
 1

An empirical evaluation of several test-a-few strategies

for testing particular conditions
*, †

Eric Ying Kwong Chan

1
, W.K. Chan

1
, Pak-Lok Poon

2, ‡
 and Yuen Tak Yu

1

1
 Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong

2
 School of Accounting and Finance, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

SUMMARY

Existing specification-based testing techniques often generate a comprehensive test suite to cover diverse

combinations of test-relevant aspects. Such a test suite can be prohibitively expensive to execute exhaustively

due to its large size. A pragmatic strategy often adopted in practice, called test-once, is to identify certain

particular conditions from the specification and to test each such condition once only. This strategy is implicitly

based on the uniformity assumption that the implementation will process a particular condition uniformly,

regardless of other parameters or inputs. As the decision of adopting the test-once strategy is often based on the

specification, whether the uniformity assumption actually holds in the implementation needs to be critically

assessed, or else the risk of inadequate testing could be non-negligible. As viable alternatives to reduce such a

risk, this paper proposes a family of test-a-few strategies for the testing of particular conditions. It further

reports two rounds of experiments that evaluate the effectiveness of the test-a-few strategies as compared to

test-once. Our experiments (1) provide clear evidence that the uniformity assumption often, but not always,

holds, and that the assumption usually fails to hold when the implementation is faulty, (2) demonstrate that all

our proposed test-a-few strategies are statistically more reliable than test-once in revealing faulty programs, (3)

show that random sampling is already substantially more effective than test-once, and (4) indicate that,

compared to other test-a-few strategies under study, choice coverage seems to achieve a better tradeoff between

test effort and effectiveness.

KEY WORDS: particular condition; software testing; software validation; test-a-few strategy; test-once

strategy; test case selection

SHORT TITLE: Evaluation of test-a-few strategies for testing particular conditions

*
 The work described in this paper was supported in part by grants (project numbers: CityU 123206, CityU 123207) from the

Research Grants Council of the Hong Kong Special Administrative Region, China, and a Strategic Research Grant of City

University of Hong Kong (project number: 7008039).
†
 The email addresses for the authors are chanyk@cs.cityu.edu.hk, wkchan@cs.cityu.edu.hk, afplpoon@inet.polyu.edu.hk,

and csytyu@cityu.edu.hk, respectively.
‡
 Correspondence to: Pak-Lok Poon, School of Accounting and Finance, The Hong Kong Polytechnic University, Hung

Hom, Hong Kong.

 2

1. INTRODUCTION

Specification-based testing is a mainstream testing approach in which test cases are generated

according to information derived from the specification without requiring the knowledge of

implementation details [1, 2, 3]. This approach is popular because it can be applied even

when the source code of a program is unavailable.

In specification-based testing, test cases are derived by considering the important aspects,

which we call test-relevant aspects, that are identified from the specification [1, 4, 5, 6, 7].

Examples of test-relevant aspects are the applicant’s credit status and monthly salary for a

home-loan mortgage application system in the banking industry. A non-trivial application

system often involves many test-relevant aspects and, hence, a large test suite may be formed

to cover diverse combinations of these aspects [1, 7, 8]. For instance, it has been reported that

real-world protocol software may have 4482402 test cases per test suite [9]. The test-all

strategy, which exhaustively executes all the test cases in a large test suite for testing, can be

costly or even infeasible under limited testing resources [3, 10, 11, 12].

A popular and pragmatic means to deal with this problem is to apply the test-once

strategy to certain particular input conditions (or simply called particular conditions) [10],

that is, to identify such conditions from the specification and then test each of them once

only. Particular conditions represent “special, unusual, or redundant conditions” or those

features/scenarios “which will cause an exception or other error state” that are deemed to be

adequately tested without the need to combine them with all other conditions [7]. Implicitly,

these conditions are assumed to be somehow treated “uniformly” by the program regardless

of the values of other inputs. We refer to such an assumption as the uniformity assumption.

This paper focuses on the strategies adopted to test particular conditions and the issues related

to the associated uniformity assumptions.

Consider, for instance, a program P which attempts to read data from an input file F, but

F cannot be opened for some reasons. To keep the testing effort low, the tester may decide to

select only one test case, under the belief that P should raise a file-open-exception,

irrespective of the values of other input parameters or conditions. In so doing, the tester has in

effect associated the uniformity assumption with the particular condition of file-open-

exception. In other words, the tester tacitly assumes that the selected test case will either run

with the exception raised (as expected), giving adequate confidence that P implements the

file-open-exception situations correctly, or that P behaves incorrectly (producing a different,

unexpected outcome) on execution of the selected test case, hence revealing the existence of

a bug in P. Indeed, the uniformity assumption is analogous to the uniformity hypothesis [13]

in partition testing [6], whereby any input within an input subdomain is considered as likely

as other inputs in the same subdomain for detecting faults in the program.

Particular conditions are often determined by the tester’s intuitive or professional

judgement based primarily on the program specification, thus necessarily inducing a risk that

the corresponding uniformity assumption may actually not hold for some implementations of

the specification. This in turn implies a risk that the test-once strategy may be inadequate for

the implementation under test. Whether this risk is negligible depends on the extent to which

the uniformity assumption holds, which in turn needs to be critically assessed. If, however,

the belief of the uniformity assumption is not so high, then ways to reduce the associated

risks will be needed. These ideas form the thesis on which this research is based.

This paper serves two primary objectives. First, it assesses empirically the validity of

uniformity assumptions associated with particular conditions, with respect to a large number

of implementations of the same specification. Second, we propose and empirically evaluate a

family of strategies, called test-a-few strategies, as alternatives to test-once.

 3

Specifically, we consider three test-a-few strategies, namely, random sampling, choice

coverage, and choice-occurrence sampling. This is followed by a description of two rounds

of experiments that we conducted to compare the effectiveness of the test-once and test-a-few

strategies, in terms of their ability of program code coverage and fault detection. Through

these experiments, we find many interesting observations. The experiments involve 161

human participants and the programs they implemented individually, and evaluate to what

extent the test-once or a test-a-few strategy can reveal failures in these programs. The

empirical result shows that the test-a-few strategies are more reliable than the test-once

strategy in detecting faulty programs. Moreover, in the experiments, faulty programs were

found to be more likely (compared with correct programs) to deviate from the uniformity

assumption, in the sense that the former exercise multiple program paths to implement the

same particular condition when other inputs vary. Since the test-once strategy only executes

one test case (and, hence, one program path), other program paths that implement the same

particular condition may not be exercised at all. Thus, our empirical data provide a clear

rationale for testers to apply test-a-few strategies instead of test-once. Comparing the choice

coverage and choice-occurrence sampling strategies, the empirical result favours choice

coverage as it demands fewer test cases while achieving almost the same effectiveness as

choice-occurrence sampling. Furthermore, for the testing of particular conditions, the random

sampling strategy is already substantially more effective than test-once. Compared with

choice coverage and choice-occurrence sampling, however, random sampling is found to be

somewhat less effective, particularly when the sampling rate is as low as 1%. The empirical

result also shows that the uniformity assumption is more likely to hold for input conditions

related to exception scenarios than those related to special conditions of processing for a

business application.

The contribution of this paper, as an extended version of its preliminary one [10], is

fourfold. (a) We provide empirical data to caution the tester that the risk of adopting the test-

once strategy should not be lightly discarded. In particular, our experiments are the first that

report to what extent program implementations (especially the faulty ones) may not conform

to the uniformity assumption, on which the test-once strategy is based. (b) We propose the

notion of test-a-few as a viable alternative to provide better assurance to the testing of

particular conditions, and formulate three concrete and feasible strategies to exemplify the

implementation of this notion. (c) We present two rounds of experiments that involve real

faults committed by human participants. To our knowledge, they are the largest experiments

that specifically study particular conditions, especially in terms of the number of

implementations for the same specification. (d) The statistical analysis of our empirical data

shows that although the test-a-few strategies require slightly more test cases, they are

statistically more reliable and more effective than the test-once strategy in the testing of

particular conditions.

The organization of the rest of this paper is as follows. Section 2 outlines the major steps

of specification-based testing to introduce the context of this research. Section 3 discusses the

test-all and test-once strategies. Section 4 proposes three test-a-few strategies as alternatives

to the test-once strategy when the risk of violating the uniformity assumption is non-

negligible. Section 5 describes and discusses our two rounds of experiments, with a view to

empirically evaluating the effectiveness of the test-once and test-a-few strategies, in terms of

their ability of program path coverage and faulty program detection. Section 6 further

elaborates the thesis of this paper in light of the empirical results. Section 7 compares related

studies with our work in this paper. Section 8 concludes the paper and suggests several

directions for further work.

 4

2. OVERVIEW OF SPECIFICATION-BASED TESTING

Before discussing in detail the potential problems associated with the test-once strategy, here

we first outline the essential steps of many common specification-based testing methods in

order to introduce our terminologies and context.

Many specification-based testing methods, such as cause-effect graphing (CEG) [14],

combinatorial testing [8, 11, 15], the category-partition method (CPM) [4, 7], the choice

relation framework (CHOC’LATE) [1], and the classification-tree method (CTM) [5, 6],

require the tester to identify instances that influence the functions of a software system and

generate a test suite by systematically varying these instances over all values of interest.

Generally, these methods include the following three main steps:

(a) Identify test-relevant aspects from the specification.

(b) Identify the constraints (or relationships) among these aspects as stated or implied in

the specification.

(c) Combine the test-relevant aspects to form test cases
1

 in accordance with the

constraints identified in (b).

Example 1 below illustrates the above three steps.

Example 1 (Specification-based testing): Consider part of the specification SSCS for a smart-

card system (SCS) as follows.

A bank based in Hong Kong introduces a smart-card system (SCS) so that its

customers can use the smart cards issued to them as an alternative payment

method to cash when making purchases. The idea is to allow the cardholders to

withdraw the funds directly from the remaining balances on the cards when

making payments.

To ensure sufficient funds in their smart cards, customers must deposit

money into their cards first. The deposit is made via designated fund-deposit

machines located at various branches of the bank. The deposit can be made in

local or foreign currencies. When the deposit is made in a foreign currency, it

will be automatically converted into an equivalent amount in Hong Kong dollars

(HK$) using the prevalent exchange rate at the time of deposit. Unlike fund

deposit, purchases using the smart cards must be made in HK$ because the cards

are designed for exclusive use in Hong Kong.

There are three prestigious levels of smart cards, namely, platinum, gold,

and classic. To promote the use of platinum and gold cards, the bank has

introduced an incentive scheme. While a HK$1.00 surcharge is imposed on every

purchase with the classic card, no surcharge applies to the use of the platinum

or gold card. In addition, customers are entitled to receive a 5% and 2%

discount for any purchase with their platinum and gold cards, respectively

__

In this paper, we are going to use CPM to illustrate how to derive a comprehensive test

suite from SSCS. Readers, however, should note that the discussion here is largely applicable

to other specification-based testing methods, such as CEG, CHOC’LATE, and CTM.

1
 In CPM, a combination of test-relevant aspects is known as a test frame. In this paper, however, we will use the term “test

cases” instead of “test frames”.

 5

Step (a): CPM requires the tester to identify test-relevant aspects known as categories.

For each category [X], a set of associated choices should be identified. These choices are

disjoint subsets of values for [X], and altogether they should cover all the possible values for

[X]. In this paper, following the notation used in [4], categories and choices will be enclosed

by [] and | |, respectively. Figure 1 shows some categories and choices identified from SSCS.

Note that the surcharge is part of a business rule. It is not an input but implied by other inputs

and, hence, is not treated as a category. In this specification, if the smart card is a classic one,

the surcharge must be HK$1.00 for each purchase; otherwise the surcharge is zero.

Step (b): The tester specifies the constraints among the choices of different categories in

accordance with SSCS. For example, the choice |Purchase| in the category [Transaction Type]

cannot feasibly coexist with |Non-HK$| in [Currency] as part of any test case because,

according to SSCS, purchases with smart cards can only be made in HK$.

With the identified categories, choices, and constraints, a test specification is written in a

test specification language (TSL) [1, 7]. Figure 1 shows a partial test specification for SSCS in

TSL, in which some of the choices are associated with annotations to be explained as follows.

A choice may be annotated with a property list (such as {property deposit} for

|Deposit|) and / or with a selector expression (such as {if deposit} for |Non-HK$|).

Together the property lists and selector expressions specify the constraints among individual

choices of different categories. For example, in Figure 1, because |Deposit| is annotated with

the property list {property deposit} and |Non-HK$| is annotated with the selector

expression {if deposit}, |Non-HK$| will be selected to form part of a test case only if

|Deposit| is also selected. Readers may refer to [1, 7] for more details. The annotation

{single} associated with the two choices |Trans Amount < $0.00| and |Trans Amount =

$0.00| will be discussed later in Section 3.

Step (c): With the test specification, a generator tool (such as those described in [7, 16])

can be used to generate a test suite, in which each test case corresponds to a unique

combination of choices. Such a tool will generate a test suite TSSCS of 216 test cases from the

complete test specification of SSCS if the annotation {single} associated with the two

choices |Trans Amount < $0.00| and |Trans Amount = $0.00| is ignored for the moment. Note

that Figure 1 shows only part of the test specification for SSCS, and the annotation {single}

will be explained in Section 3 below. ■

[Card Type]

|Platinum|

|Gold|

|Classic|

[Transaction Type]

|Deposit| {property deposit}

|Purchase|

[Transaction Amount]

|Trans Amount < $0.00| {single}

|Trans Amount = $0.00| {single}

|Trans Amount > $0.00|

[Currency]

|HK$|

|Non-HK$| {if deposit}

Figure 1. A partial TSL test specification for SSCS.

 6

3. THE TEST-ALL AND TEST-ONCE STRATEGIES

In Example 1, TSSCS is non-redundant with respect to SSCS, because every test case is formed

by choices whose combinations may affect the execution behaviour of SCS in some way.

Hence, TSSCS is comprehensive in its consideration of test-relevant aspects. The test-all

strategy, which executes the entire test set TSSCS, is expected to be effective in detecting

faults, but it is often very costly to do so as TSSCS is fairly large and resource-demanding. In

other words, there is a tradeoff between the scope of testing (or the effectiveness of fault

detection) and the required testing resources.

In practice, when the test suite is large, many testers would try to reduce it by all means to

save testing costs. One strategy, which we call the test-once strategy, is to identify from the

specification some particular conditions, each of which is judged to be tested adequately with

a single test case. Typically considered particular conditions are unusual scenarios, errors or

exceptions, and special treatments that are expected or assumed to be processed uniformly by

the program regardless of what other inputs or conditions are (the uniformity assumption).

Similar to other specification-based testing methods, CPM allows testers to express their

intention to test a particular condition only once. For a choice |x| annotated with {error} or

{single}, a single test case containing only |x| will be formed. The {error} annotation

signifies an input condition that will cause an error or exception state. It is tacitly assumed

that any call of the function with this particular value in the annotated choice will result in the

same error. On the other hand, the {single} annotation describes special, redundant, or

unusual conditions that are judged to need only be tested once. Notwithstanding the different

rationales underlying the uniformity assumption, both {error} and {single} annotations

have the same effect, that is, to generate one test case containing the annotated choice only.

Note that while the use of the annotations {error} and {single} in CPM to support the

test-once strategy can greatly reduce the size of the generated test suite, it may at the same

time substantially reduce the effectiveness of the test suite in fault detection, depending on

how the system is implemented. This issue is illustrated in Example 2 below.

Example 2 (Test-once strategy): The uniformity assumption usually comes about when the

tester has some intuition of how the program is “likely” to be implemented. For instance, the

tester may judge that SSCS will be implemented in a way as shown in Figure 2. If so, then

there is no real need of testing every test case that contains |Trans Amount < $0.00|. Some of

these test cases are:

 Test case 1 = (|Platinum|, |Purchase|, |Trans Amount < $0.00|, …)

 Test case 2 = (|Gold|, |Purchase|, |Trans Amount < $0.00|, …)

 Test case 3 = (|Classic|, |Deposit|, |Trans Amount < $0.00|, …)

Here, any one of the above three test cases has the same chance of detecting possible

faults that are associated with the particular condition |Trans Amount < $0.00|. For example,

such a fault may occur, say, when statement a31 in Figure 2 is wrongly coded as “return

msg_accept_trans ;”, which outputs a message that indicates acceptance instead of rejection

of the transaction.

By annotating the choice |Trans Amount < $0.00| with {single} in the partial test

specification in Figure 1, only one test case containing this choice will be generated without

prescribing all other choices. Based on a similar consideration, the tester also annotates the

choice |Trans Amount = $0.00| with {single}. With the addition of these two {single}

annotations (see Figure 1), the number of test cases generated from the complete test

specification will be reduced to 74.

 7

Obviously, unless the tester actually has access to the code, that a particular condition will

be adequately tested by only one test case is really an assumption that is sometimes not true.

For instance, although the tester expects that SSCS will be implemented as in Figure 2 (and so

annotates the choices |Trans Amount < $0.00| and |Trans Amount = $0.00| with {single}),

yet the function may in fact be implemented in some other ways as shown in Figures 3 and 4,

which correspond to an incorrect and another correct implementations of SSCS, respectively.

Consider the implementation in Figure 3 first. A careful scrutiny of the code shows a fault

in statement b40: statement b41 will not be executed to output the error message when a

classic card is used to purchase goods with a zero transaction amount. This is because the

faulty statement b40 checks the value of the variable adjusted_amount, which would have

been set to 1.00 in statement b38 even though trans_amount = 0.00.

Now, since the choices |Trans Amount < $0.00| and |Trans Amount = $0.00| have been

annotated with {single}, only the following two of the generated test cases contain either of

these two choices:

 Test case 4 = (|Trans Amount < $0.00|)

 Test case 5 = (|Trans Amount = $0.00|)

Refer to Figure 3 again. When test case 5 is used for testing SCS, the tester may select

any one of the values “PLATINUM”, “GOLD”, or “CLASSIC” for the variable card_type,

“PURCHASE” for the variable trans_type and 0.00 for the variable trans_amount. If

“CLASSIC” is the value selected for the variable card_type, then statement b38 will be

executed and the fault in statement b40 will be revealed. But if the tester selects “PLATINUM”

or “GOLD” for the variable card_type, then the fault in statement b40 will remain hidden. In a

similar way, it is not difficult to see that test case 4 may not always detect the fault either.

Thus, test cases 4 and 5, generated as a result of the particular conditions |Trans Amount <

$0.00| and |Trans Amount = $0.00|, are not effective in detecting the fault.

Partial implementation for SSCS

a01 procedure smart_card (card_type, trans_type,

 trans_amount, …) ;

: :

a30 if trans_amount 0.00 then

a31 return msg_reject_trans ; /* return msg & exit */

a32 endif;

a33 begin case

a34 case trans_type = “PURCHASE” :

a35 begin_case

a36 case card_type = “PLATINUM” :

a37 adjusted_amount = trans_amount 0.95 ;

a38 case card_type = “GOLD” :

a39 adjusted_amount = trans_amount 0.98 ;

a40 case card_type = “CLASSIC” :

a41 adjusted_amount = trans_amount + 1.00 ;

a42 end_case ;

: :

a60 case trans_type = “DEPOSIT” :

a61 balance = balance + trans_amount ;

: :

a90 end_case ;

: :

trans_amount?

return msg_reject_trans case: trans_type?

case: card_type?

adjusted_amount =

trans_amount x 0.95

end case

≤ 0

balance =

balance + trans_amount

PURCHASE DEPOSIT

PLATINUM GOLD CLASSIC

> 0

adjusted_amount =

trans_amount x 0.98

adjusted_amount =

trans_amount + 1

end case

procedure smart_card(card_type, ...)

Figure 2. A correct partial implementation of SSCS and its flow graph.

 8

Next, consider another correct implementation shown in Figure 4, which differs from

Figure 3 only in the variables in statements b40 and c40, respectively. It is clear in Figure 4

(and also in Figure 3) that the uniformity assumptions associated with the particular

conditions |Trans Amount < $0.00| and |Trans Amount = $0.00| do not hold. Consider, for

example, the combinations of input values (card_type = “PLATINUM”, trans_type =

“PURCHASE”, trans_amount = 0.00) and (card_type = “GOLD”, trans_type = “PURCHASE”,

trans_amount = 0.00). The first combination involves the execution of statement c34,

whereas the second combination involves the execution of statement c36. In other words, the

implementation in Figure 4 will treat the two test cases differently. Now, suppose statement

c34 in Figure 4 is wrongly coded as “adjusted_amount = trans_amount 0.59”. Annotating

the choices |Trans Amount < $0.00| and |Trans Amount = $0.00| with {single} will result in

the generation of test cases 4 and 5, which are the only ones in the test suite containing the

choice |Trans Amount < $0.00| or |Trans Amount = $0.00|. In this case, the testers may select

at their own will the values for the variables trans_type and card_type. Should the value

“PURCHASE” for the variable trans_type and the value “PLATINUM” for the variable

card_type be selected, the hypothetical fault in statement c34 may be revealed. On the other

hand, if “PURCHASE” for the variable trans_type and (“GOLD” or “CLASSIC”) for the variable

card_type are selected, the hypothetical fault will not be uncovered. ■

In summary, with the test-once strategy, only one test case is executed for each particular

condition, and there is no obvious way to determine whether or not the uniformity

assumption for the particular condition holds. It is with this observation and for this purpose

that we introduce in the next section several alternative strategies for testing particular

conditions.

Partial implementation for SSCS

b01 procedure smart_card (card_type, trans_type,

 trans_amount, …) ;

: :

b30 begin case

b31 case trans_type = “PURCHASE” :

b32 begin_case

b33 case card_type = “PLATINUM” :

b34 adjusted_amount = trans_amount 0.95 ;

b35 case card_type = “GOLD” :

b36 adjusted_amount = trans_amount 0.98 ;

b37 case card_type = “CLASSIC” :

b38 adjusted_amount = trans_amount + 1.00 ;

b39 end_case ;

b40 if adjusted_amount 0.00 then /* FAULTY !! */

b41 return msg_reject_trans ; /* return msg & exit */

b42 endif ;

: :

b60 case trans_type = “DEPOSIT” :

b61 balance = balance + trans_amount ;

: :

b90 end_case ;

: :

procedure smart_card(card_type, ...)

case: trans_type?

case: card_type?

adjusted_amount =

trans_amount x 0.95

end case

balance =

balance + trans_amount

PURCHASE DEPOSIT

PLATINUM GOLD CLASSIC

adjusted_amount?

return msg_reject_trans

≤ 0 > 0

adjusted_amount =

trans_amount x 0.98

adjusted_amount =

trans_amount + 1

end case

Figure 3. An incorrect partial implementation of SSCS and its flow graph.

 9

4. TEST-A-FEW STRATEGIES

Let N (> 1) be the total number of test cases that involve a particular condition C, and n be

the number of test cases actually executed for testing C. Then we have 1 ≤ n ≤ N. The test-

once and test-all strategies correspond to the two extreme cases when n = 1 and n = N,

respectively.

When no code information is available, in order to reduce the possible risk of violating

the uniformity assumption concerning a particular condition C, we propose to execute the

program with a few (but not too many) test cases involving C (that is, 1 < n < N). We refer to

such a strategy as test-a-few strategy. Instead of reverting to the test-all strategy, however, n

should normally be small (compared to N) so that the overall testing costs should not be

greatly increased. For instance, if each of the two particular conditions in Example 2 is tested

with three test cases instead of just one, the total number of test cases selected for execution

will only increase from 74 to 78 (that is, an increase of 5.4%).

The value of n should depend on how strongly the tester believes in the uniformity

assumption for C. Obviously, if the tester’s belief is firm, the test-once strategy (n = 1) may

be used. At the other extreme, if the tester suspects that C will interact with all other

conditions in a variety of ways to affect the program’s behaviour, the test-all strategy (n = N)

should be more appropriate. The test-a-few strategy (1 < n < N) may be seen as positioned

between the two extremes, but is closer to test-once than test-all.

There is another rationale that suggests using n > 1. If the uniformity assumption in fact

does not hold, it will have a non-zero chance (which increases with n) of being revealed by

the execution of two or more test cases. In other words, the use of more than one test case is a

necessary condition for revealing the falsity of the uniformity assumption.

Partial implementation for SSCS

c01 procedure smart_card (card_type, trans_type,

 trans_amount, …) ;

: :

c30 begin case

c31 case trans_type = “PURCHASE” :

c32 begin_case

c33 case card_type = “PLATINUM” :

c34 adjusted_amount = trans_amount 0.95 ;

c35 case card_type = “GOLD” :

c36 adjusted_amount = trans_amount 0.98 ;

c37 case card_type = “CLASSIC” :

c38 adjusted_amount = trans_amount + 1.00 ;

c39 end_case ;

c40 if trans_amount 0.00 then /* CORRECT */

c41 return msg_reject_trans ; /* return msg & exit */

c42 endif ;

: :

c60 case trans_type = “DEPOSIT” :

c61 balance = balance + trans_amount ;

: :

c90 end_case ;

: :

procedure smart_card(card_type, ...)

case: trans_type?

case: card_type?

adjusted_amount =

trans_amount x 0.95

end case

balance =

balance + trans_amount

PURCHASE DEPOSIT

PLATINUM GOLD CLASSIC

trans_amount?

return msg_reject_trans

≤ 0 > 0

adjusted_amount =

trans_amount x 0.98

adjusted_amount =

trans_amount + 1

end case

Figure 4. Another correct partial implementation of SSCS and its flow graph.

 10

Depending on the way or criterion used to select the few (n) test cases, the test-a-few

strategy may take several variations. We now formulate three concrete strategies to

implement the notion of test-a-few.

Strategy 1 (Random sampling at rate r). This strategy selects a random sample of n test

cases from amongst the choice combinations involving C. The ratio r = n / N is called the

sampling rate.

The intuitive rationale of this strategy is obvious. Unless additional information is utilized,

there is no preference among all of the N test cases involving C. Hence, this strategy simply

selects a random sample of n test cases.

One implementation of this strategy is to fix the number n so that every particular

condition will be tested with the same number of test cases. Alternatively, it seems more

reasonable to preset the sampling rate r so that a particular condition C will be tested a

number (n) of times in proportion to the number (N) of ways that C may be combined with

other compatible choices. In other words, fixing the sampling rate r = n / N satisfies the

intuition that the more frequently C appears in the original test suite, the more often it should

be tested.

The main benefit of this strategy lies in its simplicity and relatively low cost of

implementation. Since the n 1 additional test cases (per particular condition, compared with

test-once) are selected at random, the cost of test case selection is minimized, and the extra

cost basically consists of the overhead in executing the n 1 test cases and checking their

results.

Strategy 2 (Choice coverage). This strategy selects a sample of test cases involving C in

such a way that C is combined with every other (compatible) choice at least once, whenever

possible.

This strategy utilizes the information of other choices that combine with C in the original

test suite. The rationale is that even though C, being a particular condition in nature, probably

dominates the program’s behaviour, other choices |c| that combine with C may as well have

some (albeit perhaps slight or unexpected) effect on the program’s execution (which accounts

for the risk of ignoring |c| if C is tested just once). Since it is not known a priori which other

choice |c| may in fact have (unexpected) effect on the program behaviour (under the

occurrence of the particular condition C), it seems safer to ensure all compatible choices are

covered at least once by the tests.

Thus, choice coverage at least ensures the following. If C is actually processed differently

by the implementation whenever another choice |c| occurs in the test case, the program’s non-

uniform treatment of C due to the presence of |c| will always be revealed. For example, in

Figure 3, the particular condition |Trans Amount = $0.00| is treated non-uniformly by the

program, but adopting choice coverage (so that the choice |CLASSIC| is necessarily covered)

will ensure that the fault in statement b40 be revealed. Clearly, random sampling with a

sampling rate < 100% cannot guarantee that C will be combined with every other compatible

choice at least once.

Strategy 3 (Choice-occurrence sampling at rate r). This strategy selects a random sample of

test cases involving C such that it is combined with every other (compatible) choice at least a

certain number or percentage of times, whenever possible.

 11

Choice-occurrence sampling may be regarded as a generalisation of both random

sampling and choice coverage. It requires every choice to be tested together with C using at

least a certain number of test cases or a certain percentage of the test cases related to C,

whenever possible. Thus, it subsumes choice coverage (actually covering other compatible

choices multiple times) while incorporating the notion of sampling rate. Generally, it

demands significantly more test cases than choice coverage, but only slightly more than

random sampling at the same sampling rate.

Again, unless the tester trivially adopts a sampling rate of 100%, random sampling cannot

guarantee that C will be combined with other compatible choices in a way proportional to

their occurrence frequency, whereas choice-occurrence sampling can.

5. EVALUATION

In this section, we report an empirical evaluation of the effectiveness of the test-a-few

strategies versus the test-once strategy. We first conducted a smaller experiment [10] to make

observations on the performance of different strategies and gained experiences in dealing

with human participants and other settings so that we can manage and control a later and

larger experiment more efficiently. In what follows, we shall refer to the first experiment as

Experiment 1, and the follow-up experiment as Experiment 2.

5.1. Experimental setup

5.1.1. Specifications. In our evaluation, we used two specifications of modules, both of which

were adapted from commercial-like applications in the banking industry. We chose these two

specifications because one of the authors (Poon) previously worked in this particular industry

sector as a certified systems auditor. His expert domain knowledge helps to judge the realism

of the two specifications and their particular conditions.

For Experiment 1, we used the module specification SPURCHASE, which previously

appeared in [4] for studying the problem of identifying categories and choices from

specifications. SPURCHASE concerns with the purchase of goods using credit cards issued by an

international bank. The main functions of the system are to determine whether a purchase

transaction using a credit card should be approved, and to calculate the number of bonus

points that will result from an approved purchase. The number of bonus points further

determines the type of benefit, such as shopping vouchers, that the customer is entitled.

Figure 5 shows part of the test specification derived from SPURCHASE using CPM.

Intuitively, when a transaction involves a purchase amount (PA) which is zero or negative, or

which exceeds the remaining credit, the transaction is expected to be simply rejected without

the need for further processing such as updating the credit balance or calculating the bonus

points. Here, four particular conditions can be identified, namely, |CR-LO < 0.00|, |CR-OV <

0.00|, |PA < 0.00|, and |PA = 0.00|, where CR-LO and CR-OV denote the remaining credit

(CR) after a purchase is made locally (LO) and at overseas (OV), respectively. We shall label

these particular conditions as C1, C2, C3, and C4, respectively. Accordingly, the choices

associated with these particular conditions are annotated with {single} as shown in

Figure 5. The tester may reasonably expect the program to process these four particular

conditions uniformly without regard to other inputs or conditions. Note that when a choice,

such as |CR-LO < 0.00| or |CR-OV < 0.00| in Figure 5, is annotated with a selector expression

together with {error} or {single}, the selector expression will be ignored at test suite

generation.

 12

For Experiment 2, we used the module specification SREWARDS taken from [12], which is

related to an application in the same banking domain as SPURCHASE. SREWARDS is, however,

more complex in terms of the number of categories and choices identified from the

specification, as well as the constraints that govern the combination of choices from different

categories, resulting in a much larger potential test suite. This characteristic, together with the

existence of more particular conditions, make SREWARDS a suitable specification for our

second experiment.

SREWARDS is the specification for a system which determines the reward to be earned

subsequent to a validated credit purchase transaction. To validate a credit purchase

transaction, the system accepts the details of the transaction, including the card status (such as

normal or expired), type (such as corporate or personal), credit limit, cumulative balance, and

the class of ticket (such as first, business, or economy) when an air ticket is purchased.

5.1.2. Test sets. For Experiment 1, we used a tool called EXTRACT [16] to construct a test

suite TSPURCHASE from the test specification in Figure 5 but with the four {single}

annotations ignored. This test suite consists of 1734 test cases. For each particular condition

C, we form a corresponding test set by extracting every test case which involves C but not

other particular conditions from TSPURCHASE. We denote these four test sets for the particular

conditions C1, C2, C3, and C4 by TS1, TS2, TS3, and TS4, respectively.

For Experiment 2, to construct the pools of test cases such that each test case in the same

pool involves the same particular condition, we followed the same procedure as for

Experiment 1, except that SREWARDS was used instead of SPURCHASE. Moreover, in Experiment

2, we label the 10 particular conditions as C11 to C20, and the corresponding test sets as TS11

to TS20, respectively.

Table I summarizes the number of test cases in the 14 test sets (one for each particular

condition) in the two experiments and their descriptive statistics. The abbreviations ABTLC

and ABTFC corresponding to C17 and C18 stand for “Available Balance on Transaction in

Local Currency” and “Available Balance on Transaction in Foreign Currency”, respectively.

[Purchase Location (PL)]

|Local| {property local}

|Overseas| {property overseas}

[Remaining Credit After Local Purchase (CR-LO)]

|CR-LO < 0.00| {if local and positive}{single}

|CR-LO = 0.00| {if local and positive}

|CR-LO > 0.00| {if local and positive}

[Remaining Credit After Overseas Purchase (CR-OV)]

|CR-OV < 0.00| {if overseas and positive}{single}

|CR-OV = 0.00| {if overseas and positive}

|CR-OV > 0.00| {if overseas and positive}

[Purchase Amount (PA)]

|PA < 0.00| {single}

|PA = 0.00| {single}

|PA > 0.00| {property positive}

Figure 5. Part of the test specification for SPURCHASE.

 13

In Experiment 1, to evaluate the test-once strategy, four sample test sets of size one were

selected from TSPURCHASE such that the selected test cases meet the four particular conditions,

respectively. Moreover, to evaluate the test-a-few strategies, for each particular condition Ci,

four sample test sets were generated from TSi by using each of the following four strategies,

respectively: (a) choice coverage, (b) random sampling at a rate of 5%, (c) random sampling

at a rate of 10%, and (d) choice-occurrence sampling at a rate of 10%. Thus, a total of 4 + (4

 4) = 20 sample test sets were formed.

The procedure to select sample test sets from the test pools for Experiment 2 was the

same as for Experiment 1, except that 10 particular conditions were involved instead of 4.

Moreover, we further evaluated different strategies at a finer granularity of sampling rates.

More specifically, in addition to test-once and choice coverage, we experimented with both

random sampling and choice-occurrence sampling at sampling rates of 1%, 2%, 3%, 4%, 5%,

and 10%, respectively. Thus, a total of 10 + 10 + (10 6) + (10 6) = 140 sample test sets

were formed.

Table II summarizes the number of test cases in the resulting 20 sample test sets in

Experiment 1 and 140 sample test sets in Experiment 2. We repeated either experiment 10

times so as to average out and minimize the effect of randomness during the test sampling

process.

5.1.3. Procedure and programs. We conducted our experiments in a class-setting

environment. For Experiment 1, we firstly conducted a three-hour workshop, in which we

lectured on the principle and procedure of CPM, and the participants had to complete one

hands-on exercise. The specification used in the exercise is irrelevant to the two

specifications used in our study. All participants were computer-science undergraduates at

their final year of study. At the time of the experiment, on average, the students had one year

of relevant work experience in the computer software field. After completing the workshop,

we distributed the program specification to the participants. Each participant was allowed to

raise any question and request further clarifications. We refrained ourselves from offering

Table I. Test sets involved in particular conditions.

Experiment Test set Associated particular condition Number of test cases Descriptive statistics

1

TS1 |CR-LO < 0.00| C1 144

Mean: 216

Standard deviation: 83.1

Sum: 864

TS2 |CR-OV < 0.00| C2 144

TS3 |PA < 0.00| C3 288

TS4 |PA = 0.00| C4 288

2

TS11 |File Not Exists| C11 36

Mean: 587

Standard deviation: 699.1

Sum: 5868

TS12 |File Empty| C12 36

TS13 |Card Not Found| C13 36

TS14 |Card Lost| C14 1584

TS15 |Card Expired| C15 1584

TS16 |Card Suspended| C16 1584

TS17 |ABTLC < 0| C17 144

TS18 |ABTFC < 0| C18 144

TS19 |Credit Purchase < 0| C19 288

TS20 |Credit Purchase = 0| C20 432

 14

any advice or hints related to the uniformity assumption, or how a program may implement a

requirement in the program specification. Participants were given four weeks to develop,

individually and on their own, an implementation of the program specification. At the end,

we collected 161 programs written for SPURCHASE. We applied all the test cases in TSPURCHASE

to each collected program, and eliminated those programs that failed at least 20% of test

cases or executed the same paths for all 1734 test cases in TSPURCHASE. This threshold was

also used in previous test experiments (such as [17]) that evaluated program-based testing

techniques. The main reasons are to eliminate faulty programs that obviously did not

reasonably implement the required function and, hence, violate the competent-programmer

hypothesis [18], which hypothesizes that the programs written by a competent programmer

are close to being correct. As a result, 31 programs were eliminated. The remaining 130

programs were then instrumented and executed with all the 864 test cases in TS1, TS2, TS3,

and TS4. Important information such as the execution path associated with each test case and

the faulty behaviour that each test case revealed (if any) were monitored and recorded. Faults

were found in 87 programs by these test sets and no fault was found in the other 43 programs.

Experiment 2 was done in the same way as Experiment 1, except that it used 5868 test cases

in TS11 to TS20. Faults were found in 80 programs by these test sets, and no fault was found in

the other 50 programs.

Table II. Size of sample test sets.

 Strategies for testing

particular conditions

Number of test cases associated with Descriptive statistics

 C1 C2 C3 C4 Mean Median Sum SD

E
x

p
er

im
en

t
1
 Test-once 1 1 1 1 1 1 4 0.0

Choice coverage 6 6 6 6 6 6 24 0.0

Random sampling (5%) 8 8 15 15 12 12 46 4.0

Random sampling (10%) 15 15 29 29 22 22 88 8.1

Choice-occurrence (10%) 18 18 31 31 25 25 98 7.5

 Strategies for testing

particular conditions

Number of test cases associated with Descriptive statistics

 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 Mean Median Sum SD

E
x

p
er

im
en

t
2

Test-once 1 1 1 1 1 1 1 1 1 1 1 1 10 0.0

Choice coverage 6 6 6 6 6 6 6 6 6 6 6 6 60 0.0

Random sampling (1%) 1 1 1 16 16 16 2 2 3 5 6 3 63 6.8

Random sampling (2%) 1 1 1 32 32 32 3 3 6 9 12 5 120 14.0

Random sampling (3%) 2 2 2 48 48 48 5 5 9 13 18 7 182 20.8

Random sampling (4%) 2 2 2 64 64 64 6 6 12 18 24 9 240 28.0

Random sampling (5%) 2 2 2 80 80 80 8 8 15 22 30 12 299 35.1

Random sampling (10%) 2 2 2 159 159 159 15 15 29 44 59 22 586 70.5

Choice-occurrence (1%) 6 6 6 18 18 18 6 6 6 7 10 6 97 5.7

Choice-occurrence (2%) 6 6 6 36 36 36 6 6 8 12 16 7 158 14.1

Choice-occurrence (3%) 6 6 6 49 49 49 7 7 12 18 21 10 209 19.7

Choice-occurrence (4%) 6 6 6 66 66 66 8 8 13 19 26 11 264 27.6

Choice-occurrence (5%) 6 6 6 84 84 84 12 12 18 24 34 15 336 35.2

Choice-occurrence (10%) 6 6 6 162 162 162 18 18 31 48 62 25 619 70.3

 15

5.1.4. Test oracles. In each experiment, we used our own implementation as a test oracle.

Note that all the faults in the programs were real faults committed by the human subjects. We

had no ideas what the faults were and where they were located in the programs. In view of

the large number of programs and our limited human resources, we did not manually inspect

each program in detail. However, we are certain that each program which exhibited failures

on execution of the corresponding test pools contains at least one fault.

5.1.5. Research questions and hypotheses. The objectives of our experiments were twofold.

First, as explained in previous sections, the rationale for the adequacy of the test-once

strategy rests mainly on the uniformity assumption regarding the particular conditions. Thus,

we would like to evaluate to what extent the assumption is true in our collected programs.

Second, since the ultimate goal of defect testing is to detect program faults, we would like to

know the effectiveness of the test-once strategy in detecting faults, particularly when

compared with our proposed alternative test-a-few strategies. We now refine our objectives

into specific research questions, expressed in hypotheses for statistical tests.

The uniformity assumption stipulates that the implementation should treat the particular

condition uniformly, regardless of other inputs or conditions. In the present study, we use the

operational definition which considers the uniformity assumption for a given program and a

particular condition Ci to be satisfied if all the test cases in TSi execute the same program path.

Indeed, executing the same program path implies that the inputs are processed by the same

set of program statements in the same sequence and, hence, may serve as a good indicator of

being treated uniformly by the program. Conversely, inputs that traverse different program

paths are either processed by different sets of program statements, or in a different sequence

and, hence, treated non-uniformly by the program. Using program paths as the criterion to

assess the uniformity assumption is conservative because some different program paths (for

example, different program interleaving in multi-threaded programs with deterministic

outputs) may be semantically the same but different in their ordering of the executed

statements. Although using other criteria (for example, executing the same set of program

statements) to assess the uniformity assumption is possible, the path executed provides an

objective criterion to determine whether different inputs have been processed in the same

manner by the program. Therefore, we chose to use paths as the basis in the experiment.

Thus, our first objective is to find out whether a program is likely to follow the same path

for the same particular condition. To this end, we apply the Pareto Principle (or popularly

known as the 80-20 rule) [19] as a benchmark to examine the validity of the uniformity

assumption. Moreover, among all the programs (which implement the same specification)

under study, we are particularly concerned with the behaviour of faulty programs, because

they are exactly what testing is trying to reveal.

Hence, our first research question,

Q1: Given a specification, how likely will a program that implements the specification

indeed treat the particular conditions uniformly?

can be formulated as the following five closely related null hypotheses:

H1: For each particular condition, at least 80% of the programs execute the same path.

H2: The proportion of programs that execute the same path is the same for different

particular conditions.

H3: For each particular condition, at least 80% of the faulty programs execute the same

path.

H4: The proportion of faulty programs that execute the same path is the same for

different particular conditions.

 16

H5: To implement a particular condition, programs that execute the same path are

equally likely to result in failures as programs that execute different paths.

The second objective of this study concerns with the detection of program faults. Ideally,

any test case selection methods should aim at retaining, as much as possible, the fault-

detecting ability of the test-all strategy (which executes the entire test suite). Hence, the

second criterion is to evaluate the capability of the test-once and the proposed test-a-few

strategies in detecting faulty programs. Thus, we ask the following question:

Q2: Is there any significant difference in fault detection effectiveness between the test-

once and test-a-few strategies?

which translates to the following two null hypotheses:

H6: The test-once and test-a-few strategies are similar in fault detection effectiveness.

H7: Random sampling and choice-occurrence sampling at the same sampling rate are

similar in fault detection effectiveness.

As explained in Section 5.1.4, we had no idea what the faults in the programs are or

where they are, and so collecting the more conventional measure of the number or percentage

of faults detected would be infeasible. To study these hypotheses, we shall measure the fault

detection effectiveness of a strategy in terms of the percentage of test sets (generated by the

strategy) that can detect all faulty programs over the total number of test sets for the strategy

used in the experiments. Our set of faulty programs represents a real sample of possible faulty

implementations (of the same specification) with genuine (instead of artificially seeded)

faults committed by the participants. From the tester’s point of view, the program under test

could be any one of these implementations, which are all detected by the test-all strategy. The

question is to what extent (or with what probability) the test-once or test-a-few strategies can

achieve the same effectiveness as the test-all strategy.

5.2. Findings and discussions

5.2.1. Uniformity assumption for all programs.

Experiment 1: To investigate to what extent the uniformity assumption holds for the subject

programs under study, we tabulate the statistics of the execution paths of all the test cases in

TS1, TS2, TS3, and TS4 (see Table III).

Consider the particular condition C1. There are 130 programs under study. Table III

shows that, among them, the uniformity assumption holds in 110 (84.6%) of the programs, of

which all test cases in TS1 execute the same path. The assumption fails to hold in the other 20

programs, which constitute 15.4% of the batch of 130 programs. For the other particular

conditions C2, C3, and C4, the uniformity assumption holds in 97 (74.6%), 88 (67.7%), and 45

(34.6%) of the programs, and fails to hold in 33 (25.4%), 42 (32.3%), and 85 (65.4%),

respectively, of the programs. Averaged over all the four particular conditions, the

assumption fails to hold in 34.6% (that is, about 1 in 3) of the programs.

Another important observation is that for none of the particular conditions does the

uniformity assumption hold in all of the 130 programs.

Overall, while the uniformity assumption may hold more often than not, the possibility

(and hence the risk) of its failure to hold is not very low and therefore should not be lightly

discarded. These results support our argument that the test-once strategy, which is based on

the uniformity assumption, should be used judiciously. We further validate this result in

Experiment 2.

 17

Experiment 2: The result of this experiment is also shown in Table III. Compared to

Experiment 1, we find that the chances of executing the same path are higher, and the result

of Experiment 2 essentially echoes that of Experiment 1, that is, the uniformity assumption

holds more often than not. This experiment shows that, overall, in terms of the mean value,

the uniformity assumption holds in more than 80% of cases. On closer look, we find that the

uniformity assumption almost always holds for exception handling conditions such as C11,

C12, and C13. Industrial-strength programs have many codes that comprehensively handle

various exceptions. Our result indicates that the chance of uniform treatment by code to these

parts of requirements is higher than that involving special functionality part of the

requirements. However, for each particular condition, there is still a non-negligible

proportion of programs executing different paths. The result indicates that methods to

enhance the strategies for testing particular conditions are needed. We also observe that there

are quite large differences among the percentages in column (A) of Table III, ranging from

31.1% to 96.9%. It may indicate that the mean value can be skewed by some values in the

columns. To further analyze the data, we conduct hypothesis testing to review the result.

Hypothesis H1: To validate H1, we performed the Mann-Whitney test to compare

whether a program has at least 80% of chance (in terms of median) that it implements a

particular condition via the same path. Specifically, if a percentage value in column (A) of

Table III is at least 80%, we mark the corresponding row as 1, otherwise 0. We compare this

sequence of 0s and 1s with a sequence of all 1s, and test whether statistically the two

sequences can be considered the same. Note that column (A) of Table III shows that 8 out of

14 rows contain values of at least 80%. Statistical calculation shows that, for size = 14 for

either sequence, z = 1.91, U = 140, and p-value = 0.0281. It successfully rejects H1 at a 5%

significance level.

Table III. Program execution paths with respect to different particular conditions.

 Particular condition and test set
Number (%) of programs executing

Same path (A) Different paths (B)

E
x

p
er

im
en

t
1

C1 TS1 |CR-LO < 0.00| 110 (84.6%) 20 (15.4%)

C2 TS2 |CR-OV < 0.00| 97 (74.6%) 33 (25.4%)

C3 TS3 |PA < 0.00| 88 (67.7%) 42 (32.3%)

C4 TS4 |PA = 0.00| 45 (34.6%) 85 (65.4%)

Mean

Standard deviation

85.0 (65.4%)

28.2

45.0 (34.6%)

28.2

E
x

p
er

im
en

t
2

C11 TS11 |File Not Exists| 126 (96.9%) 4 (3.1%)

C12 TS12 |File Empty| 126 (96.9%) 4 (3.1%)

C13 TS13 |Card Not Found| 126 (96.9%) 4 (3.1%)

C14 TS14 |Card Lost| 121 (93.1%) 9 (6.9%)

C15 TS15 |Card Expired| 119 (91.5%) 11 (8.5%)

C16 TS16 |Card Suspended| 119 (91.5%) 11 (8.5%)

C17 TS17 |ABTLC < 0| 111 (85.4%) 19 (14.6%)

C18 TS18 |ABTFC < 0| 98 (75.4%) 32 (24.6%)

C19 TS19 |Credit Purchase < 0| 88 (67.7%) 42 (32.3%)

C20 TS20 |Credit Purchase = 0| 43 (31.1%) 87 (66.9%)

Mean

Standard deviation

107.7 (82.8%)

26.1

22.3 (17.2%)

26.1

s

 18

Hypothesis H2: To validate H2, we compute the ratio of the values in column (A) to the

sum of values in columns (A) and (B) from Table III, and compare the set of all such ratios

against the set of their mean values. Statistical calculation shows that, for size = 14 for either

set of samples, z = 0.62, U = 84, and p-value = 0.2676. We cannot reject H2 based on the data

at a 5% significance level.

5.2.2. Uniformity assumption for faulty programs.

Experiment 1: The upper part of Table IV summarizes the execution path statistics of the

programs that were revealed to be faulty by the test sets TS1, TS2, TS3, and TS4, which

correspond to the particular conditions C1, C2, C3, and C4, respectively. Consider the row

containing C1 in Table IV. The test set TS1 reveals only one faulty program. For this faulty

program, since all test cases in TS1 execute the same path, the uniformity assumption for C1

does hold. In contrast, for the particular conditions C2, C3, and C4, the uniformity assumption

rarely holds in the faulty programs. The results suggest that, for programs that are faulty, it is

more likely for the uniformity assumption to be violated than satisfied. This is in sharp

contrast to the corresponding result in Section 5.2.1, where the uniformity assumption is seen

to hold more often than not when all programs (including both correct and faulty ones) are

considered. Clearly, faulty programs exhibit very different characteristics with respect to the

uniformity assumption. It is likely that when conceiving the uniformity assumption, the tester

is biased towards the specification, that is, biased towards the characteristics of correct

programs instead of incorrect programs which the testing attempts to reveal.

Table IV. Faulty programs’ execution paths with respect to

different particular conditions.

Particular condition

and test set

Number of faulty

programs revealed

Number (%) of faulty programs executing

Same path (C) Different paths (D)

E
x

p
er

im
en

t
1
 C1 TS1 1 1 (100.0%) 0 (0.0%)

C2 TS2 14 0 (0.0%) 14 (100.0%)

C3 TS3 7 1 (14.3%) 6 (85.7%)

C4 TS4 68 2 (2.9%) 66 (97.1%)

Mean

Standard deviation

 29.3%

 47.5%

 70.7%

 47.5%

E
x

p
er

im
en

t
2

C11 TS11 7 4 (57.1%) 3 (42.9%)

C12 TS12 7 4 (57.1%) 3 (42.9%)

C13 TS13 7 4 (57.1%) 3 (42.9%)

C14 TS14 4 0 (0.0%) 4 (100.0%)

C15 TS15 6 0 (0.0%) 6 (100.0%)

C16 TS16 6 0 (0.0%) 6 (100.0%)

C17 TS17 1 1 (100.0%) 0 (0.0%)

C18 TS18 14 0 (0.0%) 14 (100.0%)

C19 TS19 7 1 (14.3%) 6 (85.7%)

C20 TS20 70 2 (2.9%) 68 (97.1%)

Mean

Standard deviation

 28.9%

 36%

 71.1%

 36%

 19

Experiment 2: The lower part of Table IV shows the result of Experiment 2. We observe

that the data exhibit a very similar pattern as that of Experiment 1. Moreover, we observe that,

in both experiments, the average percentages of faulty programs executing the same path and

different paths are 29% and 71%, respectively. We conclude that, for programs that are faulty,

it is indeed more likely for the uniformity assumption to be violated than satisfied. Thus,

relying on the test-once strategy can be very risky when the program is faulty.

Hypothesis H3: To validate H3, we repeat the same procedure that validates H1 except

that we use the data in Table IV instead of those in Table III, column (C) instead of column

(A), and column (D) instead of column (B). Statistical calculation shows that for size = 14 for

either set of samples, we have z = 4.16, U = 189, and p-value < 0.0001. It successfully

rejects H3 at a 5% significance level.

Hypothesis H4: By the same token, to validate H4, we repeat the same procedure that

validates H2 except that we use the data in Table IV instead of those in Table III, column (C)

instead of column (A), and column (D) instead of column (B). Statistical calculation shows

that for size = 14 for either set of samples, we have z = 3.84, U = 182, and p-value < 0.0001.

It successfully rejects H4 at a 5% significance level.

Hypothesis H5: To validate H5, for each corresponding row in Tables III and IV, we

compute the ratios of the values in columns (C) and (A), and those in columns (D) and (B).

We then compare these two sequences of ratios by the Mann-Whitney test. Statistical

calculation shows that for size = 14 for each set of samples, we have z = 3.42, U = 173, and

p-value = 0.0003. It successfully rejects H5 at a 5% significance level.

Table V summarizes the Mann-Whitney test results for the hypotheses H1 to H5.

5.2.3. Effectiveness in revealing faulty programs. We evaluate the fault-detecting ability of

the test sets selected by the different strategies for testing particular conditions. Table VI

shows, for each testing strategy, the number of test sets that reveal all the faulty programs

(that is, detect the presence of at least one fault in each program).

Experiment 1: We have several observations here. First, the effectiveness of the test-

once strategy varies widely. At best, it can be as effective as all the test-a-few strategies under

study in that it always reveals all faulty programs (see, for example, the column for C1 in

Table VI). On the other hand, the test-once strategy may also never reveal all faulty programs

(see, for example, the column for C3 in Table VI). In contrast, the effectiveness of all the test-

a-few strategies is relatively stable. Second, choice-occurrence sampling using a sampling

rate of 10% can be as effective as test-all for the testing of every particular condition. Third,

Table V. Mann-Whitney test result summary for H1 to H5.

Type of

comparison Hypothesis

Size of

population z U p-value

Rejected at a 5%

significance level

Median

H1

14

1.91 140 0.0281 Yes

H2 0.62 84 0.2676 No

H3 4.16 189 < 0.0001 Yes

H4 3.84 182 < 0.0001 Yes

H5 3.42 173 0.0003 Yes

 20

random sampling using a sampling rate of 10% can be as effective as choice coverage, and

both are much better than test-once. These results clearly suggest that, without the knowledge

of the program code, it is generally safer to use a test-a-few strategy than test-once to reduce

the risk of inadequate testing. Also, in many instances, a test-a-few strategy can be (almost)

as effective as the test-all strategy. Since the sampling rate can substantially affect the

effectiveness of the random sampling and choice-occurrence sampling strategies, in the

follow-up experiment, we study whether the two strategies will still be effective with lower

sampling rates.

Experiment 2: We observe encouraging results from this experiment. First, it confirms

the result of Experiment 1 that test-once is quite unreliable in terms of its ability to detect

faults. Its effectiveness ranges from always revealing all faulty programs (for C17 and C18) to

never (for C14, C15, and C19). Second, choice-occurrence sampling can be effective even at a

relatively low sampling rate (say, 1%). Indeed, choice-occurrence sampling can always reveal

all faulty programs, with the only exception at 5% sampling rate for C16. The same is true for

choice coverage except for C16. In comparison, only 1 out of the 10 test sets generated by the

test-once strategy can reveal all faulty programs for C16 and C20. Third, random sampling is

inferior to choice-occurrence sampling, as the former has a lower or equal chance to reveal all

faulty programs than choice-occurrence sampling at the same sampling rates.

Table VI. Number of test sets that reveal all faulty programs by different strategies.

Strategies for testing

particular conditions

Number of sample test sets that each

reveals all the faulty programs

(out of 10 test sets)
Descriptive statistics

C1 C2 C3 C4 Mean Median Sum SD

E
x

p
er

im
en

t
1
 Test-once strategy 10 1 0 4 3.8 3 15 4.5

Choice coverage 10 6 10 10 9.0 10 36 2.0

Random sampling (5%) 10 4 10 10 8.5 10 34 3.0

Random sampling (10%) 10 6 10 10 9.0 10 36 2.0

Choice-occurrence (10%) 10 10 10 10 10.0 10 40 0.0

Strategies for testing

particular conditions

Number of sample test sets that each reveals

all the faulty programs (out of 10 test sets)
Descriptive statistics

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 Mean Median Sum SD

E
x

p
er

im
en

t
2

Test-once strategy 4 5 3 0 0 1 10 10 0 1 3.4 2 34 3.9

Choice coverage 10 10 10 10 10 9 10 10 10 10 9.9 10 99 0.3

Random sampling (1%) 4 5 3 10 10 9 10 10 7 7 7.5 8 75 2.7

Random sampling (2%) 4 5 3 10 10 10 10 10 10 10 8.2 10 82 2.9

Random sampling (3%) 8 8 5 10 10 10 10 10 10 10 9.1 10 91 1.7

Random sampling (4%) 8 8 5 10 10 10 10 10 10 10 9.1 10 91 1.7

Random sampling (5%) 8 8 5 10 10 10 10 10 10 10 9.1 10 91 1.7

Random sampling (10%) 9 9 10 10 10 10 10 10 10 10 9.8 10 98 0.4

Choice-occurrence (1%) 10 10 10 10 10 10 10 10 10 10 10.0 10 100 0.0

Choice-occurrence (2%) 10 10 10 10 10 10 10 10 10 10 10.0 10 100 0.0

Choice-occurrence (3%) 10 10 10 10 10 10 10 10 10 10 10.0 10 100 0.0

Choice-occurrence (4%) 10 10 10 10 10 10 10 10 10 10 10.0 10 100 0.0

Choice-occurrence (5%) 10 10 10 10 10 9 10 10 10 10 9.9 10 99 0.3

Choice-occurrence (10%) 10 10 10 10 10 10 10 10 10 10 10.0 10 100 0.0

 21

Hypotheses H6 and H7: We also conducted a multiple comparison on the mean number

of sample test sets using Matlab with Tukey’s honestly significance difference procedure at a

5% significance level. The result is depicted in Figure 6.

Based on Figure 6, we find that the bars for choice coverage, choice-occurrence sampling,

and random sampling (at all sampling rates under study) do not overlap with the bars for test-

once. The result indicates that each of the test-a-few strategies is better (in terms of mean

fault detection effectiveness) than the test-once strategy at a 5% significance level. Therefore,

we can reject H6 at a 5% significance level. In contrast, we do find that the bars for choice

coverage, choice-occurrence sampling, and random sampling overlap in all the graphs in

Figure 6. Therefore, we cannot reject H7 based on their mean comparisons.

On the other hand, based on Figure 6, we observe that random sampling and choice-

occurrence sampling at the same rate do have some observable difference when the rate is at

1%, 2%, 3%, 4%, and 5%, respectively. We therefore further analyse these two strategies by

using the Mann-Whitney test separately to compare their median values. We find that at

sampling rate of 1%, there is significant difference in terms of median fault detection

effectiveness at a 5% significance level. The result summary of the two hypotheses H6 and H7

is shown in Table VII. In this table, we use the testing result of the analysis of variance

(ANOVA) F test to identify the p-values for H6.

Choice Occurrence

Choice Coverage

Random Sampling

Test-Once Strategy

0 2 4 6 8 10 12 0 2 4 6 8 10 12

2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12 2 4 6 8 10 12

sampling rate = 1% sampling rate = 2%

sampling rate = 3% sampling rate = 4%

sampling rate = 5% sampling rate = 10%

Choice Occurrence

Choice Coverage

Random Sampling

Test-Once Strategy

Choice Occurrence

Choice Coverage

Random Sampling

Test-Once Strategy

Figure 6. Multiple mean comparisons.

 22

Summary: We summarize our findings of the fault-detecting ability among the proposed

test-a-few strategies with reference to Table VI and Figure 6. Let us focus on Experiment 2.

In general, both the choice coverage and choice-occurrence sampling strategies (with all

sampling rates under study) almost always reveal all faulty programs (see Table VI).

Furthermore, both choice coverage and choice-occurrence sampling with a sampling rate of

5% have a mean fault detection rate of 99% (9.9 out of 10 test sets) and a standard deviation

of 0.3. Choice-occurrence sampling with other sampling rates always reveals all the faulty

programs (10 out of 10 test sets). On the other hand, only random sampling with a sampling

rate of 10% can achieve the nearest result (with standard deviation 0.4). The mean fault

detection rates of random sampling drop as the sampling rates decrease. Furthermore, when

the sampling rate decreases to 1%, random sampling can only reveal all faulty programs 75%

of the time on average. Thus, our result shows that the mean fault detection effectiveness of

choice coverage and choice-occurrence sampling are better than random sampling when

applying the test-a-few strategy to test the particular conditions. If we consider both

Experiments 1 and 2, we observe that the mean fault detection rates of the test-once strategy

are 3.8 and 3.4 out of 10 test sets, respectively, which are much lower than those of choice

coverage, random sampling, and choice-occurrence sampling. Hence, the observation

suggests that the test-a-few strategies are all better than the test-once strategy with respect to

the faulty program detection capability.

We now consider the fault detection effectiveness together with the test set size of

different testing strategies (see Table II). On average, choice coverage requires fewer test

cases (six for each particular condition) when compared with other test-a-few strategies.

Although random sampling at a sampling rate of 1% requires the same mean test set size, its

fault detection effectiveness is the worst when compared with other test-a-few strategies (see

the results of Experiment 2 in Table VI). Choice-occurrence sampling at sampling rates of

1% to 10% achieves better fault detection effectiveness, but their larger test set sizes (from 97

to 619) result in higher testing costs. The test-once strategy obviously uses the fewest test

cases (one for each particular condition). Nevertheless, choice coverage only requires less

than 3% (24 out of 864) and about 1% (60 out of 5868) of all possible test cases for testing all

particular conditions in Experiments 1 and 2, respectively. In short, there is always a tradeoff

between testing cost and test quality. The optimal tradeoff depends on many factors, but

obviously if testing cost is not the sole concern, test-once is not necessarily optimal.

Table VII. Summary of results for H6 and H7.

Applied

test

Type of

comparison

Hypo-

thesis

Size of

population

Sampling

rate z U p-value

Rejected at a

5% significance

level

Tukey’s

honestly

signficance

difference

Mean H6 10

1%

5.2002 10
7

 Yes

2% 8.6661 10
7

 Yes

3% 2.6617 10
8

 Yes

4% 2.6617 10
8

 Yes

5% 3.2744 10
8

 Yes

10% 2.1024 10
9

 Yes

Mann-

Whiney U

test

Median H7 10

1% 2.23 80 0.0129 Yes

25% 1.10 65 0.1357 No

10% 0.72 60 0.2358 No

 23

5.2.4. Strengths and limitations of different strategies. We summarize the strengths and

limitations of different strategies based on our experimental results as follows.

Test-once strategy: This strategy requires the smallest number of test cases and, hence,

minimum testing cost and effort. As shown in Tables I and II, it only requires 4 out of 864

possible test cases and 10 out of 5868 possible test cases to test the particular conditions in

Experiments 1 and 2, respectively. This strategy, however, cannot effectively reveal the

faulty programs corresponding to the particular conditions, especially when the uniformity

assumption does not hold. For example, as shown in Table VI, in all test runs for the

particular conditions C3, C14, C15 and C19, this strategy fails to reveal all the faulty programs.

Random sampling: This strategy is efficient with respect to the testing cost among all

the test-a-few strategies under study. It simply picks at random a certain number of test cases

involving the particular conditions. It is substantially more effective than test-once. Despite

this advantage, the strategy may be less effective in detecting faults compared with other test-

a-few strategies. For instance, as shown in Table VI, not all the faulty programs associated

with the particular conditions C2, C11, and C12 were revealed by random sampling.

Choice coverage: This strategy usually uses the smallest test set among the test-a-few

strategies under study. As shown in Tables I and II, it requires 24 out of 864 possible test

cases and 60 out of 5868 possible test cases to test the particular conditions in Experiments 1

and 2, respectively. In the experiments, this strategy is capable of revealing all the faulty

programs in almost all of the test runs. Table VI shows that the strategy revealed all the faulty

programs associated with 12 out of 14 particular conditions in all test runs. Compared to the

test-once strategy, although choice coverage requires five more test cases for each particular

condition in our experiments, the selected test set still constitutes only a very small portion of

the entire test suite. Nevertheless, choice coverage is not always as reliable as choice-

occurrence sampling (which requires even more test cases), as shown in the test results for C2.

Choice-occurrence sampling: This is the most effective test-a-few strategy among all

strategies under study in terms of the ability to detect faulty programs. It reveals all the faulty

programs in all test runs except one test run for C16 in Experiment 2 with a sampling rate of

5%. The strategy, however, involves more test cases (and, hence, more testing resources)

when compared to the test-once strategy and other test-a-few strategies. Hence, it can be

relatively inefficient. For example, choice-occurrence sampling at the rate of 1% involved 97

test cases for testing the 10 particular conditions C11 to C20, which is substantially more than

those required for the test-once strategy (10), choice coverage (60), and random sampling at

the same rate (63).

5.3 Threats to validity

Threats to internal validity. To increase the confidence and accuracy of data collection,

we implemented a tool to assist in the test case generation and execution of the experiments.

A threat to internal validity is the correctness of the tool. We have invited a non-author

researcher who has over 10 years of software development experience to independently

validate the results generated by the tool. We did not observe anomaly from this validation

exercise. To collect the path profiles of individual test cases, we used TCAT C/C++ (see

http://www.soft.com/TestWorks/Products/ Coverage/tcat.html) to instrument and record the

execution paths of the subject programs. Owing to our limited resources, we have only

sampled some paths profiled by the tools for manual verification.

 24

Another threat is about the realism of the subject programs. Each participant was given

four weeks to implement the programs in the C programming language individually. Their

levels of programming skills naturally vary. However, they have learnt C programming and

problem solving prior to the experiments. We have ensured that the programs can be

developed based on such learnt skills rather than requiring some tricks and particular know-

how of the application domain. In addition, students can receive course lecturer’s and tutors’

support when they encountered unclear parts of the specification or difficulty in some general

programming techniques. The lecturer and tutors attempted to answer all of their questions

without telling them the solutions. We have also tried to implement such a program ourselves,

and concluded that it could not be completed within a short period. Another concern is about

plagiarism. We have manually compared the program codes and found no plagiarized cases.

Previously, we have developed an experimental prototype tool, called EXTRACT, to

support specification-based testing [16]. Although EXTRACT was designed to enhance test

case generation using CTM, it can be adapted to handle test specifications written in TSL.

Additionally, it generalizes the functionalities of a generator tool for CPM. In particular, it

allows the tester to annotate a choice with a tag {OCCUR n} to specify the automatic

extraction of at least n test cases that involve the annotated choice. In our experiments, we

used this tool for constructing the test sets and implementing the random sampling strategy.

In the experiments, we had used the specifications in the published work [4, 12]. To

ensure that the sets of particular conditions in both experiments are valid and all possible

particular conditions have been identified, the first author (Chan) of the paper firstly

identified the sets, and then two other authors (Poon and Yu) and a non-author researcher

(who has commercial and research experiences in specification-based testing) were invited to

review the validity of these sets independently. Indeed, our results also confirm that many

programs did execute each particular condition with the same path. That is, some input

conditions we identified do possess the characteristics of particular conditions, in the sense

that the uniformity assumption is usually (though not always) satisfied.

Threats to external validity. The specifications we used in the experiments were taken

from our prior experience and knowledge about banking systems. Obviously, there are other

types of application systems in practice. However, banking systems such as purchase-

transaction processing with credit cards have been popularly included in textbooks as

illustrations for teaching students about software engineering principles. We believe that they

do capture some generic aspects that the software engineering community treasures.

Moreover, particular conditions such as special scenarios or exception situations can be found

in diverse kinds of systems. Thus, the use of our specifications and the corresponding

particular conditions should not be atypical.

Threats to construct validity. Threats to construct validity occur when the metrics used

do not precisely represent the intentions to be justified. In our study, we test the uniformity

assumption of a subject program by measuring whether the test cases with respect to the

particular conditions execute the same program path. Indeed, executing the same program

path implies that the inputs are processed by the same set of program statements in the same

sequence and, hence, can reasonably be regarded as being treated uniformly by the program.

In principle, it is possible that using other metrics will produce different results, and this may

be addressed in future experiments. Besides, we have measured fault detection effectiveness

by considering whether a test suite can detect all faulty programs. This is a conservative

measure which enables us to check whether the test suites are reliable in their detection of

faults in all the implementations. Other measures, such as the percentage of faults detected,

can be used in further work, but may demand more effort.

 25

6. DISCUSSION

We now further elaborate the rationale of our work, and position it in the broader context of

published work. This paper focuses specifically on the testing of particular input conditions,

and is not concerned with “normal scenarios” or “main functionalities” (handled by code that

implements the so-called function rules in [4]) of the software under test. Although testing

the “normal scenarios” is certainly no less important, particular input conditions are special in

that, for many of them, there is often justifiable professional judgement or intuitive ground

for a tester to believe in the uniformity assumption. When such a belief holds, the tester may

choose to apply the test-once strategy, hoping that there will be no loss of test effectiveness,

thereby saving a great deal of testing costs. This explains why the test-once strategy is so

appealing to some testers. Indeed, our experiments also confirm that, with regard to the

particular input conditions identified from the specifications, the uniformity assumption

generally holds more often than not, when all the subject programs are considered (see

Table III).

Appealing as it might be, the test-once strategy is not without caveat, and the associated

risk can be higher than what one perceives, as demonstrated by Example 2 in Section 3 and

our empirical findings in Section 5.2. For example, our finding presented in Section 5.2.2

shows that the program needs not be implemented in the same manner as conceived by the

tester. Specifically, Table IV shows that the uniformity assumption actually does not hold in

the majority of the faulty programs in our collection. On closer thought, a plausible

explanation is as follows. The tester usually has in mind the specification information which

provides the valid ground for considering the use of the test-once strategy. Yet it is not

always as certain or obvious whether the uniformity assumption actually holds with respect to

the specific implementation under test. For one reason, since faults in an incorrect program

are usually unpredictable prior to testing, their effect on the program’s potential “uniform

treatment” of particular input conditions can also be uncertain. For another reason, our

example illustrated in Figure 4, as well as our empirical finding in Section 5.2.1, also remind

testers that such “unexpected” implementations are not necessarily confined to incorrect

programs only. Therefore, any tester should seriously take into account the potential risk due

to inadequacy of testing when using the test-once strategy. This brings back to the

unavoidable tradeoff between the amount of resources expended and the test effectiveness

achieved.

Our recommendation is that the test-once strategy should be used judiciously, and due

consideration should be given to assessing the strength of belief in the uniformity assumption,

choosing (a few) more test cases for a particular condition when the confidence is not strong.

An analytical study of such a relationship is beyond the scope of this paper, but can be an

interesting direction for further research (see our suggestion of further work in Section 8).

From our experiments, test-a-few using random sampling is already found to be substantially

more effective than test-once, as seen in Figure 6. Furthermore, it seems that choice coverage

fares quite well when compared with both random sampling and the choice-occurrence

sampling strategies, in the sense that the former demands (literally) just a few more test cases

for each particular condition (see Table II) but can approach the effectiveness of the test-all

strategy in most cases (see Figure 6). Whether this observation can be generalized into other

settings remains to be verified by more experiments.

One potential criticism to the test-a-few strategy is that it (“unnecessarily”) increases the

(“already high”) testing cost, defeating the very purpose of test-once. Our view is that

whether test-a-few is “necessary” or even “affordable” is typically subject to tradeoff analysis,

which depends on the specific application or context on hand. This work shows that, in our

study setting, the test-a-few strategies are all potentially much more preferable to the test-

 26

once strategy, substantiated on both empirical and theoretical grounds. Although the

generality of our conclusion is limited by the scope of this work, a clear message of practical

implication is that the potential risk of the test-once strategy should not be lightly discarded

by a tester, but rather, should at least be carefully evaluated by the tester with reference to the

specific implementation under test.

7. RELATED WORK

This study is concerned with the selection of test cases involving particular input conditions

from a test suite generated from a specification. Specification-based test case generation has

long been an active area of software engineering research. As explained in Sections 1 and 2, a

variety of systematic specification-based testing methods (such as CEG [14], combinatorial

testing [8, 11, 15], CPM [4, 7], and CTM [5, 6]) have been developed and extensively studied.

Although these methods are generally effective in generating a comprehensive test suite

based on the test-relevant aspects of the specification, the resulting test suite tends to be very

large and, if executed in full, could demand an unduly heavy amount of testing resources. In

the literature, many different strategies and heuristics have been proposed to select a subset of

the test suite for execution. We now review some of the related studies in this section.

Earlier, we have presented a preliminary empirical study [10] on the effectiveness of

specification-based testing of particular conditions, and its results are further reported and

statistically analysed as Experiment 1 in this paper. This paper extends our work in [10] by

performing a follow-up experiment using an enhanced specification which involves a more

complex set of test-relevant aspects as well as a much larger test suite. This paper has also

introduced a more rigorous framework that permits further in-depth and refined analysis of

the research questions in the form of statistical hypotheses testing based on the combined

empirical findings, as well as a more elaborated discussion of the rationale and practical

implication of this work in the preceding section.

Due to their importance, input validation and exception conditions, which are among the

most common particular conditions, have been the subject of research by many authors [20,

21, 22, 23]. Liu and Tan [20], for instance, argue that input validation plays a key role in

controlling user inputs and maintaining the robustness of software systems, especially for

data-intensive applications. To improve the accuracy and adequacy of input validation testing,

they proposed and empirically evaluated a code-based method to extract valid and invalid

input conditions from the program code as a means to supplement the usual specification-

based testing methods. On the other hand, Tracey et al. [21] contend that, due to the expected

rare occurrence of exceptions, the exception handling code of a system is, in general, least

documented and tested, potentially causing great hazard in safety-critical systems. In such

cases, the test-once strategy would obviously be very risky. To facilitate the testing of

exception handling code, Tracey et al. [21] have developed a technique for automatically

generating test data for testing exception conditions. Where their technique is applicable and

successful, the test-a-few strategies (notably random sampling) can potentially be

implemented with little extra cost over the test-once strategy, since test data generation can

be automated. Tracey et al. [21] also outline a process that combines proof with automated

testing which will, hopefully, substantially reduce the costs of ensuring that the exception

handling code is safe. Recently, Jiang et al. [22] have proposed a fault-injection approach for

automated testing of exception handling mechanisms in code. Ngo et al. [23] have proposed a

new approach to test one specific type of conditions, namely, the user-interactive undo (UI-

undo) features in database applications.

 27

The work of Liu and Tan [20], as well as that of Tracey et al. [21], attempt to

automatically generate test data from code for testing certain types of particular conditions.

Even though there are many advancements in recent years, automatic test data generation,

however, is still notoriously difficult and may not always succeed even when source code is

available. A different direction of research would be to perform automatic static analysis of

the code. One potentially applicable technique is conditioned program slicing [13, 24, 25, 26],

which seeks to identify statements and predicates that contribute to the computation of a

selected set of variables when some chosen condition is satisfied. Another related technique

constructs the path conditions of programs for safety analysis [27]. So far, the conditions in

these studies are all restricted to elements of the program code, whereas the particular

conditions referred to in this paper are identified from the specification. If these two kinds of

conditions bear simple known relations, then these static code analysis techniques may be

applied to validate the uniformity assumption or its falsity with respect to the particular

conditions. This will provide an objective means of determining statically whether test-once

is adequate or not.

In the literature, many heuristics have been developed to reduce the size of a test suite in

the absence of code information. For example, as reviewed in Section 3, CPM [7] proposes

the test-once strategy, and provides a notation in TSL to express the intention of testing

certain particular input conditions only once without cautioning the associated risk.

Grochtmann and Grimm [6] go even further to state the minimality criterion as mandatory,

which requires each parameter value of every test-relevant aspect be tested at least once,

whenever possible. In a sense, adopting the minimality criterion is equivalent to applying the

test-once strategy to all test-relevant aspects, not just those involving particular conditions.

Hence, the criterion is weak and suffers from even more limitations than the test-once

strategy since, for “non-particular conditions”, the intuitive or theoretical basis for the

uniformity assumption is in doubt or perhaps even lacking. Nevertheless, the minimality

criterion was meant to be a bottom line of testing requirements, not as a strategy by itself per

se.

A test suite which includes all feasible combinations of test-relevant aspects can be huge

due to the combinatorial explosion problem [1, 3, 12, 15]. To address this problem, some

studies (such as [8]) have advocated the use of experimental design techniques [28] in

software testing. Experimental design techniques were originally developed on the basis of

well-known mathematical results for the purpose of planning statistical experiments, which

attempt to minimize the number of experiments needed to extract the required statistical

information. In the context of software testing, a statistical experiment corresponds to a test

case, while a factor that potentially affects the outcome of a statistical experiment

corresponds to a test-relevant aspect. One of such early attempts was made by Mandl [29],

who applied an orthogonal array (OA) technique to the testing of Ada compilers. Essentially,

in the language of CPM, OA design creates a test suite in such a way that every pair of

choices from different categories occurs at least once. Moreover, because the OA technique

originates from its use in statistical experimentation, it further has a balance requirement that

every pair of factor values (corresponding to choices in CPM) must occur the same number

of times.

There are several difficulties in applying OA-based techniques to software testing [8].

One major difficulty is that there exists no OA corresponding to certain number of

combinations of categories and choices, such as when there are 6 categories each with 7

choices. Moreover, the balance requirement of an OA is not only unnecessary in the context

of software testing, but actually sometimes makes it impossible to construct such a test suite

when certain combination of choices are infeasible due to constraints inherent to the software

application [8].

 28

To relax the strict requirements of OA, many software engineering researchers study the

criterion of pairwise coverage or, more generally, n-way coverage for a fixed small value of

n > 1 [11, 15, 30, 31]. Essentially, n-way coverage testing requires that every feasible n-tuple

of distinct parameter values (analogous to choices in CPM) of test-relevant aspects be

covered by the test suite at least once, while pairwise coverage refers to the instance of n-way

coverage when n = 2. Subsets of the test suite satisfying these coverage requirements can be

generated by using heuristics such as the in-parameter-order (IPO) algorithms [30, 31].

There are some interesting relationships among (1) the minimality criterion, (2) pairwise

coverage, (3) test-once, and (4) choice coverage, one of our proposed test-a-few strategies.

First, if we consider applying pairwise coverage only to the subset of test cases in which a

particular condition C is involved, then C will form pairs by combining with every other

choice at least once and, hence, choice coverage involving C will be guaranteed. Conversely,

choice coverage effectively requires the application of pairwise coverage to all test cases that

involve particular conditions. Hence, pairwise coverage subsumes choice coverage. Finally,

just as pairwise coverage (which requires every pair of parameter values to be covered at

least once) subsumes the minimality criterion (which only requires every parameter value to

appear at least once), analogously, we have choice coverage subsumes test-once.

Both OA-based techniques and the pairwise coverage criterion are theoretically appealing

in the following sense: the resulting test suite is guaranteed to detect all systematic failures

that arise due to the faulty interaction of any two choices. As a consequence, the choice

coverage strategy proposed in this paper inherits a similar property, that is, the strategy will

always detect all faults that arise due to the interaction of a particular condition with another

choice.

On the other hand, our work can be distinguished from OA-based techniques and the

pairwise coverage criterion as follows. First, our proposal is to use test-a-few strategies to

reduce the risk due to potential violation of the uniformity assumption (on which the test-

once strategy is founded). Choice coverage is but one of the test-a-few strategies proposed,

and our experiment actually also shows the benefits of random sampling (which requires less

testing resources) and choice-occurrence sampling (see Sections 5.2.3 and 5.2.4 for detailed

comparison). For instance, when testing resources are very constrained and a large number of

choices (factors) are involved, it may even be not affordable to run all the test cases required

by choice coverage, OA, or pairwise coverage. In such situations, however, the test-a-few

strategy of random sampling can still be applied by using a low sampling rate. In our

experiments, using this strategy is still substantially better than using the test-once. Second,

since our work in this paper is specifically focused on the testing of particular conditions, the

testing of other categories or choices is beyond the present scope. Indeed, when particular

conditions are not involved, the behaviour of the specific implementation under test is often

more complex and may be affected by a larger number of test-relevant aspects. In such

situations, a (specification-based) test suite constructed to satisfy the n-way coverage or OA-

based criteria only may not be effective enough to detect the complex faults that are unrelated

to particular conditions.

Finally, there is a variety of test suite reduction techniques proposed in the literature to

address the excessive costs required by a large test suite. These techniques typically demand

additional information that is not required in our present study. Examples include input-

output analysis which makes use of the input-output relations (identified from the

specification) for selection of combinations of input parameter values [3], and heuristics-

based techniques (such as those based on variations of the greedy heuristics) which make use

of the relationship between test cases and test objectives [2, 32, 33, 34]. These studies differ

from our work in that they are not specifically concerned with particular conditions.

Interested readers may consult the cited articles in detail.

 29

8. CONCLUSION AND FURTHER WORK

Many testing methods consider various test-relevant aspects from the specification to

generate a comprehensive test suite which practically cannot be fully tested due to resource

constraints. To keep the number of test cases to an affordable size yet hopefully retaining the

test adequacy of the test suite as much as possible, a popular pragmatic strategy is to identify

some particular conditions from the specification, and then select test cases in such a way that

each particular condition is tested only once. This strategy, which we call test-once, implicitly

assumes that one test case is adequate to detect the presence of faults related to the particular

condition in question. It largely depends on the validity of the uniformity assumption, which

in turn often relies on the tester’s intuition or judgment based primarily on the specification

and, hence, is not guaranteed to hold for the specific implementation under test.

To reduce the risk of inadequate testing incurred due to possible violation to the

uniformity assumption, this paper has introduced several test-a-few strategies and reported an

empirical evaluation on the extent to which the uniformity assumption may hold, as well as

the effectiveness of the proposed strategies in detecting faults.

Among the findings of our study, two are of vital importance. First, the programs used in

the study do confirm our claim that the uniformity assumption often, but not always, holds.

Indeed, the uniformity assumption is found to be violated in a significant proportion of

implementations that cannot be simply neglected. Second, the fault-detecting ability of the

test-once strategy varies widely. We have provided empirical evidence that the test-a-few

strategies (each requiring only a small number of additional test cases) can make a difference

not only in assessing the validity of the uniformity assumption, but also in improving the

adequacy of the testing.

Further investigation of this line of research can proceed in several directions. First, the

uniformity assumption may be probabilistically validated by means of dynamic analysis

through program path profiling using code instrumentation tools. The idea is as follows. The

program can be executed with a sample of n (> 1) test cases involving the concerned

particular condition C, with the execution paths monitored. If all n test cases traverse the

same program path, then the tester’s confidence on the validity of the uniformity assumption

will increase, more so for larger values of n. The value of n can be determined in such a way

that the tester’s confidence will be statistically significant. Conversely, if some of the n test

cases execute different program paths, this serves to indicate that the uniformity assumption

is likely to be in doubt (contrary to the tester’s belief when judging only from the

specification), and follow-up investigation should be in place, such as manual code analysis.

Obviously, this idea of validating the uniformity assumption through program profiling does

not make sense if n = 1, that is, if the test-once strategy is adopted. In other words, it must be

implemented with a test-a-few strategy, be it random sampling, choice coverage, or choice-

occurrence sampling. In so doing, as the testing proceeds, dynamic analysis captures the

execution path information of the sample test cases as an additional basis for assessing the

validity of the uniformity assumption [10].

Both the test-a-few strategy and the probabilistic validation of the uniformity assumption

through dynamic analysis are feasible with the availability of instrumentation tools, usually

incurring only a small amount of additional overhead to the overall testing costs. Besides,

other more effective strategies can be devised. Further experiments should be performed to

gain more experiences of how effective these proposed alternative strategies are.

Finally, automatic static analysis (such as conditioned slicing) of the source code, where

applicable, is a potentially powerful technique to provide information on the execution

behavior of the program under the particular conditions. This is also clearly a promising

research direction to pursue.

 30

ACKNOWLEDGEMENTS

The authors are grateful to F.F. Chan for his help in the empirical analysis and validation reported

in this paper. A preliminary version of this paper has been presented at the 28th International

Computer Software and Applications Conference [10].

REFERENCES

1. Chen TY, Poon P-L, Tse TH. A choice relation framework for supporting category-partition test

case generation. IEEE Transactions on Software Engineering 2003; 29 (7): 577593. DOI:

10.1109/TSE.2003.1214323.

2. Fraser G, Gargantini A, Wotawa F. On the order of test goals in specification-based testing.

Journal of Logic and Algebraic Programming 2009; 78 (6): 472490. DOI:

10.1016/j.jlap.2009.01.004.

3. Schroeder PJ, Korel B. Black-box test reduction using input-output analysis. Proceedings of the

International Conference on Software Testing and Analysis (ISSTA) 2000; 173177. DOI:

10.1145/347324.349042.

4. Chen TY, Poon P-L, Tang S-F, Tse TH. On the identification of categories and choices for

specification-based test case generation. Information and Software Technology 2004; 46 (13):

887898. DOI:10.1016/j.infsof.2004.03.005.

5. Chen TY, Poon P-L, Tse TH. An integrated classification-tree methodology for test case

generation. International Journal of Software Engineering and Knowledge Engineering 2000; 10

(6): 647679. DOI: 10.1142/S0218194000000353.

6. Grochtmann M, Grimm K. Classification trees for partition testing. Software Testing, Verification

and Reliability 1993; 3 (2): 6382. DOI: 10.1002/stvr.4370030203.

7. Ostrand TJ, Balcer MJ. The category-partition method for specifying and generating functional

tests. Communications of the ACM 1988; 31 (6): 676686. DOI: 10.1145/62959.62964.

8. Cohen DM, Dalal SR, Fredman ML, Patton GC. The AETG system: An approach to testing based

on combinatorial design. IEEE Transactions on Software Engineering 1997; 23 (7): 437444.

DOI: 10.1109/32.605761.

9. Jiang B, Tse TH, Grieskamp W, Kicillof N, Cao Y, Li X. Regression testing process improvement

for specification evolution of real-world protocol software. Proceedings of the 10th International

Conference on Quality Software (QSIC) 2010; 62–71. DOI: 10.1109/QSIC.2010.55.

10. Chan EYK, Poon P-L, Yu YT. On the testing of particular input conditions. Proceedings of the

28th International Computer Software and Applications Conference (COMPSAC) 2004; 318325.

DOI: 10.1109/CMPSAC.2004.1342850.

11. Kuhn DR, Kacker R, Lei Y. Automated combinatorial test methods Beyond pairwise testing.

CrossTalk – The Journal of Defense Software Engineering 2008; 21 (6): 2226.

12. Yu YT, Tang S-F, Poon P-L, Chen TY. A study on a path-based strategy for selecting black-box

generated test cases. International Journal of Software Engineering and Knowledge Engineering

2001; 11 (2): 113138. DOI: 10.1142/S0218194001000475.

13. Hierons R, Harman M, Fox C, Ouarbya L, Daoudi M. Conditioned slicing supports partition

testing. Software Testing, Verification and Reliability 2002; 12 (1): 2328. DOI:

10.1002/stvr.232.

14. Myers GJ. The Art of Software Testing, 2nd edition, Wiley, ISBN 0471469122, 2004.

15. Lei Y, Carver RH, Kacker R, Kung D. A combinatorial testing strategy for concurrent programs.

Software Testing, Verification, and Reliability 2007; 17 (2): 207–225. DOI: 10.1002/stvr.369.

16. Yu YT, Ng SP, Chan EYK. Generating, selecting and prioritizing test cases from specifications

with tool support. Proceedings of the 3rd International Conference on Quality Software (QSIC)

2003; 8390. DOI: 10.1109/QSIC.2003.1319089.

 31

17. Elbaum S, Malishevsky AG, Rothermel G. Test case prioritization: A family of empirical studies.

IEEE Transactions on Software Engineering 2002; 28 (2): 159182. DOI: 10.1109/32.988497.

18. DeMillo RA, Lipton RJ, Sayward FG. Hints on test data selection: Help for the practicing

programmer. IEEE Computer 1978; 11 (4): 3441. DOI: 10.1109/C-M.1978.218136.

19. Pareto V, Page AN. Translation of Manuale di economia politica (“Manual of political

economy”), A.M. Kelley, ISBN 9780678008812, 1972.

20. Liu H, Tan HBK. Covering code behaviour on input validation in functional testing. Information

and Software Technology 2009; 51 (2): 546553. DOI: 10.1016/j.infsof.2008.07.001.

21. Tracey N, Clark J, Mander K, McDermid J. Automated test-data generation for exception

conditions. Software — Practice and Experience 2000; 30 (1): 6179. DOI: 10.1002/(SICI)1097-

024X(200001)30:1.

22. Jiang S, Zhang Y, Yan D, Jiang Y. An approach to automatic testing exception handling. ACM

SIGPLAN Notices 2005; 40 (8): 34–39. DOI: 10.1145/1089851.1089858.

23. Ngo MN, Tan HBK. Automated verification and testing of user-interactive undo features in

database applications. Software Testing, Verification, and Reliability (to appear). DOI:

10.1002/stvr.439.

24. Canfora G, Cimitile A, Lucia AD. Conditioned program slicing. Information and Software

Technology 1998; 40 (11/12): 595607. DOI: 10.1016/S0950-5849(98)00086-X.

25. Ward M, Zedan H. Slicing as a program transformation. ACM Transactions on Programming

Languages and Systems 2007; 29 (2): Article 7. DOI: 10.1145/1216374.1216375.

26. Ward M, Zedan H, Ladkau M, Natelberg S. Conditioned semantic slicing for abstraction;

industrial experiment. Software — Practice and Experience 2008; 38 (12): 12731304. DOI:

10.1002/spe.869.

27. Snelting G, Robschink T, Krinke J. Efficient path conditions in dependence graphs for software

safety analysis. ACM Transactions on Software Engineering and Methodology 2006; 15 (4):

410457. DOI: 10.1145/1178625.1178628.

28. Cochran WG, Cox GM. Experimental Designs. 2nd edition, Wiley, ISBN 0471162035, 1957.

29. Mandl R. Orthogonal Latin squares: An application of experimental design to compiler testing.

Communications of the ACM 1985; 28 (10): 10541058. DOI: 10.1145/4372.4375.

30. Lei Y, Kacker R, Kuhn D, Okun V, Lawrence J. IPOG/IPOD: Efficient test generation for multi-

way software testing. Software Testing, Verification, and Reliability 2008; 18 (3): 125148. DOI:

10.1002/stvr.381.

31. Tai K-C, Lei Y. A test generation strategy for pairwise testing. IEEE Transactions on Software

Engineering 2002; 28 (1): 109111. DOI: 10.1109/32.979992.

32. Cartaxo EG, Machado PDL, Neto FGO. On the use of a similarity function for test case selection

in the context of model-based testing. Software Testing, Verification and Reliability 2011. DOI:

10.1002/stvr.413.

33. Fraser G, Gargantini A. An evaluation of specification based test generation techniques using

model checkers. Testing: Academic and Industrial Conference – Practice and Research

Techniques (TAIC-PART), 2009; 72–81. DOI: 10.1109/TAICPART.2009.20.

34. Lin J-W, Huang C-Y. Analysis of test suite reduction with enhanced tie-breaking techniques.

Information and Software Technology 2009; 51 (4): 679690. DOI: 10.1016/j.infsof.2008.11.004.

