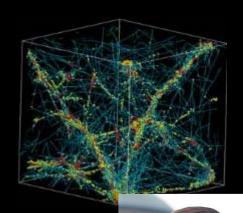
Axiomatization of Meaningful Solutions: Connecting Cooperative Game Theory to Social Network Analysis

Shang-Hua Teng
USC



Joint work with Wei Chen (MSR Asia)
Hanrui Zhang (Duke/CMU)

Game Theory

Two Basic Paradigms

- Non-Cooperative Games:
 - competition between individual players

Solution Concepts: Nash equilibrium

Applications: Market exchange economics

- Cooperative Games:
 - group of players
 - coalitional games

Applications: political science, formation of companies, payoffs of coalitions

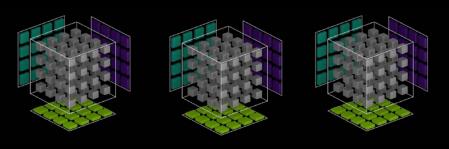
Data in Cooperative Game Theory

- Grand Coalition Player Set: [N]
- Group Utilities:

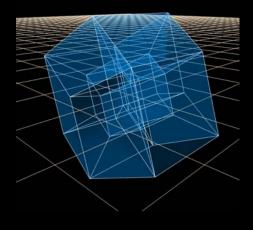
$$\sigma: 2^N \to \mathbb{R}$$
 , $\sigma(\emptyset) = 0$

Mathematical Spaces of Data Models

Three-Player Four-Strategy Games



Five-Player Cooperative Games



Data in Cooperative Game Theory

- Grand Coalition Player Set: [N]
- Group Utilities:

$$\sigma: 2^N o \mathbb{R}$$
 , $\sigma(\emptyset) = 0$

Features:

- Big Model
- Weighted Hypergraphs

A Basic Solution Concept

- for measuring Individual contribution to coalition games
- for fair allocation of global values

when given group utilities:

$$\sigma: 2^N \to \mathbb{R}$$
 , $\sigma(\emptyset) = 0$

Dimensionality Reduction

Data - group utilities:

σ:
$$2^N \to \mathbb{R}$$
, $\sigma(\emptyset) = 0$,
i.e., \mathbb{R}^{2^N}

Solution Concept:

$$\phi: \mathbb{R}^{2^N} \to \mathbb{R}$$

Dimensionality Reduction

Data - group utilities:

σ:
$$2^N \to \mathbb{R}$$
, $\sigma(\emptyset) = 0$,
i.e., \mathbb{R}^{2^N}

Solution Concept:

$$\phi \colon \mathbb{R}^{2^N} \to \mathbb{R}$$

$$\phi \in \mathbb{R}^N$$

Shapley Values

$$SV_{\sigma}(k) = E_{\pi}[\sigma(S_{\pi k}+k)-\sigma(S_{\pi k})]$$

 $S_{\pi k:}$ players placed before k according to π

Expected Marginal Contribution

Shapley Values

Why is this meaningful?

Axiomatic Properties

Efficiency

$$\sum_{k} SV_{\sigma}(k) = \sigma([N])$$

Symmetry

if
$$\forall S$$
, $\sigma(S+i) = \sigma(S+j)$, then $SV_{\sigma}(i) = SV_{\sigma}(j)$

Linearity

for an group values σ and τ , $SV_{\sigma+\tau} = SV_{\sigma} + SV_{\tau}$

Null Player

if
$$\forall S$$
, $\sigma(S + k) = \sigma(S)$, then $SV_{\sigma}(k) = 0$

Shapley's Axiomatic Characterization

 $\phi: \mathbb{R}^{2^N} \to \mathbb{R}$

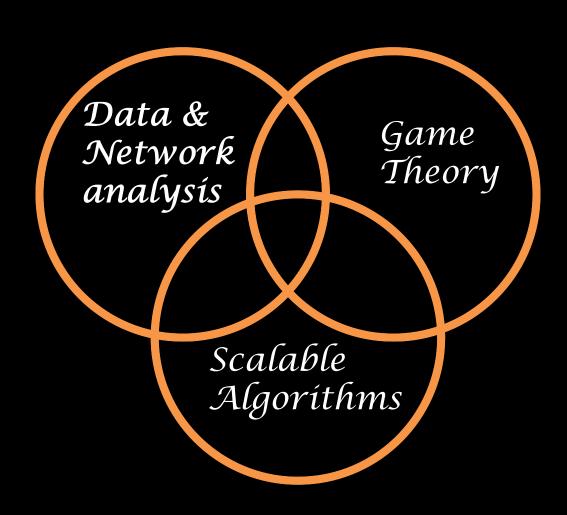
Efficiency

Symmetry

Linearity

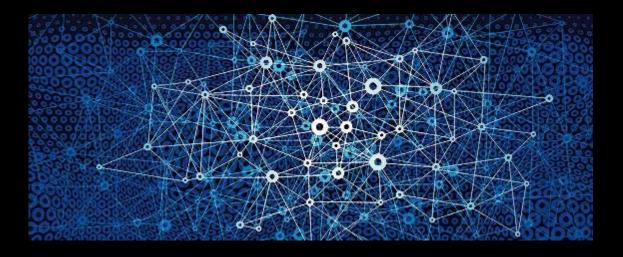
Null Player

Applications to Data & Network Analysis



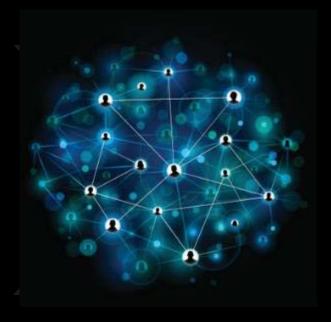
Graph Theory in the Age of Networks

- Graph Model
 - Nodes: Webpages, Internet routers, or people
 - Edges: links, connections, or friends



Networks are more than their graph representations

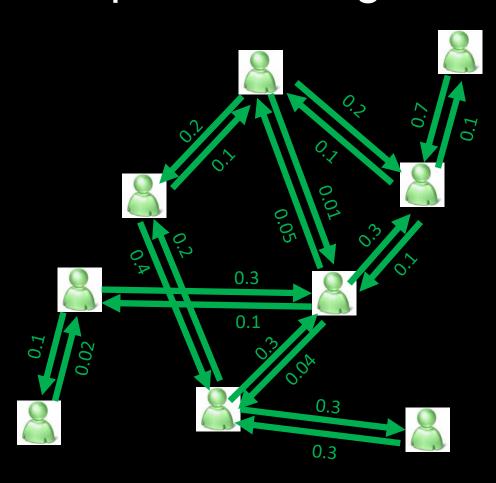
Network Data: Rich and Multi-Faceted



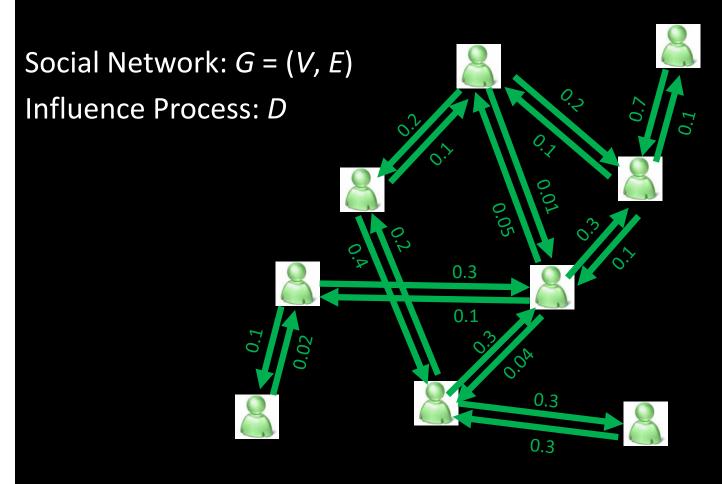
Register Folksunarry Wikis

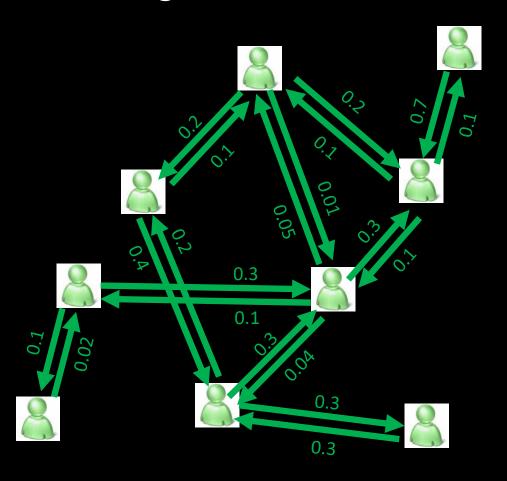
Riogs Participation subgrow Usability was a lecommendation Social Softwarence Usability was a lecommendation Social Softwarence Usability was a lecommendation of the Control of Convergence Web 2.0 esign Convergence Web 2.0 esign Convergence Web Standards of For Affiliation OpenAPIs RSS section. Web Standards a Economy Control Remixability as StandardizationThe Long To DataBriven according Microformals separation.

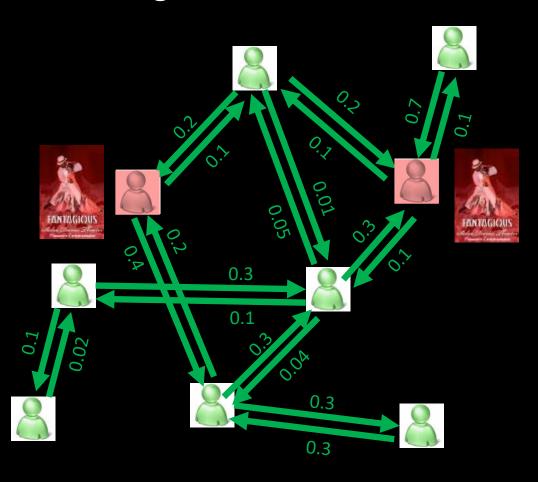
Independent Cascade Model Kempe-Kleinberg-Tardos

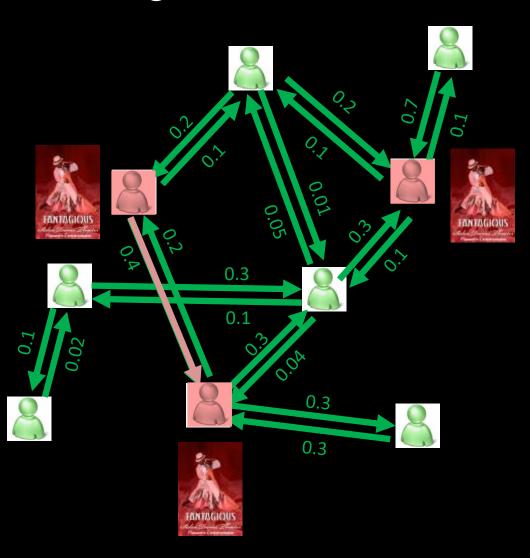


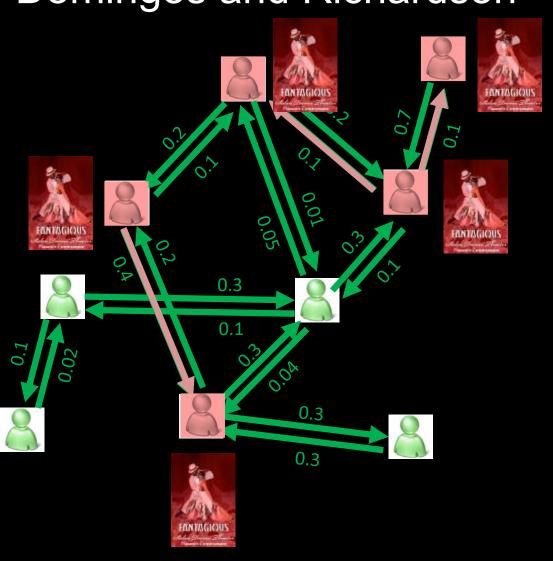
Independent Cascade Model Kempe-Kleinberg-Tardos

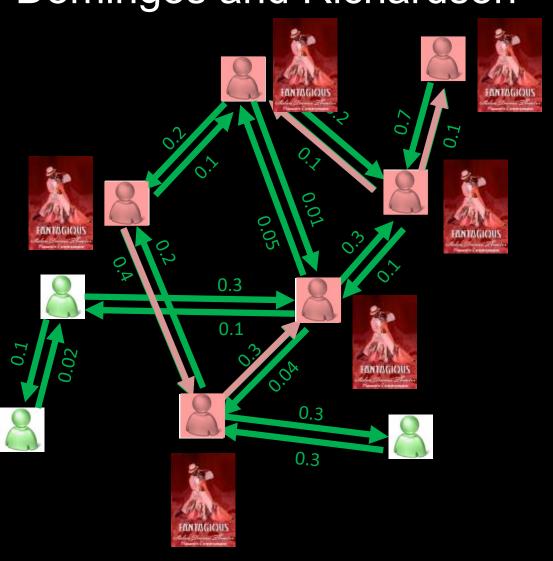




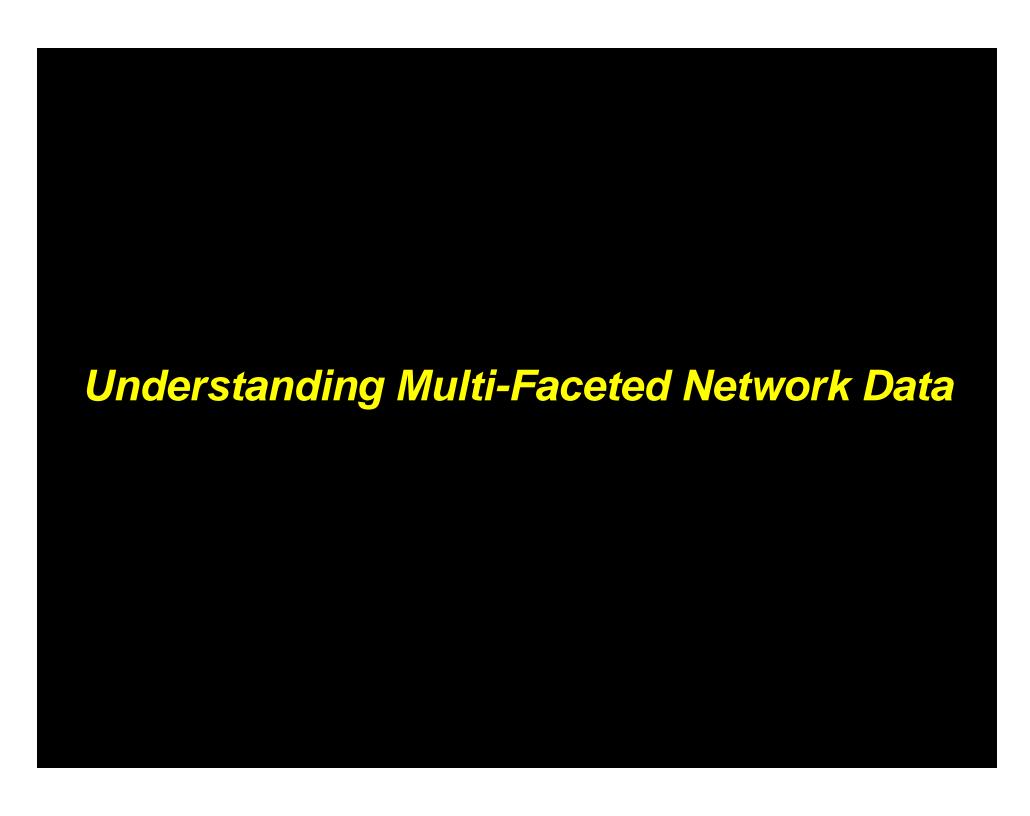








Social Influence



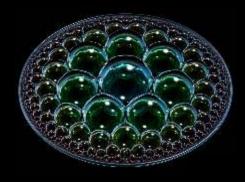
What is the impact of an influence process on network centrality?

Network Centrality

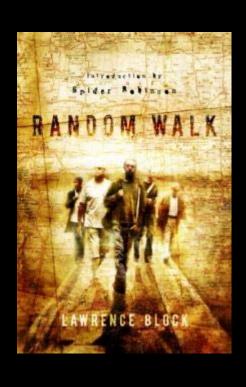
PageRank

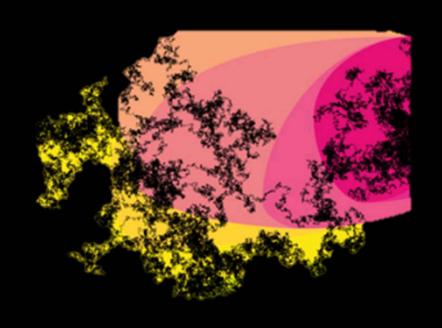
- Betweenness
- Local-Sphere of Influence

•



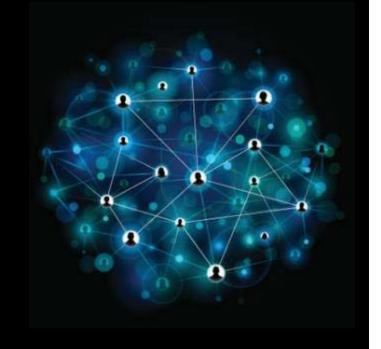
Dynamic Processes over Networks





Impact of Influence Dynamics on Network Centrality?

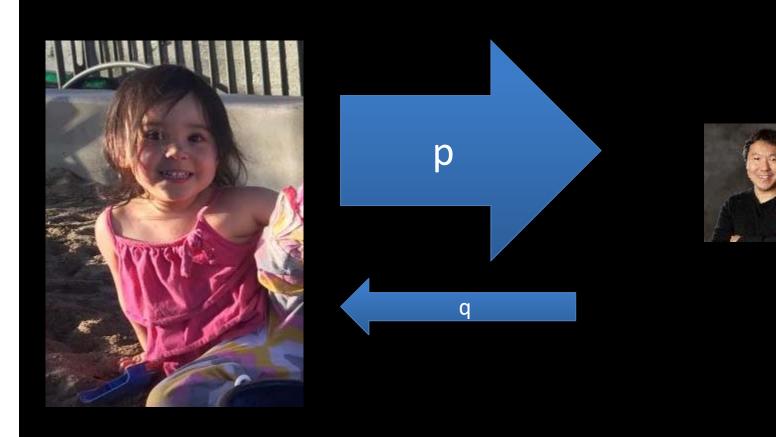
- Influence Process: D
- Social Network: G = (V, E)



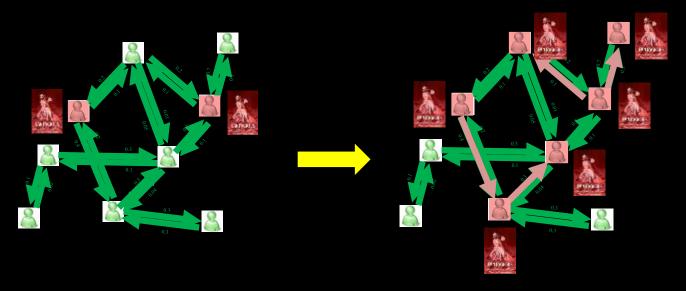
Static measures may not sufficiently capture social-influence centrality

Two-Node Network Influence

Two-Node Network Influence



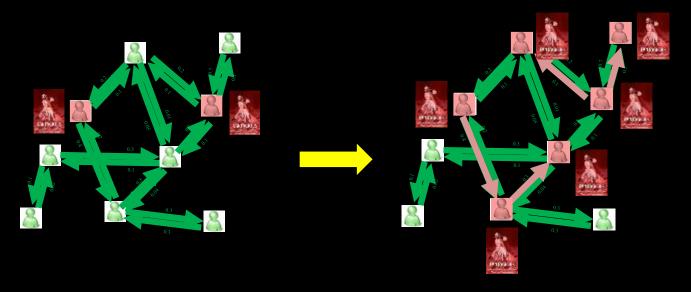
The Underlying Interplay



Probabilistic View: Powerset Networks

$$P_{G,D}[S,T]$$

The Underlying Interplay



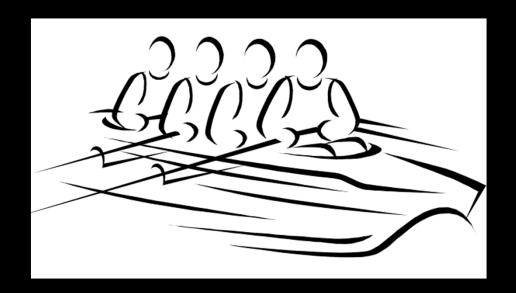
Probabilistic View: Powerset Networks

$$P_{G,D}[S,T]$$

Utility View: The Influence Spread (KKT)

$$\sigma_{G,D}(S) = \sum (|T| P_{G,D}[S,T])$$

Game Theoretical View of Social Influence



Social-Influence Cooperative Games:

$$\sigma_{G,D}$$
 (S)

Shapley Values

$$SV_{\sigma}(k) = E_{\pi}[\sigma(S_{\pi k}+k)-\sigma(S_{\pi k})]$$

 $S_{\pi k:}$ players placed before k according to π

Expected Marginal Contribution

Shapley's Axiomatic Characterization

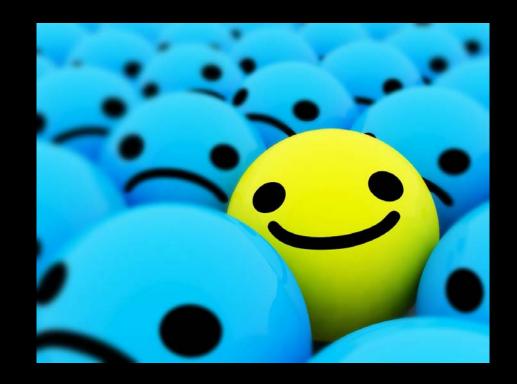
 $\phi: \mathbb{R}^{2^N} \to \mathbb{R}$

Efficiency

Symmetry

Linearity

Null Player



A Game-Theoretical Approach

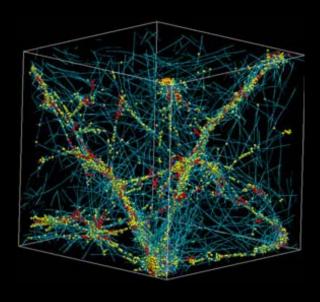
the impact of an influence process on network centrality:

Social-Influence Games:

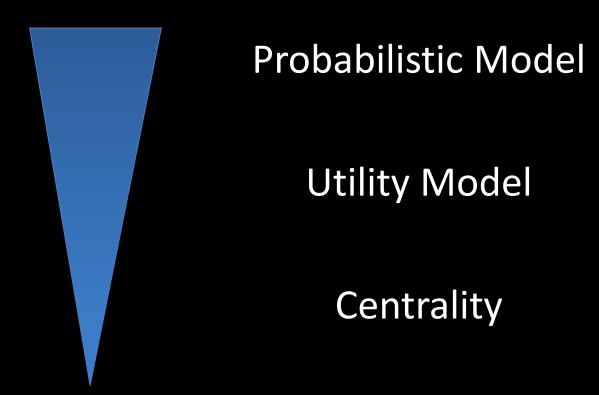
$$\sigma_{G,D}$$
 (S)

Shapley Centrality:

$$[SV_{\sigma}(v)]_{v}$$

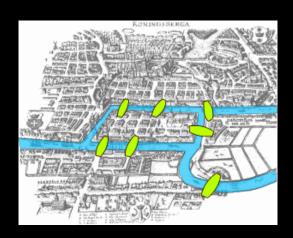


Dimension-Reduction of Network Data



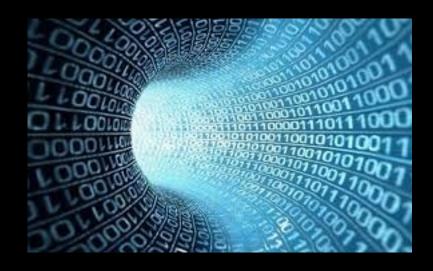
What does the Shapley centrality capture?

Fantastic Research Problem



- Graph Theory (Euler, circa 1736)
- Social Influence (1950s, then circ 2002)
- Cooperative Game Theory (1950s)

Network Science in the Age of Big Data



- Mathematically Meaningful
- Algorithmically Scalable
- Experimentally Validatable

Mathematical Question

What does the Shapley value of the cooperative social-influence game reflect?

Mathematical Question

What does the Shapley value of the cooperative social-influence game reflect?

Axiomatic Characterization

Motivated by:

- 1. Altman and Tennenholtz: PageRank Axioms
- 2. Palacios-Huerta and Volij: Intellectual Influence
- 3. Shapley's Axioms

Representation Theorem

Soundness:

Social-influence Shapley centrality satisfies Axioms1-6

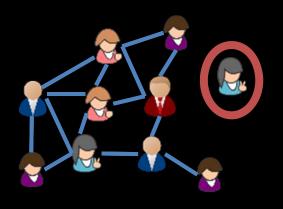
Completeness:

— The solution to Axioms 1-6 is unique

1. Anonymity: invariant under permutation

- 1. Anonymity: invariant under permutation
- 2. Normalization: average centrality is 1

- 1. Anonymity: invariant under permutation
- 2. Normalization: average centrality is 1



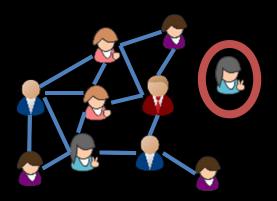
Isolated Nodes

$$P_{G,D}[S+u,T+u] = P_{G,D}[S,T]$$

$$P_{G,D}[u,u] = P_{G,D}[,] = 1$$

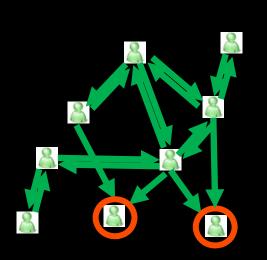
$$P_{G,D}[S,T+u] = 0$$

- 1. Anonymity: invariant under permutation
- 2. Normalization: average centrality is 1
- 3. Isolated Nodes: centrality of isolated is 1



- 1. Anonymity: invariant under permutation
- 2. Normalization: average centrality is 1
- 3. Isolated Nodes: centrality of isolated is 1

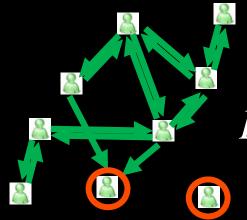
 Sink Node



$$P_{G,D}[S+u,T+u] = P_{G,D}[S,T] + P_{G,D}[S,T+u]$$

$$P_{G,D}[u,u] = P_{G,D}[,] = 1$$

- 1. Anonymity: invariant under permutation
- 2. Normalization: average centrality is 1
- 3. Isolated Nodes: centrality of isolated is 1



Projection of a Sink Node

$$P_{G \setminus u,D}[S,T] := P_{G,D}[S,T] + P_{G,D}[S,T+u]$$

- 1. Anonymity: invariant under permutation
- 2. Normalization: average centrality is 1
- 3. Isolated Node: centrality of isolated is 1
- 4. Independence of Sink Nodes: sink-node projection preserves centrality of other sink nodes

8

Bayesian Social Influence

- Social network: G = (V, E)
- Influence Model:
 - − Processes: *D*[1] ... *D*[*r*]
 - A prior distribution: $\lambda = (\lambda[1] \dots \overline{\lambda[r]})$

$$P_{G,D}[S,T] = \sum \lambda[\theta] P_{G,D[\theta]}[S,T]$$

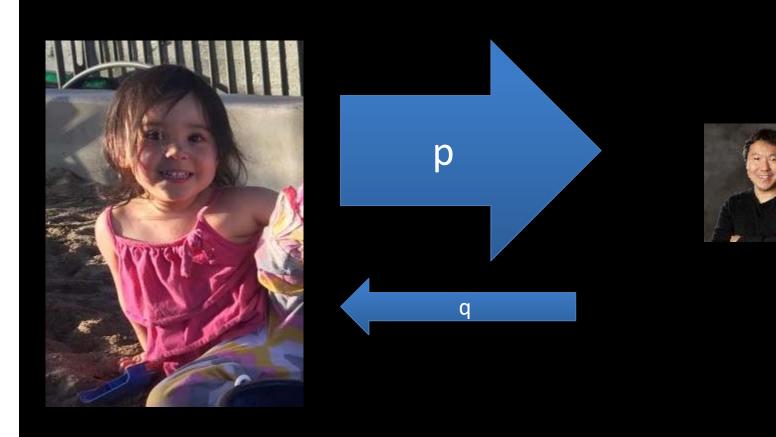
Axiom 5: Bayesian

- Social network: G = (V, E)
- Influence Model:
 - − Processes: *D*[1] ... *D*[*r*]
 - A prior distribution: $\lambda = (\lambda[1] ... \lambda[r])$

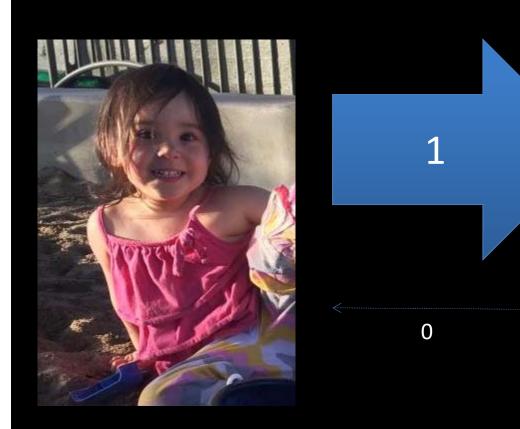
$$P_{G,D}[S,T] = \sum \lambda[\theta] P_{G,D[\theta]}[S,T]$$

5. Bayesian: social-influence centrality satisfies the linearity-of-expectation principle

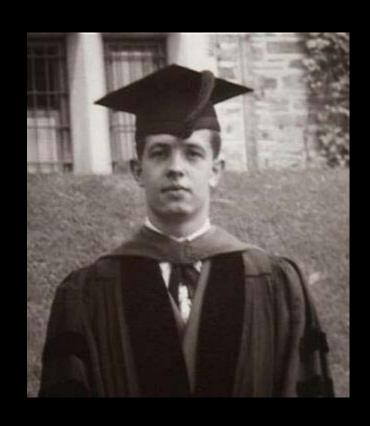
Two-Node Network Influence



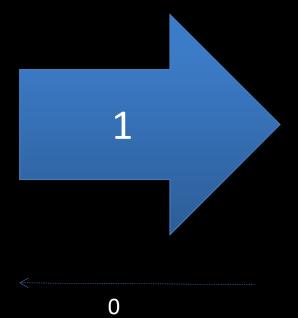
Likely Parent-Child Influence Model



Nash Bargaining



Nash Bargaining



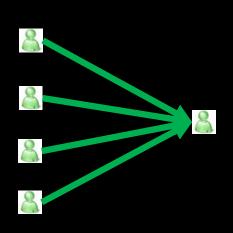
3/2

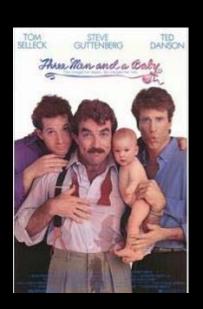
1/2

How to Improve Centrality in a Family?

Two Tiger Parents?

Critical Set Instances





- *R*, *v*
 - 1. Pr[R,R+v] = Pr[R+v,R+v] = 1
 - 2. Pr[S,S] = 1

Bargaining with Two Tiger Parents

Bargaining with Two Tiger Parents

Axiom 6: Bargaining with Critical Sets

6. Bargaining with Critical Sets: the centrality of v is r/(r+1)

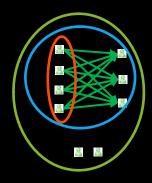
- 1. Anonymity: invariant under permutation
- 2. Normalization: average centrality is 1
- 3. Isolated Node: centrality of isolated is 1
- 4. Independence of Sink Nodes: sink-node projection preserves centrality of other sink nodes
- 5. Bayesian: social-influence centrality satisfies linearity-of-expectation principle
- 6. Bargaining with Critical Sets: the centrality of v is r/(r+1)

Axiomatic Characterization

The social-influence Shapley centrality is the unique centrality measure that satisfies Axioms 1-6.

Our Proof: Simplicity

Following Myerson's proof strategy



- Vector Space: $\{P_{G,D}[S,T]\}_{S,T}$ (the probability profile)
- A Full-Rank Basis: the critical set instances and extensions
- Linear Maps: axiom-conforming centrality measures
- Uniqueness: for critical set instances and their extensions

Our Proof: Complexity

- More cares than Myerson's proof of Shapley's theorem
- Our axiomatic framework is based on the *influence* model, rather than on *influence spread*
- The probabilistic profile has higher dimensionality than the influence-spread profile

The Space of Social Influences

Dimensions:

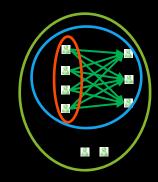
the number of pairs (S,T) satisfying

- 1. $S \subset T \subseteq V$, and
- 2. S not in $\{\emptyset,V\}$

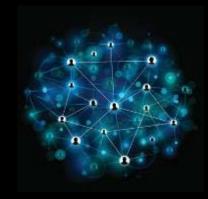
The Space of Social Influences

Null Instances:

• Basis Instances:



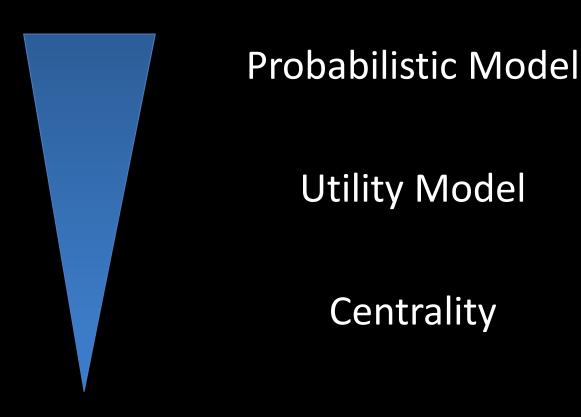
General Instances:



Implied Properties

- Nondiscrimination (Symmetry) Property:
 - Nodes with same marginal influence-spread profile have the same Shapley centrality
- Independence of Irrelevant Alternatives
 - Disconnected influence components define their own Shapley centrality

Dimension-Reduction of Network Data



- Axiomatic analysis of dimension reduction
- Comparative framework

An Empirically Observed Theorem

Symmetric Independent Cascade Model

- G undirected
- $-p_{uv}=p_{vu}$

Shapley Symmetry of the Symmetric IC Model: The Shapley centrality of each node is 1

- Undirected live graph
- Principle of deferred decision

Shapley Symmetry of the Symmetric IC Model

At first glance: surprising and counterintuitive

- limitation of the Shapley centrality?
 - independent of both network structure and symmetric IC edge probabilities.
- limitation of the symmetric IC model?
 - The "pair-wise symmetry and independence" condition is an extreme assumption (that rarely holds for real-world influence propagation).

Sheds Light on both Network Influence and Game-Theoretical Centrality

The Shapley centrality remarkably reveals this symmetry because:

- instead of measuring individual influence spreads in isolation from other nodes
- captures the expected "irreplaceable power" of each node in group influence
- for the symmetric IC model, the equal Shapley centrality exactly points out that all nodes in the network are replaceable if their are equally positioned in a random order

Two Categories of Axioms

Principle Axioms:

- Anonymity
- Bayesian

Choice Axioms:

- Normalization
- Isolated Node
- Independence of Sink Nodes
- Bargaining with Critical Sets

Two Categories of Axioms

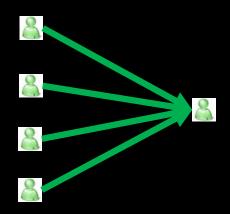
Principle Axioms:

the essence of common desirable properties

Choice Axioms:

succinctly distill the comparative differences between different formulations.

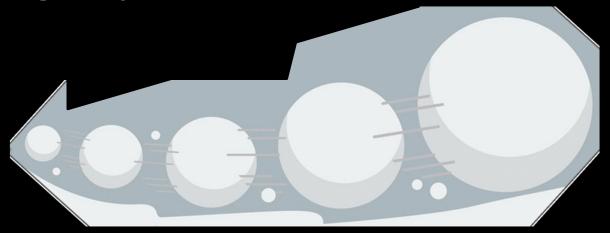
Deterministic Basis for Stochastic Influence



Critical Sets: Many to One Influence

Richer Influence Models

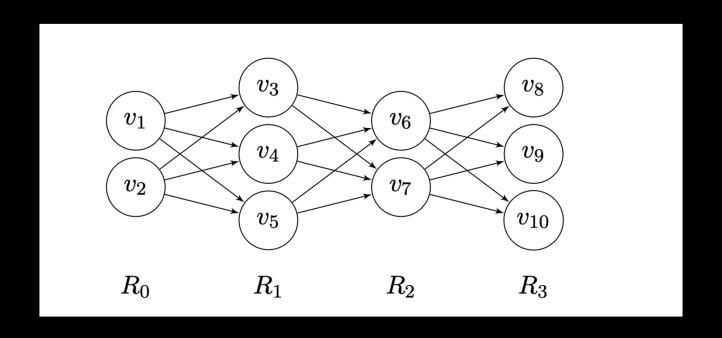
Cascading Sequences



• Influencing: Stochastic Cascading Profiles

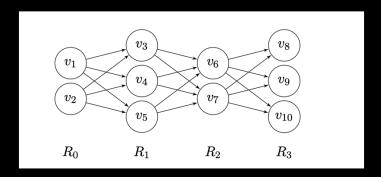
BFS-Propagation

Networking Broadcasting



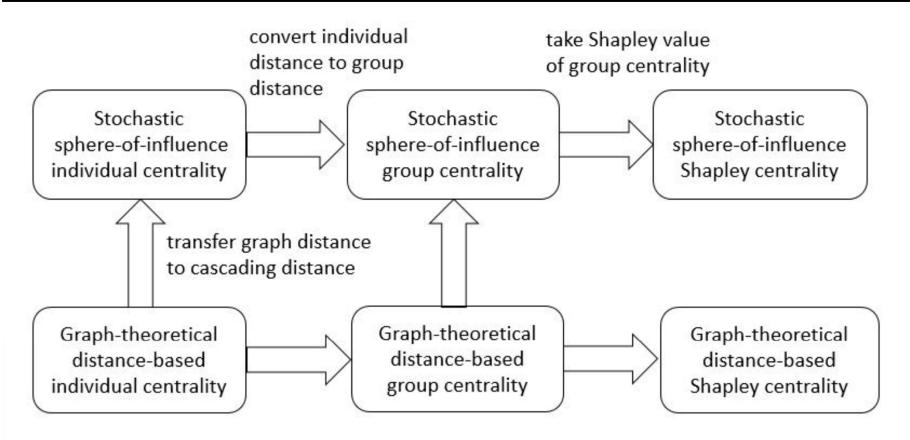
Graph-Theoretical Basis of Influence Models

Theorem: BFS Propagation Profiles form a basis of all stochastic cascading profiles.

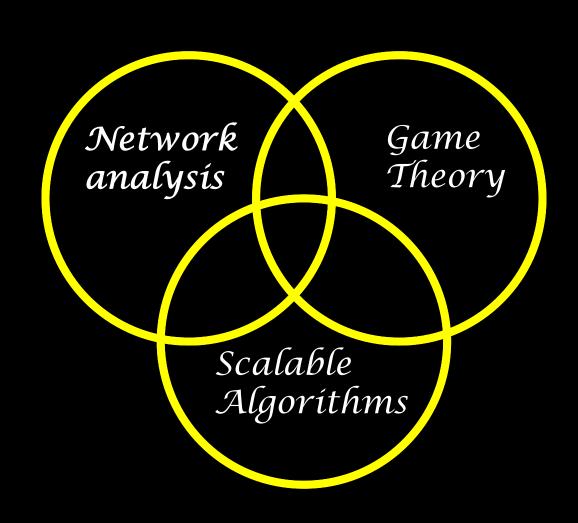


Axiomatic Characterization: Under principle Anonymity and Bayesian axioms, the centrality formulation is uniquely characterized by the centrality formulation of layered graphs.

A Systematic Road Map



Road map for the systematic extension of graph-theoretical distance-based centralities to influence-based centralities.



Interplay Between Dynamic Processes and Network Structures

Shapley centrality:

- Axiomatically characterized by
 - permutation invariance, scaling invariance, Bayesian linearity
 - three simple boundary cases
- Efficient to approximate
- Extensions:
 - Weighted influence models
 - node has different weights, both algorithm and axiomatization can be extended
 - Axiomatization based on influence spread

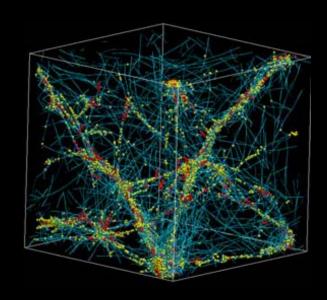
Future Directions

Broader and deeper understanding of gametheoretical approach to network analysis

- Impact of network dynamics on clusterability
- Community identification
- Bounded rationality

Comprehensive/comparative algorithmic and mathematical framework for network analysis

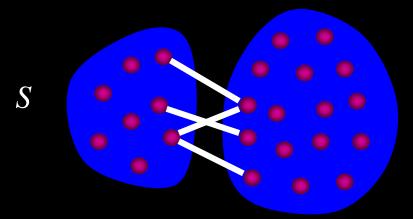
Interplay Between Dynamic Process and Network Structures



What is the impact on network concepts?

Clusterability and Community Characterization

- Conductance
- Cut-ratio



- Modularity
- PageRank Modularity

Holy Grail of Network Science

To understand the *network essence*that underlies the observed
sparse-and-multifaceted network data

Thank You!