Deep Learning for Solving Large Scale Complex Games

Bo AN

boan@ntu.edu.sg
School of Computer Science and Engineering
Nanyang Technological University

June 23, 2022

Many AI Problems are Games

➤ AI: study and construction of rational agents [Russell & Norvig, 2003]

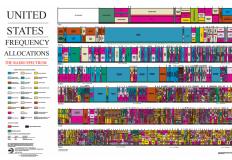
building a single agent (1950s-70s)

Multi-agent systems (cooperative) (1980s-)

Multi-agent systems (competitive)
(1995-)

➤ Many real world problems are games and game theory is needed (1940s-)

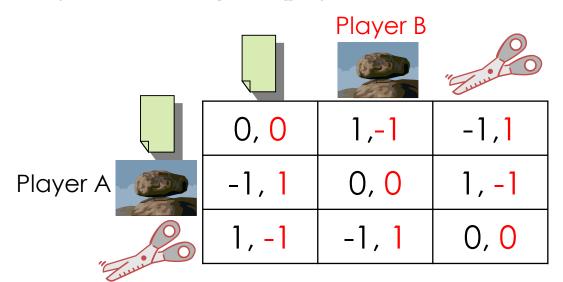
➤ GT for AI: success in computer poker, security, auction...

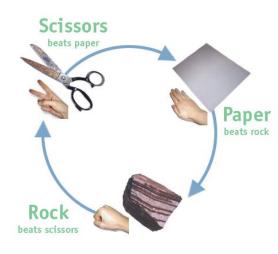


- ➤ The rest of the talk:
 - ☐ Solving games with algorithmic game theory
 - ☐ New trend: Deep (reinforcement) learning for solving games

Games and Computation

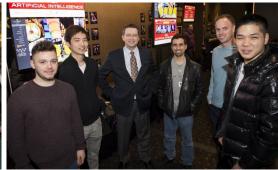
Players, strategies, payoffs





- Nash Equilibrium: no agent has incentive to unilaterally deviate
 - □ In any (finite) game, at least one Nash equilibrium (possibly mixed) exists [Nash, 50]
 - □ In 2-player zero-sum games, a profile is an NE iff both players play minimax strategies
 - □ Computing one (any) Nash equilibrium is PPAD-complete (even in 2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, Deng 2006]
 - □ All known algorithms require exponential time (in the worst case)
 - Lemke-Howson, support enumeration
- Mechanism design

Libratus for Computer Poker [Sandholm@CMU]

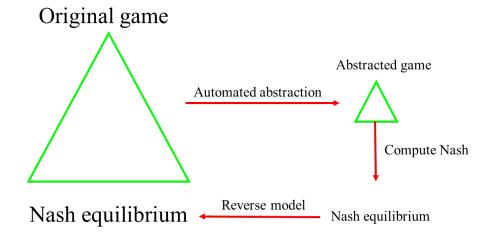


Abstraction (offline)

- Action abstraction
- Card abstraction
- Game size from 10^{161} to 10^{12}

Equilibrium Finding (offline)

- CFR
- CFR⁺
- Monte Carlo CFR



Decomposition and Subgame Refinement (online)

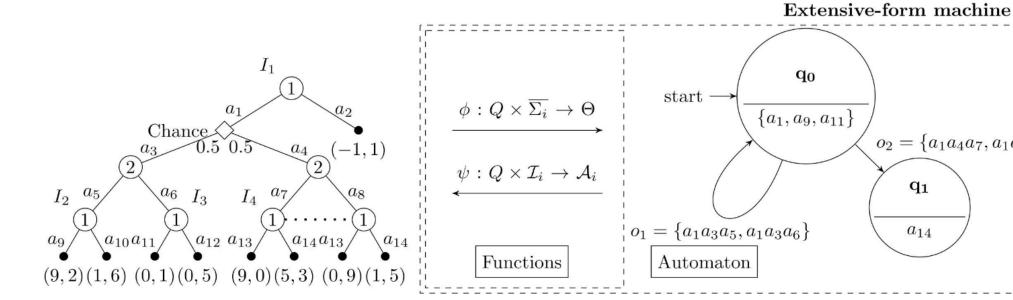
- endgame solving
- subgame re-solving
- max-margin subgame refinement
- ➤ Deep learning: Alberta's DeepStack, DeepMind

Playing Games with Machines [EC'20]

- > Strategies differ in their implementation complexity
- ➤ If we knew how to model complexity → Machines
 - ■We can focus on **relevant** (easy) strategies

COROLLARY 4.4. Let \mathcal{L} be a size-parametric class of perfect-recall EFGs with 2 players and $\mathcal{M}_f^S(n)$ be a small class of machine strategies of the follower in $\mathcal{L}(n)$. Then the problem of finding a strategy profile $\gamma^{SSE} = (\gamma_l^R, M_f)$ describing an SSE in a restriction of $\mathcal{L}(n)$ induced by $\mathcal{M}_f^S(n)$, i.e., $M_f \in \mathcal{M}_f^S(n)$, is polynomial.

► Lower computational & implementation



 $o_2 = \{a_1a_4a_7, a_1a_4a_8\}$

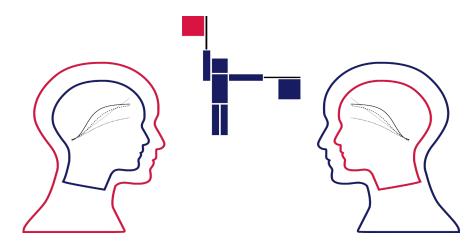
 q_1

 a_{14}

Computing Quantal Correlated Equilibrium in NFGs [EC'22]

- Correlated equilibrium = coordination
 - □ Signaller sends signals to players
 - *Assumption: everyone is rational*
- ➤ Real-world players are subrational!
- ➤ Our contributions:
 - □ *Incorporating quantal-response behavior:*

$$u_i(\delta_{-i}, a_i^k) \le u_i(\delta_{-i}, a_i^l) \Rightarrow QR_i^k(\delta_{-i}) \le QR_i^l(\delta_{-i})$$



$$\forall \delta_{-i} \in \Delta_{-i}, a_i^k, a_i^l \in A_i,$$

□ Analyzing quantal correlation: relations to other equilibria, topology, complexity

Theorem 1. Let G = (N, A, S, u) be a signaling game. Then (i) every quantal response equilibrium in G is a quantal correlated equilibrium with trivial signaling structure; (ii) the limit of quantal correlated equilibria in G is a correlated equilibrium in G as quantal responses approach the best response; (iii) the signaling correspondence $\lambda \to QCE(\lambda)$ is upper hemicontinuous; and (iv) computing a quantal correlated equilibrium in G is PPAD-hard.

- □ Formulating computational methods for
 - *tracing quantal correlated equilibrium using a homotopic system
 - *❖gradiently* optimizing the *signal* structure

Game Theory for Security [60+@ AAAI, AAMAS, IJCAI, NeurIPS, ICML]

➤ Global challenges for security

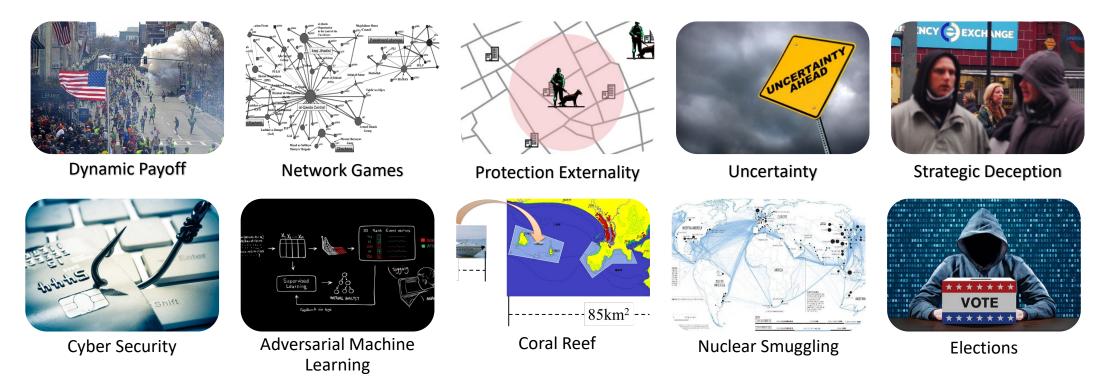
French oil tanker hit by a boat

Cyber physical attacks

- ➤ Security resource allocation
 - ☐ Limited security resources
 - ☐ Adversary monitors defenses, exploits patterns
- ➤ We pioneered the first set of applications of game theory for security resource scheduling(2007-)

- □ 60+ papers at premier conferences/journals, 2 best paper awards
- ☐ INFORMS Daniel H. Wagner Prize for Excellence in Operations Research Practice (2012), etc
- ☐ Operational Excellence Award from US Coast Guard (2012), etc
- ☐ Media reports: FOX News, CNN News, Federal News Radio, Defense News, The Economics Times, Los Angeles Times, etc
- ☐ United States congressional hearing (4 times)

Analyzing Complex Security Games [2016-]



- Combining techniques from AI, Game Theory, Operations Research ...
- ➤ Marry theory with practice
- > Approaches can be applied to other domains With proper tuning & extension
 - ☐ Incremental strategy generation
 - ☐ Construct (multiple) equivalent games
 - ☐ Exploit compact representation
 - Abstraction
 - ☐ Tradeoff between optimality and efficiency
 - Approximation

Converging to Team-Maxmin Equilibria [ICML'20, AAAI'21, IJCAI'22]

- > Equilibria in Multiplayer Games
 - ☐ Hard to compute: PPAD-Complete
 - ☐ Hard to select: NEs are not unique
 - □ *Few results*:
 - ❖Special structure: congestion games
 - ❖ No theoretical guarantee: Pluribus [Brown and Sandholm 2019]
- > Team-Maxmin Equilibria [von Stengel and Koller 1997]
 - □ A team of players independently plays against an adversary
 - ☐ Unique in general
 - FNP-hard to compute a team-maxmin equilibrium
 - Formulated as a non-convex program
 - ❖Solved by a global optimization solver
- ➤ Converging to Team-Maxmin Equilibria
 - □ Existing ISG for multiplayer games
 - Converge to an NE but many not to a TME
 - ❖ Difficult to extend the current ISG to converge to a TME
 - □ *ISGT*: the first *ISG* guaranteeing to converging to a *TME*
 - Conditions in ISGT cannot be further relaxed
 - □ CISGT: further improve the scalability
 - ❖Initialize the strategy space by computing an equilibrium that is easier to be computed

 $L \times W$

(p,q) FullTME

ISGT

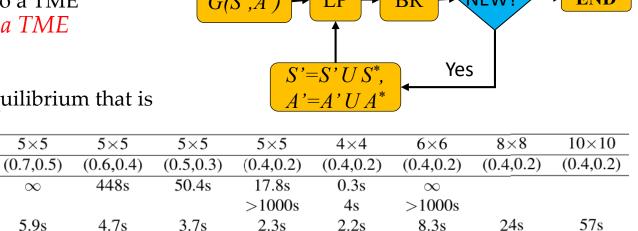
CISGT

 5×5

(0.8, 0.6)

9.8s

Unsatisfactory scalability!



Incremental Strategy Generation (ISG)

When do We Need D(R)L for Complex Games?

- > When GT is better than ML
 - *Requires* no data
 - No assumption about players' behavior
 - *Not exploitable*
 - ☐ *Theoretical guarantee*
- > ML might be more appropriate when
 - ☐ Large scale: Millions of (even continuous) pure strategies
 - □ *Uncertainty*
 - ☐ Cannot be well modelled
 - Non-convex and cannot be approximated
 - *No domain structures can be exploited*
- > D(R)L for games is receiving increasing attention
 - Solving games, e.g., DeepStack
 - Mechanism design
- ➤ Does not mean D(R)L can always work!
- ➤ Rest of the talk: quick overview of our two works since 2021
 - □ CFR-MIX: based on counterfactual regret minimization
 - *NSG-NFSP*: based on fictitious play
 - NSGZero: based on neural Monte Carlo tree search

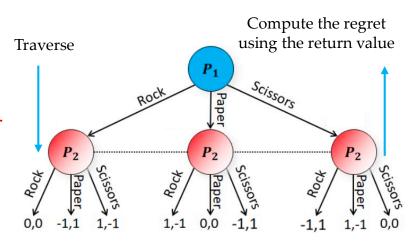
Counterfactual Regret Minimization

- > CFR [Zinkevich et al. 2008]
 - □ *A popular algorithm to solve imperfect-information extensive-form games*
 - ☐ In every iteration, it traverses the whole game tree and computes counterfactual regret value for every information set

$$v_i(I,\sigma) = \sum_{z \in Z_I} \pi^{\sigma}_{-i}\left(z[I]\right) \pi^{\sigma}(z[I],z) u_i(z) \qquad \qquad r^t(I,a) = v_i(I,\sigma^t_{I \to a}) - v_i(I,\sigma^t)$$

□ Compute the strategy of next iteration using regret matching based on the sum of counterfactual regret values

$$R^{T}(I,a) = \sum_{t=1}^{T} r^{t}(I,a) = \begin{cases} R_{i}^{T,+}(I,a) & R^{T,+}(I,a) = \max\{R^{T}(I,a), 0\} \\ \frac{R_{i}^{T,+}(I)(a)}{\sum_{a \in A(I)} R_{i}^{T,+}(I,a)} & if \sum_{a \in A(I)} R_{i}^{T,+}(I,a) > 0 \\ \frac{1}{|A(I)|} & otherwise \end{cases}$$



Example: Rock-paper-scissors game. There are only one information set for each player.

- ☐ The average strategy over all iterations converges to Nash equilibrium in two-player zero-sum games
- > CFR variants
 - □ Sampling-based CFR
 - ❖ Traversing the whole game tree is very time-consuming. Sampling-based CFR only traverses a subset of the game tree.
 - External Sampling CFR, Outcome Sampling CFR [Lanctot et al., 2009], Probe sampling [Gibson et al., 2012]
 - ☐ Deep-based CFR
 - * Tabular representation needs huge memory. Deep-based CFR uses <a href="https://www.needs.nee
 - Deep CFR [Brown et al., 2019], Double Neural CFR [Li et al., 2019]

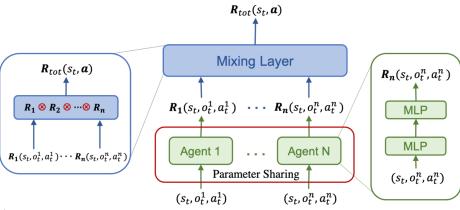
CFR-MIX: Solving Imperfect Information Extensive-Form Games with Combinatorial Action Space [IJCAI'21]

- > Team-Adversary Games
 - □ A team of players cooperatively plays against one adversary
 - ☐ Hard to solve due to the large combinatorial action space
 - ❖ The exponentially growing joint action space of the team
 - ☐ *Ineffectiveness of existing methods*
 - Out of memory for tabular-form methods
 - ❖ Ineffective to train the strategy network over the large action space for DNNs

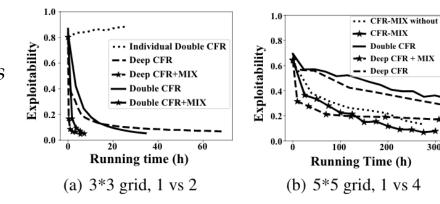
> CFR-MIX

- ☐ Use the individual strategy representation to reduce the strategy space
 - $f_{\mathbb{T}} = (\sigma_1, \sigma_2, ..., \sigma_n)$ where σ_i is the strategy for team player i
- ☐ Provide the **consistency** relationship to maintain the NE unchanged
 - \bullet $\sigma_{\mathbb{T}}(I,a) = \sigma_1(I,a_1)\sigma_2(I,a_2)...\sigma_n(I,a_n)$ where $\sigma_{\mathbb{T}}$ is the joint strategy for the team
- □ Propose a Product-form decomposition method to maintain the consistency
- ☐ Implement the decomposition method using a mixing layer
- lacktriangle Theorem: With the probability 1ho , the total regret of player i at time T is bounded by

$$R_i^T \le \left(1 + \frac{\sqrt{2}}{\sqrt{\rho K}}\right) \Delta |I_i| \sqrt{|A|} \sqrt{T} + 4T |I_i| \sqrt{|A|} \Delta_{\epsilon_L}$$

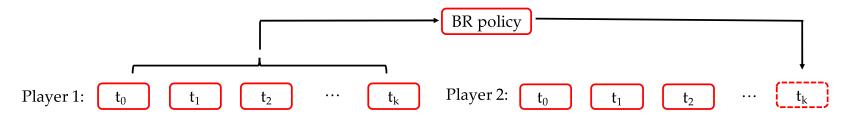


Architecture of team's regret neural network



Neural Fictitious Self-Play

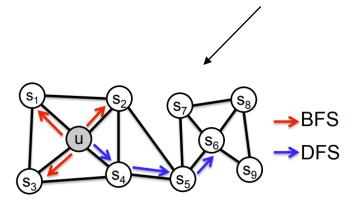
- Fictitious play is a game-theoretic algorithm for learning NE
 - ☐ Players repeatedly play a game. At each iteration, each player plays with its opponent's past average policy and best responds against it

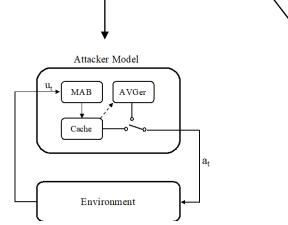


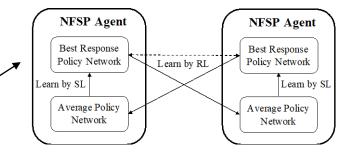
- □ Full-Width Extensive-Form Fictitious Play (XFP) [Heinrich et al. 2015] extends fictitious play from normal form to extensive form
- ➤ Neural Fictitious Self-Play [Heinrich et al. 2016]
 - ☐ A sampling and machine learning-based adaption of XFP
 - ☐ Utilizing deep neural network function approximation
 - ☐ Each agent consists of two neural networks, i.e., the average policy network and the best response (BR) policy network
 - ☐ The average policy network approximates an agent's past average policy by supervised learning
 - ☐ The BR policy network best responds to other agents' average policy by reinforcement learning
- Related work
 - □ OptGradFP [Kamra et al. 2018] firstly introduces fictitious play to continuous action spaces
 - □ NFSP cannot solve games like NSGs whose action space is extremely large

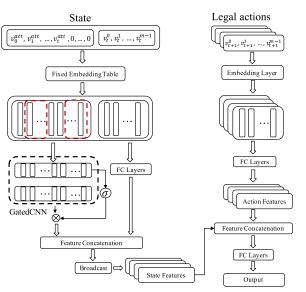
Solving Large-Scale Extensive-Form Network Security Games via Neural Fictitious Self-Play [IJCAI'21]

- ➤ Securing networked infrastructure with limited security resources
 - ☐ Vanilla NFSP cannot solve NSGs because
 - ❖ The defender has combinational action space, and its legal action spaces change with states
 - ❖ It is impossible for the output of deep neural networks to cover the huge action space
 - ❖ The output of deep neural networks have inconsistent semantics due to the changing legal action spaces
 - □ *Sparse reward* which brings difficulties in exploration
 - ☐ How to represent the road network efficiently when graphs are extremely large
- ➤ NSG-NFSP: approximating an NE defender policy in NSGs
 - ☐ Framework: Neural Fictitious Self-Play (NFSP), which is guaranteed to converge to an NE
 - ☐ Learning state and action representations when approximating BR and AVG policies
 - ☐ Enabling NFSP with high-level actions for efficient exploration
 - ☐ Learning efficient graph node embeddings via node2vec









NSGZero: Efficiently Solving Large-scale Network Security Games via Neural Monte Carlo Tree Search [AAAI'22]

- ➤ Improving data efficiency by performing planning with neural MCTS
 - ☐ Modeling the dynamics of NSGs
 - ☐ Predicting future state values when planning
 - ☐ Leveraging prior knowledge to do exploration
- ➤ Improving scalability by enabling neural MCTS with decentralized execution
 - ☐ Agents record simulation statistics separately

Algorithm 2: NGSZero-EXECUTION

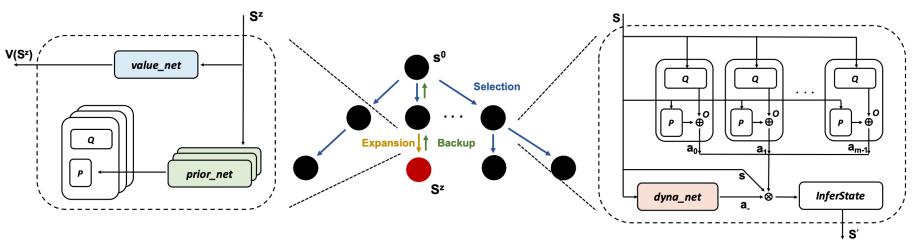
Input: The current state s_t , the search tree Ψ .

- 1 Ψ .clear() \\ clear statistics stored in the search tree;
- 2 for N simulations do
- Ψ . $search(s_t) \setminus perform lookahead search;$
- 4 end
- 5 for resources $i = 0, \ldots, m-1$ do

$$egin{array}{c|c} \pi_i(s_t,a_i) \propto rac{O(i,s_t,a_i)^{1/{\mathcal T}}}{\sum_{b_i} O(i,s_t,b_i)^{1/{\mathcal T}}}; & a_{i,t} \sim \pi_i(s_t); \end{array}$$

7 end

Output: Joint action $a_t = \langle a_{0,t}, \dots, a_{m-1,t} \rangle$.



Value network: predict the state value of the next state from backup phase

Dynamics network: predict the next state

Prior network: predict the prior policy of resources

Roadmap and Next Steps on DL for Solving Games

DL + GT: The Future

- ➤ Many DL **Scenarios** can be viewed as **Games**
 - ☐Generative Adversarial Networks (GAN)
 - ■Adversarial training
 - ■Adversarial reinforcement Learning
 - □Even, transfer/meta/multitask learning, and self-supervised learning
- > GT provides **theoretical** and **algorithmic** tools
 - ☐ Theoretical: regret analysis, convergence rate
 - □Algorithmic: CFR, NFSP, PSRO
- ►D(R)L provides **representations** and **training** methods
 - □RL for general-sum games?
 - ☐ The limit of representation learning [ICLR'22, ICML'22]
 - □Big models, e.g., transformer
- ➤ There is a long way to go...