

Towards Efficient Training and Evaluation of Robust Models against l_0 Bounded Adversarial Perturbations

香港城市大學 City University of Hong Kong

Xuyang Zhong ¹ Yixiao Huang ^{1 2} Chen Liu ¹

¹City University of Hong Kong ²University of Michigan {xuyang.zhong, yixiao.huang}@my.cityu.edu.hk chen.liu@cityu.edu.hk

Formulation

Consider a l_0 bounded adversarial perturbation δ , we can decompose it into a magnitude tensor p and a binary sparsity mask m. Therefore, the attacker aims to maximize the following objective function:

$$\max_{\|\boldsymbol{\delta}\|_{0} \leq k, 0 \leq \boldsymbol{x} + \boldsymbol{\delta} \leq 1} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x} + \boldsymbol{\delta}) = \max_{\boldsymbol{p} \in \mathcal{S}_{\boldsymbol{p}}, \boldsymbol{m} \in \mathcal{S}_{\boldsymbol{m}}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x} + \boldsymbol{p} \odot \boldsymbol{m})$$

The feasible sets for $m{p}$ and $m{m}$ are $m{\mathcal{S}_p} = \{m{p} \in \mathbb{R}^{h imes w imes c} | 0 \leq m{x} + m{p} \leq a \}$ 1} and $S_m = \{m \in \{0,1\}^{h \times w \times 1} | \|m\|_0 \le k\}$, respectively. k is the sparsity level.

Sparse-PGD (sPGD)

Similar to PGD, sPGD iteratively updates $m{p}$ and $m{m}$ until finding a successful adversarial example or reaching the maximum iteration number.

Update Magnitude Tensor p: We utilize PGD in the l_{∞} case, i.e., use the sign of the gradients, to optimize \boldsymbol{p} , with α being the step size:

$$m{p} \longleftarrow \Pi_{\mathcal{S}_{m{p}}}(m{p} + lpha \cdot \mathrm{sign}(
abla_{m{p}}\mathcal{L}(m{ heta}, m{x} + m{p}\odot m{m})))$$

Update Sparsity Mask m: Instead of optimizing the discrete $m{m}$, we update its continuous alternative $\widetilde{m{m}} \in \mathbb{R}^{h imes w imes 1}$, and then project \widetilde{m} to the feasible set \mathcal{S}_m to obtain m:

$$\widetilde{\boldsymbol{m}} \longleftarrow \widetilde{\boldsymbol{m}} + \beta \cdot \nabla_{\widetilde{\boldsymbol{m}}} \mathcal{L} / ||\nabla_{\widetilde{\boldsymbol{m}}} \mathcal{L}||_2$$

$$\boldsymbol{m} \longleftarrow \Pi_{\mathcal{S}_{\boldsymbol{m}}} (\sigma(\widetilde{\boldsymbol{m}}))$$

where β is the step size, $\sigma(\cdot)$ denotes sigmoid function. $\Pi_{\mathcal{S}_m}$ is to set the k-largest elements in $\widetilde{\boldsymbol{m}}$ to 1 and the rest to 0.

Backward Function: We propose the sparse/projected gradient g_p and **unprojected** gradient \widetilde{g}_p of p, which exhibit complementary performance:

$$g_{p} = \nabla_{\delta} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x} + \boldsymbol{\delta}) \odot \boldsymbol{m}$$
$$\widetilde{g}_{p} = \nabla_{\delta} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x} + \boldsymbol{\delta}) \odot \sigma(\widetilde{\boldsymbol{m}})$$

Random Reinitialization: When the attack fails and the current sparsity mask m remains unchanged for 3 consecutive iterations, \widetilde{m} will be randomly reinitialized.

Pseudo-code

The pseudo-code of sPGD is presented below:

Algorithm 1 Sparse-PGD

- : **Input:** Clean image: $\boldsymbol{x} \in [0,1]^{h \times w \times c}$; Model parameters: $\boldsymbol{\theta}$; Max iteration number: T; Tolerance: t; l_0 budget: k; Step size: α , β ; Small constant: $\gamma =$ 2×10^{-8} 2: Random initialize $m{p}$ and $\widetilde{m{m}}$
- 3: **for** i = 0, 1, ..., T 1 **do**
- $oldsymbol{m} = \Pi_{\mathcal{S}_{oldsymbol{m}}}(\sigma(\widetilde{oldsymbol{m}}))$
- Calculate the loss $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x} + \boldsymbol{p} \odot \boldsymbol{m})$
- if unprojected then
- $g_{\boldsymbol{p}} = \nabla_{\boldsymbol{\delta}} \mathcal{L} \odot \sigma(\widetilde{\boldsymbol{m}})$ $\{oldsymbol{\delta} = oldsymbol{p} \odot oldsymbol{m}\}$
- ${f else}$
- $g_{m p} =
 abla_{m \delta} \mathcal{L} \odot m m$
- $g_{\widetilde{\boldsymbol{m}}} = \nabla_{\boldsymbol{\delta}} \mathcal{L} \odot \boldsymbol{p} \odot \sigma'(\widetilde{\boldsymbol{m}})$
- $oldsymbol{p} = \Pi_{\mathcal{S}_{oldsymbol{n}}}(oldsymbol{p} + lpha \cdot \mathtt{sign}(g_{oldsymbol{p}}))$
- $d = g_{\widetilde{m}}/(||g_{\widetilde{m}}||_2) \text{ if } ||g_{\widetilde{m}}||_2 \ge \gamma \text{ else } 0$
- $m_{old}, \ \widetilde{m} = m, \ \widetilde{m} + \beta \cdot d$
- if attack succeeds then
- end if
- if $||\Pi_{\mathcal{S}_{\boldsymbol{m}}}(\sigma(\widetilde{\boldsymbol{m}})) \boldsymbol{m}_{old}||_{0} \leq 0$ for t consecutive iters then
- Random initialize \tilde{m}
- end if
- 21: end for
- 22: Output: Perturbation: $\boldsymbol{\delta} = \boldsymbol{p} \odot \boldsymbol{m}$

Sparse-AutoAttack (sAA)

For comprehensive robustness evaluation against l_0 bounded perturbations, we propose sparse-AutoAttack (sAA), which is a parameter-free ensemble of both white-box and blackbox attacks. We adopt two variants of sPGD with different backward functions: $\mathbf{sPGD}_{\mathrm{proj}}$ using $g_{\boldsymbol{p}}$, and $\mathbf{sPGD}_{\mathrm{unproj}}$ using $\widetilde{g}_{\boldsymbol{p}}$. Additionally, **Sparse-RS** is adopted as the black-box attack. These attacks run in a cascade way.

Adversarial Training

To accommodate the scenario of adversarial training, we make the following modifications to sPGD: a) random backward function, **b)** multi-k strategy, **c)** higher tolerance for reintialization. In experiments, we incorporate sPGD in vanilla adversarial training and TRADES and name corresponding methods **sAT** and **sTRADES**, respectively.

Experiments

Table 1. Robust accuracy of various models on different attacks that generate l_0 bounded perturbations, where the sparsity level k=20. The models are trained on CIFAR-10.

Model	Network	Clean	Black-Box		White-Box					- A A
			CS	RS	SF	PGD_0	SAIF	$sPGD_{\mathrm{proj}}$	$sPGD_{\mathrm{unproj}}$	sAA
Vanilla	RN-18	93.9	1.2	0.0	17.5	0.4	3.2	0.0	0.0	0.0
$\overline{l_{\infty}}$ -adv. train	ned, $\epsilon=8/255$									
GD	PRN-18	87.4	26.7	6.1	52.6	25.2	40.4	9.0	15.6	5.3
PORT	RN-18	84.6	27.8	8.5	54.5	21.4	42.7	9.1	14.6	6.7
l_1 -adv. traine	ed, $\epsilon = 12$									
l_1 -APGD	PRN-18	80.7	32.3	25.0	65.4	39.8	55.6	17.9	18.8	16.9
Fast-EG- l_1	PRN-18	76.2	35.0	24.6	60.8	37.1	50.0	18.1	18.6	16.8
$\it l_0$ -adv. traine	ed, $k = 20$									
PGD ₀ -A	PRN-18	77.5	16.5	2.9	62.8	56.0	47.9	9.9	21.6	2.4
PGD ₀ -T	PRN-18	90.0	24.1	4.9	85.1	61.1	67.9	27.3	37.9	4.5
sAT	PRN-18	84.5	52.1	36.2	81.2	78.0	76.6	75.9	75.3	36.2
sTRADES	PRN-18	89.8	69.9	61.8	88.3	86.1	84.9	84.6	81.7	61.7

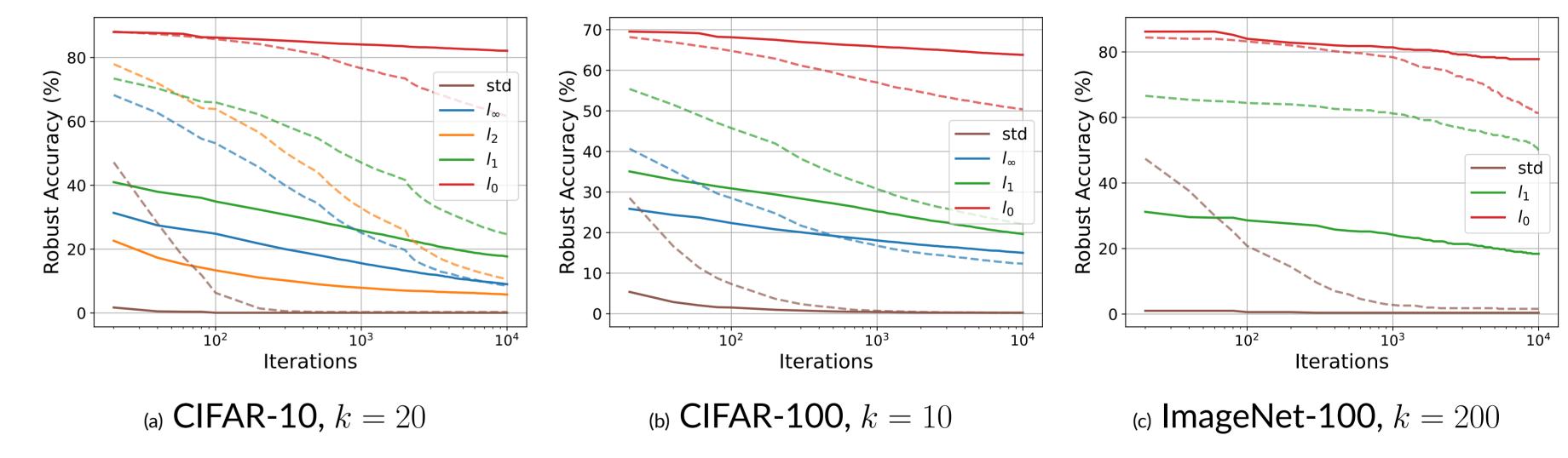


Figure 1. Comparison between sPGD and RS attack under different iterations. The results of sPGD and RS attack are shown in solid lines and dotted lines, respectively.

Takeaway Messages

- 1. We propose **sparse-PGD** (**sPGD**) to generate l_0 bounded adversarial perturbations.
- 2. We combine sPGD with a black-box attack to construct sparse-AutoAttack (sAA) for a more comprehensive robustness evaluation against sparse attacks.
- 3. sPGD achieves better performance under limited iterations. Models adversarially trained by sPGD have the strongest robustness against sparse attacks.

Codes on Github

