Strategyproof Mechanisms for Multiple Facility Location Games

Dimitris Fotakis

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL TECHNICAL UNIVERSITY OF ATHENS, GREECE

Based on joint work with Panagiotis Patsilinakos (NTUA) and Christos Tzamos (UW-Madison, NKUA)

Summer School on Game Theory and Social Choice, June 20 - June 24, 2022

k-Facility Location Games

Public Good Allocation for Strategic Agents with Linear Preferences

- Agents $N = \{1, ..., n\}$ on the real line.
- Agent *i* wants a facility close to x_i , which is **private information**.

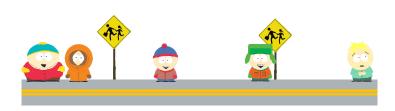
k-Facility Location Games

Public Good Allocation for Strategic Agents with Linear Preferences

- Agents $N = \{1, ..., n\}$ on the real line.
- Agent *i* wants a facility close to x_i , which is **private information**.

(Randomized) Mechanism

Mechanism *F* maps reported ideal locations $y = (y_1, \dots, y_n)$ to (probability distribution over) set(s) of *k* **facilities**.



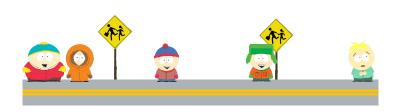
k-Facility Location Games

Public Good Allocation for Strategic Agents with Linear Preferences

- Agents $N = \{1, ..., n\}$ on the real line.
- Agent *i* wants a facility close to x_i , which is **private information**.
- Each agent *i* reports y_i that may be different from x_i .

(Randomized) Mechanism

Mechanism *F* maps reported ideal locations $y = (y_1, ..., y_n)$ to (probability distribution over) set(s) of k **facilities**.



Preferences and Truthfulness

Connection Cost

(Expected) distance of agent *i*'s **true location** to the **nearest** facility:

$$cost[x_i, F(y)] = dist(x_i, F(y)) = min_{c \in F(y)} |x_i - c|$$

Preferences and Truthfulness

Connection Cost

(Expected) distance of agent *i*'s **true location** to the **nearest** facility:

$$cost[x_i, F(y)] = dist(x_i, F(y)) = \min_{c \in F(y)} |x_i - c|$$

Truthfulness

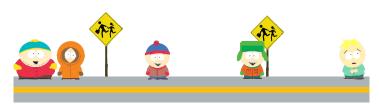
For any location profile *x*, agent *i*, and location *y*:

$$cost[x_i, F(\mathbf{x})] \leq cost[x_i, F(\mathbf{y}, \mathbf{x}_{-i})]$$

Variants and Social Efficiency

Candidate Facility Locations:

- **Unrestricted**: Any point (esp. agent locations) can be facility.
- **Restricted**: Facilities selected from *m* candidate locations *C* Motivation from multi-winner elections: Chamberlin-Courant.



Variants and Social Efficiency

Candidate Facility Locations:

- Unrestricted: Any point (esp. agent locations) can be facility.
- Restricted: Facilities selected from *m* candidate locations *C* Motivation from multi-winner elections: Chamberlin-Courant.

Social Objective

F(x) should optimize (or approximate) a given **objective function**.

- Social Cost: minimize $\sum_{i=1}^{n} \cos[x_i, F(x)]$
- Social Welfare: maximize $\sum_{i=1}^{n} (L \cos[x_i, F(x)])$
- Maximum Cost: minimize $\max\{\cos[x_i, F(x)]\}$

Median Mechanism

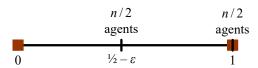
• Median of (x_1, \ldots, x_n) : truthful and optimal, when unrestricted.

Median Mechanism

- Median of $(x_1, ..., x_n)$: truthful and optimal, when unrestricted.
- Candidate location closest to $med(x_1, ..., x_n)$: truthful and 3-approximate, when restricted.

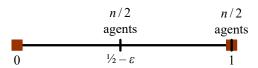
Median Mechanism

- Median of $(x_1, ..., x_n)$: truthful and optimal, when unrestricted.
- Candidate location closest to $med(x_1, ..., x_n)$: truthful and 3-approximate, when restricted.
 - OPT social cost $\approx n/4$. OPT social welfare $\approx 3n/4$.
 - Median social cost $\approx 3n/4$. Median social welfare $\approx n/4$.



Median Mechanism

- Median of $(x_1, ..., x_n)$: truthful and optimal, when unrestricted.
- Candidate location closest to $med(x_1, ..., x_n)$: truthful and 3-approximate, when restricted.
 - OPT social cost $\approx n/4$. OPT social welfare $\approx 3n/4$.
 - Median social cost $\approx 3n/4$. Median social welfare $\approx n/4$.
- Anonymity and truthfulness iff generalized median [Moulin 80]

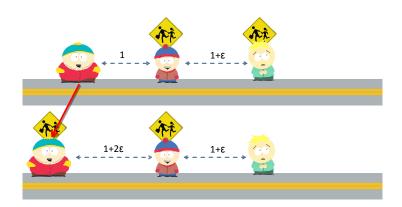


Optimal Sensitive to Deviations!

The optimal solution for social cost (and welfare) is **not truthful!**

Optimal Sensitive to Deviations!

The optimal solution for social cost (and welfare) is **not truthful!**



A Tale about Truthfulness in k-Facility Location

Three (+ One) Roads to Truthfulness (with Reasonable Efficiency)

- Order Statistics: (generalized) median, two-extremes, percentile mechanisms.
- Align Incentives with Optimal (for maximum cost): (randomized) equal-cost mechanism.
- Restriction to Stable instances: optimal, almost rightmost, random.

A Tale about Truthfulness in *k*-Facility Location

Three (+ One) Roads to Truthfulness (with Reasonable Efficiency)

- Order Statistics: (generalized) median, two-extremes, percentile mechanisms.
- Align Incentives with Optimal (for maximum cost): (randomized) equal-cost mechanism.
- Restriction to Stable instances: optimal, almost rightmost, random.
- Winner Imposing verification: if declared location gets facility, agent must be served by that [F. Tzamos, WINE 10]

k-Facility Location – Social Welfare

Optimal is **not** truthful: optimal clustering **sensitive** to deviations!

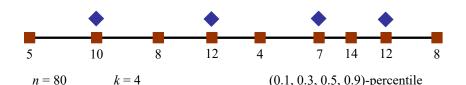
k-Facility Location – Social Welfare

Percentile Mechanisms [Sui Boutilier Sandholm, IJCAI 13]

Optimal is **not** truthful: optimal clustering **sensitive** to deviations!

$$(\alpha_1, \ldots, \alpha_k)$$
-percentile mechanism $(0 \le \alpha_1 < \alpha_2 < \cdots < \alpha_k \le 1)$:

- vote(ℓ) = #agents preferring $\ell \in \mathcal{C}$ to other candidates in \mathcal{C} .
- *j*-th facility at leftmost ℓ ∈ C with ≥ α_j fraction of vote on ℓ and its left.
 - ullet Median is 0.5-percentile. Two-Extremes is (0,1)-percentile.



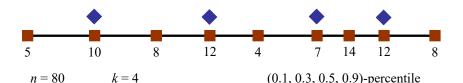
k-Facility Location – Social Welfare

Percentile Mechanisms [Sui Boutilier Sandholm, IJCAI 13]

Optimal is **not** truthful: optimal clustering **sensitive** to deviations!

$$(\alpha_1, \ldots, \alpha_k)$$
-percentile mechanism $(0 \le \alpha_1 < \alpha_2 < \cdots < \alpha_k \le 1)$:

- vote(ℓ) = #agents preferring $\ell \in \mathcal{C}$ to other candidates in \mathcal{C} .
- *j*-th facility at leftmost $\ell \in \mathcal{C}$ with $\geq \alpha_j$ **fraction** of vote on ℓ and its left.
 - Median is 0.5-percentile. Two-Extremes is (0,1)-percentile.
- Percentile mechanisms are **anonymous** and **truthful** (only one?).
- For any $k \ge 2$, $(1/(2k), 3/(2k), \dots, (2k-1)/(2k))$ -percentile mechanism is (1 + O(1/k))-approximate for social welfare [F. Gourvés Monnot, WINE 16].



k-Facility Location – Social Cost

Truthful Location of 2 Facilities

Two-Extremes is **truthful** and (n-2)-approximate (best possible). [Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]

k-Facility Location – Social Cost

Truthful Location of 2 Facilities

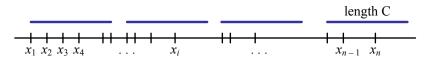
Two-Extremes is **truthful** and (n-2)-**approximate** (best possible). [Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]

Truthful Location of $k \ge 3$ Facilities

- **Deterministic** anonymous mechanisms have **unbounded** (in terms of *n* and *k*) approximation ratio [F. Tzamos, ICALP 13]
- Best known **randomized** mechanism is *n***-approximate** for social cost [F. Tzamos, EC 13]

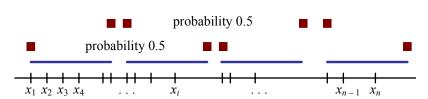
Equal-Cost Mechanism for k-Facility Location

- Optimal maximum cost of declared instance = C/2.
- Cover all agents with *k* disjoint intervals of length *C* .



Equal-Cost Mechanism for k-Facility Location

- Optimal maximum cost of declared instance = C/2.
- Cover all agents with *k* disjoint intervals of length *C* .
- Place a facility to an end of each interval.
 With prob. 1/2, facility at L R L R ...
 With prob. 1/2, facility at R L R L ...

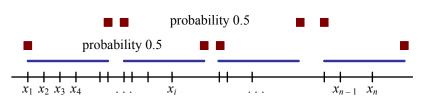


Equal-Cost Mechanism for k-Facility Location

- Optimal maximum cost of declared instance = C/2.
- Cover all agents with *k* disjoint intervals of length *C* .
- Place a facility to an end of each interval.
 With prob. 1/2, facility at L R L R ...
 With prob. 1/2, facility at R L R L ...

Agents' Cost and Approximation Ratio

• Agent *i* has expected **cost** = $(C - x_i)/2 + x_i/2 = C/2$.

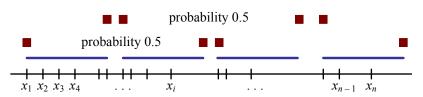


Equal-Cost Mechanism for k-Facility Location

- Optimal maximum cost of declared instance = C/2.
- Cover all agents with *k* disjoint intervals of length *C* .
- Place a facility to an end of each interval.
 With prob. 1/2, facility at L R L R ...
 With prob. 1/2, facility at R L R L ...

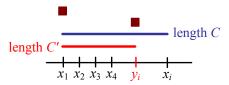
Agents' Cost and Approximation Ratio

- Agent *i* has expected $cost = (C x_i)/2 + x_i/2 = C/2$.
- Approx. ratio: 2 for the maximum cost, n for the social cost.



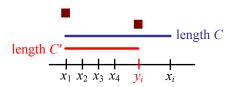
Truthfulness

• Agents do not have incentive to **lie** and **increase** optimal maximum cost, i.e. C/2.



Truthfulness

- Agents do not have incentive to **lie** and **increase** optimal maximum cost, i.e. C/2.
- Let agent *i* declare y_i and decrease optimal maximum cost to C'/2 < C/2.
- Then, *i*'s expected $cost = \frac{1}{2}C + \frac{1}{2}(C C') > C/2$



k-Facility Location – Social Cost

Truthful Location of 2 Facilities

Two-Extremes is (n-2)-approximate and best possible. [Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]

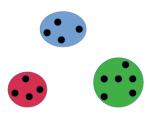
Truthful Location of k > 3 Facilities

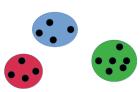
- Deterministic anonymous mechanisms have unbounded approximation ratio [F. Tzamos, ICALP 13]
- Best known **randomized** mechanism is *n***-approximate** [F. Tzamos, EC 13]
- Bounded approximation requires facility in **each optimal** cluster. But optimal clustering is **sensitive** to agent deviations.
- Focus on instances with stable optimal clustering.

Perturbation Stability for k-Facility Location

Perturbation Stability in Clustering [Bilu Linial, ITCS 10]

• γ -stability: scaling down any distances by factor $\leq \gamma$ (while maintaining metric property) does not affect optimal solution.





Perturbation Stability for k-Facility Location

Perturbation Stability in Clustering [Bilu Linial, ITCS 10]

- γ -stability: scaling down any distances by factor $\leq \gamma$ (while maintaining metric property) does not affect optimal solution.
- For $\gamma \ge 2$, (metric) k-Facility Location solvable in **poly-time**! [Angelidakis Makarychev Makarychev, STOC 17] k-Facility Location remains **hard** for $\gamma \le 2 \varepsilon$.

Perturbation Stability for k-Facility Location

Perturbation Stability in Clustering [Bilu Linial, ITCS 10]

- γ -stability: scaling down any distances by factor $\leq \gamma$ (while maintaining metric property) does not affect optimal solution.
- For $\gamma \ge 2$, (metric) k-Facility Location solvable in **poly-time**! [Angelidakis Makarychev Makarychev, STOC 17] k-Facility Location remains **hard** for $\gamma \le 2 \varepsilon$.
- Real-world instances are supposed to be **stable**: "Clustering is hard when it doesn't matter" [Roughgarden 17]

Question [F. Patsilinakos, WINE 21]

Assume that "true" instances are indeed stable.

How much stability for truthfulness and reasonable approximation?

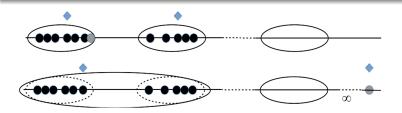
Question [F. Patsilinakos, WINE 21]

Assume that "true" instances are indeed stable.

How much stability for truthfulness and reasonable approximation?

Some Negative Observations

• Optimal solution **not truthful** for any stability $\gamma \geq 1$.



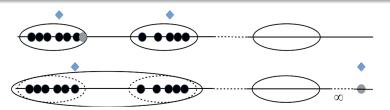
Question [F. Patsilinakos, WINE 21]

Assume that "true" instances are indeed stable.

How much stability for truthfulness and reasonable approximation?

Some Negative Observations

- Optimal solution **not truthful** for any stability $\gamma \geq 1$.
- For $k \ge 3$, deterministic anonymous truthful mechanisms for $(\sqrt{2} \varepsilon)$ -stable instances have unbounded approximation (based on [F. Tzamos, ICALP 13])



Remedy and Main Results

- Optimal clustering (C_1, \ldots, C_k) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if $\max\{\operatorname{diam}(C_i),\operatorname{diam}(C_{i+1})\} < d(C_i,C_{i+1})$

Remedy and Main Results

- Optimal clustering (C_1, \ldots, C_k) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if $\max\{\operatorname{diam}(C_i),\operatorname{diam}(C_{i+1})\} < d(C_i,C_{i+1})$
- For $(\sqrt{2} + 3)$ -stable instances without singleton clusters, optimal solution is truthful.

Truthful *k*-Facility Location in Stable Instances

Remedy and Main Results

- Optimal clustering (C_1, \ldots, C_k) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if $\max\{\operatorname{diam}(C_i),\operatorname{diam}(C_{i+1})\} < d(C_i,C_{i+1})$
- For $(\sqrt{2} + 3)$ -stable instances without singleton clusters, optimal solution is truthful.
- For 5-stable instances, facility at second from the right in each optimal cluster is truthful and (n-2)/2-approximate.

Truthful *k*-Facility Location in Stable Instances

Remedy and Main Results

- Optimal clustering (C_1, \ldots, C_k) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if $\max\{\operatorname{diam}(C_i),\operatorname{diam}(C_{i+1})\} < d(C_i,C_{i+1})$
- For $(\sqrt{2} + 3)$ -stable instances without singleton clusters, optimal solution is truthful.
- For 5-stable instances, facility at second from the right in each optimal cluster is truthful and (n-2)/2-approximate.
- For 5-stable instances, facility at random agent in each optimal cluster is truthful and 2-approximate.

Optimal Mechanism for Stable *k*-Facility Location

Optimal Mechanism and Approach to Truthfulness

If optimal clustering (C_1, \ldots, C_k) has **singleton** clusters or $\max\{\operatorname{diam}(C_i), \operatorname{diam}(C_{i+1})\} \ge d(C_i, C_{i+1})$, do **not allocate** facilities! Otherwise, facilities at $(\operatorname{med}(C_1), \ldots, \operatorname{med}(C_k))$.

Optimal Mechanism for Stable *k*-Facility Location

Optimal Mechanism and Approach to Truthfulness

If optimal clustering $(C_1, ..., C_k)$ has **singleton** clusters or $\max\{\operatorname{diam}(C_i), \operatorname{diam}(C_{i+1})\} \ge d(C_i, C_{i+1})$, do **not allocate** facilities!

Otherwise, facilities at $(med(C_1), \dots, med(C_k))$.

- Key deviation: rightmost agent of C_i deviates to C_j , causing C_i to split and C_i to merge with C_{i+1} .
- "Simulate" increase in cost of C_j by γ -perturbation and decrease in cost of C_i by agent's cost improvement.



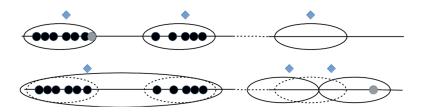
Optimal Mechanism for Stable *k*-Facility Location

Optimal Mechanism and Approach to Truthfulness

If optimal clustering $(C_1, ..., C_k)$ has **singleton** clusters or $\max\{\operatorname{diam}(C_i), \operatorname{diam}(C_{i+1})\} \ge d(C_i, C_{i+1})$, do **not allocate** facilities!

Otherwise, facilities at $(med(C_1), ..., med(C_k))$.

- Key deviation: rightmost agent of C_i deviates to C_j , causing C_j to split and C_i to merge with C_{i+1} .
- "Simulate" increase in cost of C_j by γ -perturbation and decrease in cost of C_i by agent's cost improvement.
- Stability: optimal clustering **not affected** by deviation.

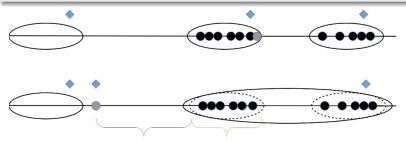


k-Facility Location Resistant to Singleton Deviations

Increase Stability to $\gamma \geq 5$ to Resist Singleton Deviations

If optimal $(C_1, ..., C_k)$ has $\max\{\operatorname{diam}(C_i), \operatorname{diam}(C_{i+1})\} \ge d(C_i, C_{i+1})$, do not allocate facilities!

Almost Rightmost: Facility at second to the right in each optimal C_i . **Random**: Facility at random in each optimal C_i .



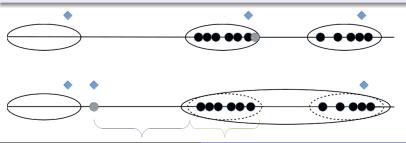
k-Facility Location Resistant to Singleton Deviations

Increase Stability to $\gamma \geq 5$ to Resist Singleton Deviations

If optimal $(C_1, ..., C_k)$ has $\max\{\operatorname{diam}(C_i), \operatorname{diam}(C_{i+1})\} \ge d(C_i, C_{i+1})$, do **not allocate** facilities!

Almost Rightmost: Facility at **second to the right** in each optimal C_i . **Random**: Facility at **random** in each optimal C_i .

• Cluster merge **not profitable** due to **robust** facility allocation.



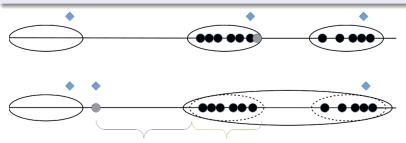
k-Facility Location Resistant to Singleton Deviations

Increase Stability to $\gamma \geq 5$ to Resist Singleton Deviations

If optimal $(C_1, ..., C_k)$ has $\max\{\operatorname{diam}(C_i), \operatorname{diam}(C_{i+1})\} \ge d(C_i, C_{i+1})$, do not allocate facilities!

Almost Rightmost: Facility at **second to the right** in each optimal C_i . **Random**: Facility at **random** in each optimal C_i .

- Cluster merge **not profitable** due to **robust** facility allocation.
- 5-stable instances: $x \in C_i$ needs to deviate by $\geq \operatorname{diam}(C_i)$ for singleton cluster.
- $x \in C_i$ cannot deviate to singleton and be served by that facility.



Restriction to Stable Instances Necessary

"Global" Truthfulness and Bounded Approximation Only for Stable

 γ -nice mechanism \equiv deterministic mech. truthful for all instances with bounded approximation (in terms of n, k) only for γ -stable instances.

Restriction to Stable Instances Necessary

"Global" Truthfulness and Bounded Approximation Only for Stable

 γ -nice mechanism \equiv deterministic mech. truthful for all instances with bounded approximation (in terms of n,k) only for γ -stable instances.

For any $k \ge 3$ and any $\gamma \ge 1$, there are no anonymous γ -nice mechanisms for k-Facility Location (even on the line).

Restriction to Stable Instances Necessary

"Global" Truthfulness and Bounded Approximation Only for Stable

 γ -nice mechanism \equiv deterministic mech. truthful for all instances with bounded approximation (in terms of n,k) only for γ -stable instances.

For any $k \ge 3$ and any $\gamma \ge 1$, there are **no anonymous** γ **-nice** mechanisms for k-Facility Location (even on the line).

Well-Separated Instances

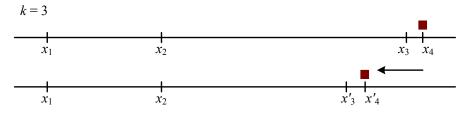
Instance with k + 1 agents is **well-separated** if it consists of k - 1 **isolated** and 2 **nearby** agents.

well-separated instance for k = 3

Consistent Allocation for Well-Separated Instances

The Nearby Agents Slide on the Left

- Let x be well-separated instance with k-th facility on x_{k+1} .
- For any well-separated instance $x' = (x_{-\{k,k+1\}}, x'_k, x'_{k+1})$ with $x'_{k+1} \le x_{k+1}$, k-th facility stays with x'_{k+1} .



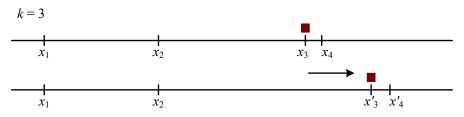
Consistent Allocation for Well-Separated Instances

The Nearby Agents Slide on the Left

- Let x be well-separated instance with k-th facility on x_{k+1} .
- For any well-separated instance $x' = (x_{-\{k,k+1\}}, x'_k, x'_{k+1})$ with $x'_{k+1} \le x_{k+1}$, k-th facility stays with x'_{k+1} .

The Nearby Agents Slide on the Right

- Let x be well-separated instance with k-th facility on x_k .
- For any well-separated instance $x' = (x_{-\{k,k+1\}}, x'_k, x'_{k+1})$ with $x_k \le x'_k$, k-th facility stays with x'_k .



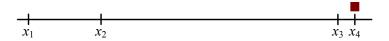
Theorem

For any $k \ge 3$ and any $\gamma \ge 1$, there are **no anonymous** γ **-nice** mechanisms for k-Facility Location (even on the line).

Theorem

For any $k \ge 3$ and any $\gamma \ge 1$, there are no anonymous γ -nice mechanisms for k-Facility Location (even on the line).

- Option set $I_3(x_{-3}) = \{a : F(x_{-3}, y) = a \text{ for some location } y\}$ Set of locations where a **facility** can be **forced by agent** 3 in x_{-3} .
- *F* truthful iff all agents get the best in their option set.



Theorem

For any $k \ge 3$ and any $\gamma \ge 1$, there are no anonymous γ -nice mechanisms for k-Facility Location (even on the line).

- Option set $I_3(x_{-3}) = \{a : F(x_{-3}, y) = a \text{ for some location } y\}$ Set of locations where a **facility** can be **forced by agent** 3 in x_{-3} .
- *F* truthful iff all agents get the best in their option set.

Theorem

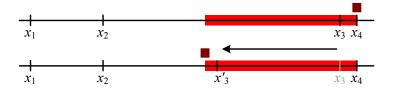
For any $k \ge 3$ and any $\gamma \ge 1$, there are no anonymous γ -nice mechanisms for k-Facility Location (even on the line).

Theorem

For any $k \ge 3$ and any $\gamma \ge 1$, there are no anonymous γ -nice mechanisms for k-Facility Location (even on the line).

Proof Sketch for k = 3 and n = 4

• *F* truthful iff all agents get the best in their option set.

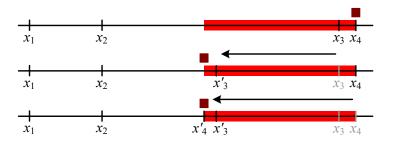


Theorem

For any $k \ge 3$ and any $\gamma \ge 1$, there are no anonymous γ -nice mechanisms for k-Facility Location (even on the line).

Proof Sketch for k = 3 and n = 4

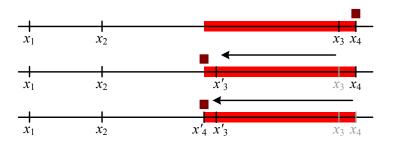
• *F* truthful iff all agents get the best in their option set.



Theorem

For any $k \ge 3$ and any $\gamma \ge 1$, there are no anonymous γ -nice mechanisms for k-Facility Location (even on the line).

- *F* truthful iff all agents get the best in their option set.
- Contradiction to consistent allocation for well-separated inst.!



- Approaches to **truthfulness** with reasonable **efficiency**:
 - Order statistics percentile mechanisms.
 - Align incentives with optimal randomized equal cost mechanism
 - Restriction to stable instances optimal, almost rightmost, random.

- Approaches to **truthfulness** with reasonable **efficiency**:
 - Order statistics percentile mechanisms.
 - Align incentives with optimal randomized equal cost mechanism
 - Restriction to stable instances optimal, almost rightmost, random.
- Close the gap in stability for bounded approximation: lower bound of $\sqrt{2}$ and upper bound of $2 + \sqrt{3}$ (or 5).
- Extension to trees and general metrics [F. Patsil. Terzoglou 22].
- Equal Cost and Random to get randomized truthful for all instances with improved approximation for *y*-stable?

- Approaches to truthfulness with reasonable efficiency:
 - Order statistics percentile mechanisms.
 - Align incentives with optimal randomized equal cost mechanism
 - Restriction to stable instances optimal, almost rightmost, random.
- Close the gap in stability for bounded approximation: lower bound of $\sqrt{2}$ and upper bound of $2 + \sqrt{3}$ (or 5).
- Extension to trees and general metrics [F. Patsil. Terzoglou 22].
- Equal Cost and Random to get randomized truthful for all instances with improved approximation for γ-stable?
- Complexity of **determining** whether a k-Facility Location instance is γ -stable, esp. for line and trees?

- Approaches to truthfulness with reasonable efficiency:
 - Order statistics percentile mechanisms.
 - Align incentives with optimal randomized equal cost mechanism
 - Restriction to stable instances optimal, almost rightmost, random.
- Close the gap in stability for bounded approximation: lower bound of $\sqrt{2}$ and upper bound of $2 + \sqrt{3}$ (or 5).
- Extension to trees and general metrics [F. Patsil. Terzoglou 22].
- Equal Cost and Random to get randomized truthful for all instances with improved approximation for γ-stable?
- Complexity of **determining** whether a k-Facility Location instance is γ -stable, esp. for line and trees?
- Learning-augmented truthful mechanisms for $k \ge 3$ facilities . [Xu Lu, 22], [Agrawal Balkanski Gkatzelis Ou Tan, EC 22] for $k \in \{1, 2\}$.

Thank You!