First Price Auction Mechanism
 - Winner = bidder with highest bid; price = his/her bid
 - Bidder has the incentive to cheat

3 bilders.

private value: 3, 5, 10.

bids: 3, 5, 10.

bids: 3, 5, 6

theotography.

winner = 3rd bolder

price = 10

U3 = 10 - 10 = 0.

Winner = 3 rd boldher

price = 6

U3 = 10 - 6 = 9 > 0.

Second Price Auction Mechanism

- First Price Auction Mechanism
 - Winner = bidder with highest bid; price = his/her bid
 - Bidder has the incentive to cheat
- Second Price Auction Mechanism (Vickrey's Auction)
 - Winner = bidder with highest bid; price = second highest bid
- e Bidder has NO incentive to cheat 2nd bidder:

 2 hidder.

 private value: 2 S. 10

 private value: 2 S. 10

 1º reports bu>10. winner-2nd

 prive = 10

 1º repo

Second Price Auction Mechanism

- First Price Auction Mechanism
 - Winner = bidder with highest bid; price = his/her bid
 - Bidder has the incentive to cheat
- Second Price Auction Mechanism (Vickrey's Auction)
 - Winner = bidder with highest bid; price = second highest bid
 - Bidder has NO incentive to cheat

Solution concept

Truthfulness (Strategy-Proofness, Incentive-Compatibility):
 whatever the others do, if the agent acts truthfully (that is,
 reveal the true private information, or act according to true
 preferences), it maximizes the agent's utility.

Mechanism Design

- Design mechanism
- Private information VS. public information
- Objective of designer: truthful + some other objectives
 - social welfare maximization ✓
 - revenue maximization
 - fairness
- Need a game perspective

```
Trivial Gosthfol mechanism for single Hem another winner: 1 st bilder.

price = 0
```

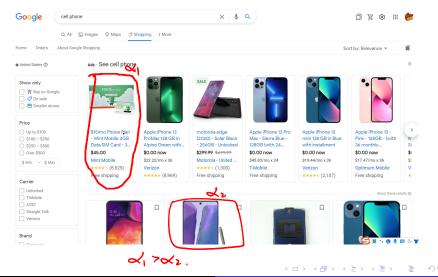
Mechanism Design

- Design mechanism
- Private information VS. public information
- Objective of designer: truthful + some other objectives
 - social welfare maximization
 - revenue maximization
 - fairness
- Need a game perspective

For second-price mechanism, what is the objective?

- For designer: truthful + maximize social welfare
- For bidders: maximize utility
- Later, we will show this is the "unique" truthful mechanism which maximizes the social welfare.

Consider n companies competing for k ad slots on a search page:



Consider n companies competing for k ad slots on a search page. Settings:

- k slots for sponsored links, n agents
- For the *j*-th slot, the click-through-rates is α_j (public information). We assume $\alpha_1 > \alpha_2 > \cdots > \alpha_k$.
- For the i-th agent, the private valuation v_i is the profit for one click.
- If *i*-th agent wins the *j*-th slot and pays p_i per search, the utility function is $\underline{v}_i \cdot \alpha_j p_i$ per search.

Goals:

- truthful
- maximize social welfare

Setting:

valuation for unit items

- n agents. Each has private information v_i , but will bid b_i .
- bids $\mathbf{b} = (b_1, b_2, \cdots, b_n)$

mechanism Allocation rule:
$$\mathbf{x}(\mathbf{b}) = (x_1(\mathbf{b}), x_2(\mathbf{b}), \cdots, x_n(\mathbf{b}))$$

Payment rule:
$$\mathbf{p}(\mathbf{b}) = (p_1(\mathbf{b}), p_2(\mathbf{b}), \cdots, p_n(\mathbf{b}))$$

• Utility function:
$$u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) - p_i(\mathbf{b})$$

m Krili

key points.

- private information is single parameter
- a utility function, he specific form.
- 3 "fearible" allowation whe

Setting:

- n agents. Each has private information v_i , but will bid b_i .
- bids $\mathbf{b} = (b_1, b_2, \cdots, b_n)$
- Allocation rule: $\mathbf{x}(\mathbf{b}) = (x_1(\mathbf{b}), x_2(\mathbf{b}), \cdots, x_n(\mathbf{b}))$
- Payment rule: $\mathbf{p}(\mathbf{b}) = (p_1(\mathbf{b}), p_2(\mathbf{b}), \cdots, p_n(\mathbf{b}))$
- Utility function: $u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) p_i(\mathbf{b})$

For example, consider single item auction, the feasible allocation rules are

- $x_i(b) = 1, x_j(b) = 0 (\forall j \neq i)$: means the *i*-th bidder wins the item
- $(0,0,\cdots,0)$: means no one wins the item

Setting:

- n agents. Each has private information v_i , but will bid b_i .
- bids $\mathbf{b} = (b_1, b_2, \cdots, b_n)$
- Allocation rule: $\mathbf{x}(\mathbf{b}) = (x_1(\mathbf{b}), x_2(\mathbf{b}), \cdots, x_n(\mathbf{b}))$
- Payment rule: $\mathbf{p}(\mathbf{b}) = (p_1(\mathbf{b}), p_2(\mathbf{b}), \cdots, p_n(\mathbf{b}))$
- Utility function: $u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) p_i(\mathbf{b})$

For sponsored search problem, the feasible allocation rules are

- For $1 \le j \le k$, α_j appears at most once in $(x_1(\mathbf{b}), x_2(\mathbf{b}), \dots, x_n(\mathbf{b}))$
- For example, when n=4, k=2: $(\alpha_1, 0, \alpha_2, 0), (\alpha_2, 0, 0, 0)$ are feasible allocation rules.

Setting:

- n agents. Each has private information v_i , but will bid b_i .
- bids $\mathbf{b} = (b_1, b_2, \cdots, b_n)$
- Allocation rule: $\mathbf{x}(\mathbf{b}) = (x_1(\mathbf{b}), x_2(\mathbf{b}), \cdots, x_n(\mathbf{b}))$
- Payment rule: $\mathbf{p}(\mathbf{b}) = (p_1(\mathbf{b}), p_2(\mathbf{b}), \cdots, p_n(\mathbf{b}))$
- Utility function: $u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) p_i(\mathbf{b})$

Thus, we have

• Truthful: for any i, b_{-i}, b_i , we have $u_i(v_i, b_{-i}) \ge u_i(b_i, b_{-i})$

Social welfare maximization: $\max \sum_i v_i \cdot x_i(\mathbf{b})$

Generalized second-price auction mechanism

Mechanism:

- suppose $b_1 \geq b_2 \geq \cdots \geq b_n$
- $\mathbf{x}(\mathbf{b}) = (\alpha_1, \cdots, \alpha_k, 0, \cdots, 0)$
- $\mathbf{p}(\mathbf{b}) = (b_2 \cdot \alpha_1, b_3 \cdot \alpha_2, \cdots, b_{k+1} \cdot \alpha_k, 0, \cdots, 0)$

Good or not?

Generalized second-price auction mechanism

Mechanism:

- suppose $b_1 > b_2 > \cdots > b_n$
- $\mathbf{x}(\mathbf{b}) = (\alpha_1, \dots, \alpha_k, 0, \dots, 0)$
- $p(b) = (b_2 \cdot \alpha_1, b_3 \cdot \alpha_2, \cdots, b_{k+1} \cdot \alpha_k, 0, \cdots, 0)$

Good or not?

Not truthful!

• Example: $n = 3, k = 2, \alpha_1 = 1, \alpha_2 = 0.4$, private value 7-6=1 1.1.64

(7,6,1). Consider agent 1:

		S 21- 0 1	1
Bid	Allocation	Payment	Ųtility
(7 (honest), 6, 1)	(1, 0.4, 0)	(6,0.4,0)	(1, 2, 0)
(5 (cheat), 6, 1)	(0.4, 1, 0)	(0.4,5,0)	(2.4, 1, 0)
	1		7

Generalized second-price auction mechanism

Mechanism:

- suppose $b_1 \geq b_2 \geq \cdots \geq b_n$
- $\mathbf{x}(\mathbf{b}) = (\alpha_1, \cdots, \alpha_k, 0, \cdots, 0)$
- $\mathbf{p}(\mathbf{b}) = (b_2 \cdot \alpha_1, b_3 \cdot \alpha_2, \cdots, b_{k+1} \cdot \alpha_k, 0, \cdots, 0)$

Good or not?

- very simple and intuitive, widely used
- still has many nice properties and in some sense stable
- Reference
 - B. Edelman, M. Ostrovsky and M. Schwarz (2007), "Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords". American Economic Review 97(1): 242-259

Can we design a truthful mechanism which maximizes the social welfare?

Can we design a truthful mechanism which maximizes the social welfare?

Mechanism:

work = 121 N1. X1(p)

- Suppose $b_1 \geq b_2 \geq \cdots \geq b_n$
- Allocation rule which maximizes the social welfare:

$$\mathbf{x}(\mathbf{b}) = (\alpha_1, \cdots, \alpha_k, 0, \cdots, 0)$$

- The same as the generalized second-price auction
- Is there a suitable "payment rule" so that (x, p) is truthful?

Can we design a truthful mechanism which maximizes the social welfare?

Mechanism:

- Suppose $b_1 \geq b_2 \geq \cdots \geq b_n$
- Allocation rule which maximizes the social welfare:

$$\mathbf{x}(\mathbf{b}) = (\alpha_1, \cdots, \alpha_k, 0, \cdots, 0)$$

- The same as the generalized second-price auction
- Is there a suitable "payment rule" so that (x, p) is truthful?

Answer: Myerson's lemma

Myerson's lemma

Definition (Implementable allocation rule)

For any single-parameter problem, an allocation rule \mathbf{x} is implementable if there exists a payment rule \mathbf{p} such that (\mathbf{x}, \mathbf{p}) is truthful.

Definition (Monotone allocation rule)

For any single-parameter problem, an allocation rule $\mathbf{x}(\mathbf{b})$ is monotone if for any $i, b_{-i}, b_i > b'_i$, we have $x_i(b_i, b_{-i}) \ge x_i(b'_i, b_{-i})$.

$$(X_{i}, Y_{i}) = (X_{i}, Y_{i}, Y_{i})$$

$$(X_{i}, Y_{i}) = (X_{i}, Y_{i}, Y_{i}) = \underbrace{X_{i}}_{(b_{i}, b_{i})} (b_{i}, b_{i}) + \underbrace{X_{i}}_{(b_{i}, b_{i})} (b_{i}, b_{i})$$

Myerson's lemma

Definition (Implementable allocation rule)

For any single-parameter problem, an allocation rule \mathbf{x} is implementable if there exists a payment rule \mathbf{p} such that (\mathbf{x}, \mathbf{p}) is truthful.

Definition (Monotone allocation rule)

For any single-parameter problem, an allocation rule $\mathbf{x}(\mathbf{b})$ is monotone if for any $i, b_{-i}, b_i > b'_i$, we have $x_i(b_i, b_{-i}) \ge x_i(b'_i, b_{-i})$.

Theorem (Myerson's lemma)

For any single-parameter problem, an allocation rule \mathbf{x} is monotone if and only if it is implementable.

Application of Myerson's Lemma

Single item auction

- Step 1: Consider the allocation rule which maximizes the social welfare
 - Allocate the item to the highest bid global New
- Step 2: Show that the allocation rule is monotone < hadisally step.
 - For bidder i, let $b_{\max} = \max_{j \neq i} b_j$, then we have

ہم)، لینے
$$x_i(\mathbf{b}) = \left\{ egin{array}{ll} 1 & ext{if } b_i \geq b_{\mathsf{max}} \\ 0 & ext{otherwise} \end{array}
ight.$$

$$V_1(1-0) \in P_2-P_1 \in V_2 \cdot (1-0)$$

Vs ET lomar, 09

$$P_1 = b mage,$$

Assumption, $b_1 = 0$ $\Rightarrow P_1(b_1, b_{-1}) = 0$.

 $P_2 = b mage,$

Application of Myerson's Lemma

Single item auction

- Step 1: Consider the allocation rule which maximizes the social welfare
 - Allocate the item to the highest bid
- Step 2: Show that the allocation rule is monotone
 - For bidder i, let $b_{\max} = \max_{j \neq i} b_j$, then we have

$$x_i(\mathbf{b}) = \begin{cases} 1 & \text{if } b_i \ge b_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

- Step 3: Compute the payment rule according to Myerson's lemma
 - For bidder i

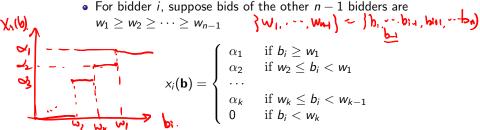
$$p_i(\mathbf{b}) = \begin{cases} b_{\text{max}} & \text{if } b_i \geq b_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

• This is actually the second price auction

Application of Myerson's Lemma

Sponsored Search Auction

- Step 1: Fix the allocation rule
 - Suppose $b_1 > b_2 > \cdots > b_n$ • Allocation rule: $\mathbf{x}(\mathbf{b}) = (\alpha_1, \dots, \alpha_k, 0, \dots, 0)$
- Step 2: Show the allocation rule is monotone



 Step 3: Compute the payment rule according to Myerson's lemma

Myerson's lemma

Very nice result! monotone allocation \rightarrow truthful for free! Roger Myerson:

- 2007 Nobel Memorial Prize in Economic Sciences with Leonid Hurwicz and Eric Maskin
- Contribution: having laid the foundations of mechanism design theory

Reference:

 R. Myerson (1981). Optimal auction design. Mathematics of Operations Research, 6(1):58-73

Limitation:

Works only for single parameter environment

What about general case?

Setting

- n agents, Ω : a finite set of outcomes
- For *i*-th agent, private valuation function $v_i:\Omega\to\mathbb{R}_{\geq 0}$, bid $b_i:\Omega\to\mathbb{R}_{>0}$
- $\mathbf{x}(\mathbf{b}) \in \Omega, \mathbf{p}(\mathbf{b}) \in \mathbb{R}^n$
- Utility function for *i*-th agent: $u_i(\mathbf{b}) = v_i(\mathbf{x}(\mathbf{b})) p_i(\mathbf{b})$ Shale pasemeter (ast. $v_i \cdot \mathbf{x}_1(\mathbf{b})$

Setting

- n agents, Ω : a finite set of outcomes
- For *i*-th agent, private valuation function $v_i:\Omega\to\mathbb{R}_{\geq 0}$, bid $b_i:\Omega\to\mathbb{R}_{\geq 0}$
- $\mathbf{x}(\mathbf{b}) \in \Omega, \mathbf{p}(\mathbf{b}) \in \mathbb{R}^n$
- Utility function for *i*-th agent: $u_i(\mathbf{b}) = v_i(\mathbf{x}(\mathbf{b})) p_i(\mathbf{b})$

For single item auction (n = 3):

- Outcome $\Omega = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1)\}$
- Private valuation function for bidder 1: $(0, v_1, 0, 0)$

Setting

- n agents, Ω : a finite set of outcomes
- For *i*-th agent, private valuation function $v_i:\Omega\to\mathbb{R}_{\geq 0}$, bid $b_i:\Omega\to\mathbb{R}_{\geq 0}$
- $\mathbf{x}(\mathbf{b}) \in \Omega, \mathbf{p}(\mathbf{b}) \in \mathbb{R}^n$
- Utility function for *i*-th agent: $u_i(\mathbf{b}) = v_i(\mathbf{x}(\mathbf{b})) p_i(\mathbf{b})$

Thus, we have

- Truthful: for any i, b_{-i}, b_i , we have $u_i(v_i, b_{-i}) \ge u_i(b_i, b_{-i})$
- Social welfare maximization: $\max_{\omega} \sum_{i} v_i(\omega)$

Vickrey-Clarke-Groves mechanism

Theorem (VCG mechanism)

In every general mechanism design environment, there is a truthful mechanism which maximizes the social welfare.

• Allocation rule: $\mathbf{x}(\mathbf{b}) = \arg \max_{\omega \in \Omega} \Sigma_i b_i(\omega)$

Vickrey-Clarke-Groves mechanism

Theorem (VCG mechanism)

In every general mechanism design environment, there is a truthful mechanism which maximizes the social welfare.

- Allocation rule: $\mathbf{x}(\mathbf{b}) = \arg\max_{\omega \in \Omega} \Sigma_i b_i(\omega)$
- Payment rule: $p_i(\mathbf{b}) = \max_{\omega \in \Omega} (\sum_{j \neq i} b_j(\omega)) \sum_{j \neq i} b_j(\omega^*)$ where $\omega^* = \arg\max_{\omega \in \Omega} \sum_i b_i(\omega)$? So well welfer maximum without agent i.

- Allocation rule: $\mathbf{x}(\mathbf{b}) = \arg \max_{\omega \in \Omega} \Sigma_i b_i(\omega)$
 - Allocate the item to the bidder with highest bid

- Allocation rule: $\mathbf{x}(\mathbf{b}) = \arg \max_{\omega \in \Omega} \Sigma_i b_i(\omega)$
 - Allocate the item to the bidder with highest bid
- Payment rule: $p_i(\mathbf{b}) = \max_{\omega \in \Omega} (\Sigma_{j \neq i} b_j(\omega)) \Sigma_{j \neq i} b_j(\omega^*)$ where $\omega^* = \arg \max_{\omega \in \Omega} \Sigma_i b_i(\omega)$
 - Case 1: bidder i's bid is the highest bid
 - $\max_{\omega \in \Omega} (\Sigma_{j \neq i} b_j(\omega)) = \text{second highest bid}$
 - $\Sigma_{j\neq i}b_j(\omega^*)=0$
 - So $p_i(\mathbf{b}) = \text{second highest bid}$

- Allocation rule: $\mathbf{x}(\mathbf{b}) = \arg \max_{\omega \in \Omega} \Sigma_i b_i(\omega)$
 - Allocate the item to the bidder with highest bid
- Payment rule: $p_i(\mathbf{b}) = \max_{\omega \in \Omega} (\Sigma_{j \neq i} b_j(\omega)) \Sigma_{j \neq i} b_j(\omega^*)$ where $\omega^* = \arg \max_{\omega \in \Omega} \Sigma_i b_i(\omega)$
 - Case 1: bidder i's bid is the highest bid
 - $\max_{\omega \in \Omega} (\Sigma_{j \neq i} b_j(\omega)) = \text{second highest bid}$
 - $\Sigma_{j\neq i}b_j(\omega^*)=0$
 - So $p_i(\mathbf{b}) = \text{second highest bid}$
 - Case 2: bidder i's bid is not the highest bid
 - $\max_{\omega \in \Omega} (\Sigma_{j \neq i} b_j(\omega)) = \text{highest bid}$
 - $\Sigma_{j\neq i}b_{j}(\omega^{*}) = \text{highest bid}$
 - So $p_i(\mathbf{b}) = 0$

- Allocation rule: $\mathbf{x}(\mathbf{b}) = \arg \max_{\omega \in \Omega} \Sigma_i b_i(\omega)$
 - Allocate the item to the bidder with highest bid
- Payment rule: $p_i(\mathbf{b}) = \max_{\omega \in \Omega} (\Sigma_{j \neq i} b_j(\omega)) \Sigma_{j \neq i} b_j(\omega^*)$ where $\omega^* = \arg \max_{\omega \in \Omega} \Sigma_i b_i(\omega)$
 - Case 1: bidder i's bid is the highest bid
 - $\max_{\omega \in \Omega} (\Sigma_{j \neq i} b_j(\omega)) = \text{second highest bid}$
 - $\Sigma_{j\neq i}b_j(\omega^*)=0$
 - So $p_i(\mathbf{b}) = \text{second highest bid}$
 - Case 2: bidder i's bid is not the highest bid
 - $\max_{\omega \in \Omega} (\Sigma_{j \neq i} b_j(\omega)) = \text{highest bid}$
 - $\Sigma_{j\neq i}b_{j}(\omega^{*}) = \text{highest bid}$
 - So $p_i(\mathbf{b}) = 0$
- This is exactly second-price auction.

Application: Sponsored Search Problem

Suppose
$$b_1 \geq b_2 \geq \cdots \geq b_n$$

• Allocation rule: $\mathbf{x}(\mathbf{b}) = \arg \max_{\omega \in \Omega} \Sigma_i b_i(\omega)$

•
$$\mathbf{x}(\mathbf{b}) = (\alpha_1, \alpha_2, \cdots, \alpha_k, 0, \cdots, 0)$$

Application: Sponsored Search Problem

Suppose
$$b_1 \ge b_2 \ge \cdots \ge b_n$$

- Allocation rule: $\mathbf{x}(\mathbf{b}) = \arg\max_{\omega \in \Omega} \sum_i b_i(\underline{\omega})$
 - $\mathbf{x}(\mathbf{b}) = (\alpha_1, \alpha_2, \cdots, \alpha_k, 0, \cdots, 0) \leftarrow \mathbf{w}^{k}$.
- Payment rule: $p_i(\mathbf{b}) = \max_{\omega \in \Omega} (\Sigma_{j \neq i} b_j(\omega)) \Sigma_{j \neq i} b_j(\omega^*)$ where $\omega^* = \arg\max_{\omega \in \Omega} \Sigma_i b_i(\omega)$. Consider bidder 1:
 - $\max_{\omega \in \Omega} (\Sigma_{j \neq 1} b_j(\omega)) = \alpha_1 b_2 + \alpha_2 b_3 + \dots + \alpha_k b_{k+1}$
 - the social welfare maximization without bidder 1
 - $\Sigma_{j\neq 1}b_j(\omega^*) = \alpha_2b_2 + \alpha_3b_3 + \cdots + \alpha_kb_k$
 - ullet ω^* is the allocation which maximizes the social welfare
 - So $p_1(\mathbf{b}) = \alpha_1 b_2 \alpha_2 (b_2 b_3) \cdots \alpha_k (b_k b_{k+1})$
 - It is less than α_1b_2 (payment rule in generalized second-price auction)

Vickrey-Clarke-Groves mechanism

Advantage:

- If you want to maximize social welfare, "truthful" is always possible in principle.
- clean mechanism

Disadvantage:

- Cannot deal with other objective functions
- Parameter space may very large

 It is not always practical to compute the social welfare maximization

Reference

- W. Vickrey (1961). Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance, 16(1):8-37
- E. H. Clarke (1971). Multipart pricing of public goods. Public Choice, 11(1):17-33
- T. Groves (1973). Incentives in teams. Econometrica, 41(4):617-631

Conclusion

- How to design truthful mechanism
- Myerson's Lemma
- VCG Mechanism

	Myerson's lemma	VCG mechanism	
Setting	single parameter environment	general environment	
Objective	any monotone allocation	max social welfare	
Practicality	usually practical	less practical	

Thank you! Any questions?