
International Journal of Web Services Research , Vol.X, No.X, 200X

A Metamorphic Testing Approach for Online Testing of
Service-Oriented Software Applications

W. K. Chan* and S. C. Cheung, Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong, {wkchan, sccheung}@cse.ust.hk

Karl R. P. H. Leung, Hong Kong Institute of Vocational Education,
Tsing Yi, Hong Kong, kleung@computer.org

ABSTRACT:
Testing the correctness of services assures the functional quality of service-oriented application.
A service-oriented application may bind dynamically to its supportive services. For the same
service interface, the supportive services may behave differently, however. A service may also
need to realize a business strategy, like best pricing, relative to the behavior of its counterparts
and the dynamic market situations. Many existing works ignore these issues to address the
problem of identifying failures from test results.

This paper proposes a metamorphic approach to online services testing. The offline testing
determines a set of successful test cases to construct their corresponding follow-up test cases for
the online testing. These test cases will be executed by metamorphic services that encapsulate the
services under test as well as the implementations of metamorphic relations. Thus, any failure
revealed by the metamorphic testing approach will be due to the failures in the online testing
mode. An experiment is included.

KEY WORDS:
Service-oriented architecture, online testing, metamorphic testing, services testing, test oracle problem.

INTRODUCTION
The service-oriented architecture (SOA) is an architectural reference model (Bass et al., 2003) for
a kind of distributed computing such as the Web services (W3C, 2002). It promises to alleviate
the problems related to the integration of heterogeneous applications (Mukhi et al., 2004; Kreger
et al., 2003). In this reference model, a SOA application is denoted by a collection of self-
contained, communicating components, known as services. The model also emphasizes that each
service should make little or no assumption about its collaborating services. This setting
advocates the dynamic composition of a service by using different configurations of supportive
services, creating behavioral differences amongst different invocations of a service. Typical end-
users of a SOA application, such as bank customers using an online foreign exchange trading
service, may expect consistent outcomes each time they use the service. The customers may
further compare the online foreign exchange service of a bank to similar services of other banks
to judge whether the service is of good quality. If a B2B service provider is driven by a
predefined business strategy to, for example, maintain its market share, then the criteria to define
functional correctness of the service may vary according to its environment. In other words,
testers need to integrate the environment of a service to check test results.

* All correspondence should be addressed to Dr. W. K. Chan at Department of Computer Science and Engineering, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. Tel: (+852) 2358 7016. Fax: (+852) 2358 1477.
Email: wkchan@cse.ust.hk .

 1

mailto:wkchan@cs.ust.hk

International Journal of Web Services Research , Vol.X, No.X, 200X

Services may be subject to both the offline testing and the online testing. Unlike the testing of
conventional programs, services bind dynamically to other peer services when it is tested online.
While the offline testing of services is analogous to the testing of conventional programs, the
online testing of services needs to address new issues and difficulties.

Testers may generally apply certain static analyses or testing techniques to assure the correctness
of a software application. The evaluation criteria of the functional correctness, on the other hand,
must be predefined. For a unit testing, testers also want to address the test case selection problem
and the test oracle problem (Beizer, 1990). We restrict our attention to the latter problem in this
paper.

A test oracle is a mechanism that reliably decides whether a test succeeds. For services, as we
will discuss, formal test oracle may be unavailable, however. The expected behavior of a service
that represents business goods and services changes according to the environment. Such an
expected behavior is relative to the behaviors of competing services or other services. Intuitively,
it is hard to define the expected behavior explicitly in the first place. Tsai et al. (2004), for
example, suggest using a progressive ranking of similar implementations of a service description
to alleviate the test oracle problem. The behaviors of different implementations of the same
service vary in general. Test results of a particular group of implementations cannot reliably be
served as the expected behavior of a particular implementation of the same service on the same
test case. Also, a typical SOA application may comprise collaborative services of multiple
organizations, knowing all the implementations is impractical (Ye et al., 2006). For example, a
travel package consultant may wrap up services of various hotels, airlines and entertainment
centers to personalize tour packages for a particular client. Without the implementation details,
static analysis appears infeasible to assure the implementation quality. The black-box approach
for test results checking remains viable and popular to assure the correctness of a software
application.

Metamorphic testing is a promising approach to the test oracle problem in the testing of
conventional scientific programs (Chan et al., 1998; Chen et al., 1998, 2002). Instead of relating
an output to its input, metamorphic testing relates multiple input-output pairs via well-defined
relations, called metamorphic relations.

This paper extends the preliminary version (Chan et al., 2005a) to propose an online testing
approach for testing services. The main contributions of the preliminary version (Chan et al.,
2005a) include:

1. It proposes to apply the notion of metamorphic testing to services computing to alleviate the

test oracle problem. It constructs more test cases to reveal faults than those ordinarily
required when test oracles are known.

2. It proposes to realize the metamorphic testing mechanism as a metamorphic service in
services computing that encapsulates a service under, executes test cases and cross-validates
their test results. Such realization integrates seamlessly to the existing SOA framework. It
automates the construction of follow-up test cases and their test results checking.

The main extended contributions of this paper include:

3. It devises the use of the successful test cases for offline testing as the original test cases for

online testing. Since in an offline testing, the environment of services can be controlled by
testers, test oracle could be defined. Thus, any failure revealed by our metamorphic testing
approach will be due to the failures in the online testing mode.

 2

International Journal of Web Services Research , Vol.X, No.X, 200X

4. It refines the testing approach presented in the preliminary version of this paper to take the
successful test cases from the offline testing phase into account.

5. It evaluates the revised proposal against a control experiment having no prior confirmation
of test results through an experiment. The experimental result indicates that our proposal is
superior to the control experiment. The control approach suffers from an extra 16% of effort
to check test results and a 13% reduction of failure detection.

The rest of the paper is organized as follows. The next section introduces the concepts of services,
metamorphic testing and other preliminaries. After that, we describe our testing proposal. Our
approach will be illustrated by a sample scenario, followed by an experiment on the feasibility of
applying the proposal in a SOA application. Based on the experimental results, we compare our
approach to related work, and discuss our experience. Finally, we conclude the paper and outline
the future work.

PRELIMINARIES

In this section, we briefly introduce the notion of service, metamorphic relation, and metamorphic
testing. We also discuss how a metamorphic relation can be aligned with the notion of service and
discuss our assumptions. Finally, we clarify our terminologies on online testing and offline
testing.

Service

A service in SOA is a self-contained application function, packaged as a reusable component, for
the use in a business process (Colan, 2004). It can describe itself so that other services may
discover and locate the service. Services also use simple and self-contained messages with well-
defined interfaces for communications. Those interfaces are neutral to different hardware or
software platforms to support the execution of a service. Meta-models, such as XML Schema
(W3C, 2001), are often used to govern the syntactic validity of the messages.

For example, the Web Services (Curbera, 2002; W3C, 2002) use the web service definition
language or WSDL (W3C, 2005) to let each service of an application define the syntactic and
interoperability requirements. It also uses the universal description, discovery and integration or
UDDI (OASIS, 2005) to offer applications a unified and systematic way to locate services from
common registries. The simple object access protocol or SOAP (W3C, 2003) is then used to
support XML†-based messaging between peer services.

In general, there are two types of services, namely stateless and stateful. They are analogue to
conventional programs and object-oriented programs, respectively. Both types are popular in
these days.‡ Intuitively, in terms of modeling, one may use a stateless service with self-addressing
stateful messages to simulate a stateful service. We thus restrict ourselves to consider stateless
services in this paper.

† XML stands for Extensible Markup Language (W3C, 2004).
‡ IBM also proposes to design stateless web services when it introduces service-oriented architecture (see http://www-
128.ibm.com/developerworks/webservices/library/ws-soaintro.html .)

 3

http://www-128.ibm.com/developerworks/webservices/library/ws-soaintro.html
http://www-128.ibm.com/developerworks/webservices/library/ws-soaintro.html

International Journal of Web Services Research , Vol.X, No.X, 200X

Metamorphic Relation (MR)

As a service is a self-contained and function-oriented component, some functional properties of
the service should be identifiable; otherwise, it would be difficult for collaborating services to
identify the usefulness of the service. One way to display the functional properties of a service is
to show the connection of multiple invocations of the service.

A metamorphic relation or MR is an existing or expected relation over a set of distinct inputs and
their corresponding outputs for multiple executions of the target function (Chen et al., 1998,
2002, 2003). For example, consider a sorting program Sort() that sorts the input list of integers
into a list of integers in ascending order. The expected result of Sort(〈1,4,3〉) is 〈1,3,4〉, which is
the same as that of Sort(〈1,3,4〉). Generalizing the scenario would lead to the formulation of the
relation: Sort(X) = Sort(Sort(Y)) if X = Y.

Readers can easily observe that in the above example, the expected output of the input 〈1,4,3〉 is
only induced implicitly. This relieves testers to predetermine the expected behavior of a test case
in an absolute term. It is particularly important when a tester is conducting the online testing of a
service, for the reason that the concrete expected behavior of a service may depend on other peer
services, which may not be under the control of the software developers or testers of the service
under test.

A metamorphic relation can be formally described as follows:

Suppose that f is an implemented function under test. Given a relation r over n distinct
inputs x1, x2, …, xn, the corresponding n computation outputs f(x1), f(x2), …, f(xn) must
induce a necessary property rf.

A metamorphic relation MRf of f over n inputs and n outputs can be defined as follows:

MRf = {(x1, x2, …, xn, f(x1), f(x2), …, f(xn))
 |r(x1, x2, …, xn) ⇒ rf(x1, x2, …, xn, f(x1), f(x2), …, f(xn))}

We observe that, when a service is seen to be a function, and all input and output messages are
self-contained, the notion of metamorphic relation readily applies to services. We will give an
example after the introduction of metamorphic testing in the following section.

Metamorphic Testing (MT)

Metamorphic testing or MT (Chen et al., 1998, 2002, 2004) is a program testing technique that
employs the mathematical relations, namely metamorphic relations, to conduct testing. It has
been applied to numerical applications (Chan et al., 1998) and context-aware applications (Chan
et al., 2005c).

It uses successful test cases to alleviate the test oracle problem when a test oracle is unavailable
or expensive. Given a program P of target function f with input domain D. A set of test cases T,
{t1,…,tk} (⊂ D), can be selected according to any test case selection strategy. Executing the
program P on T produces outputs P(t1), . . . , P(tk). When they reveal any failure, testing stops and
debugging begins. On the other hand, when no failure is revealed, these test cases will be termed
as successful. A set of successful test cases is called a successful test set.

 4

International Journal of Web Services Research , Vol.X, No.X, 200X

Testers may apply the metamorphic testing approach to continue to verify whenever some
necessary property of the target function f is satisfied by the implementation P. The metamorphic
testing approach constructs the follow-up test set T’, {t’1,…,t’m} (⊂ D), automatically from the
initial successful test set T, with the reference to some given metamorphic relation.

Let us cast an example in the services computing setting. Suppose that S is an expected
USD−HKD exchange service, accepting deal orders in USD and returning deal orders in HKD; x
and y are two deal orders; g() is a function that accepts a deal order and returns its deal order
amount. Further suppose that the following metamorphic relation sample is given, meaning that
doubling the deal order in USD, doubling the resultant amount in HKD:

MRa(x, y, S(x), S(y)) :
2g(S(y)) = g(S(x)) if g(x) = 2g(y)

Consider a successful test case x1 = “a deal order of US$20,000”. The metamorphic testing
approach constructs automatically another test case y1 = “a deal order of US$10,000” based on
the condition g(x) = 2g(y) of MRa. Suppose P is an implementation of S. If the comparison
2g(P(y1)) = g(P(x1)) fails, the MT approach reveals a failure due to the pair of failure-causing
inputs x1 and y1. As x1 is successful in the first place, the identified failure should be due to the
test case y1.

In the MT terminology, x1 is termed as the original test case, and y1 is termed as the follow-up test
case. By checking the results amongst multiple input-output pairs, metamorphic testing bypasses
the need to define the expected result explicitly to alleviate the test oracle problem. We refer
readers to (Chen et al, 2002, 2003, 2004; Chan et al., 2005c; Tse et al., 2004) for more details
about metamorphic testing.

In this paper, we assume that MRs are provided by testers. Verification is generally undecidable,
thus, we further assume that the MRs provided describe some necessary conditions of the
expected behavior of the program under test. In practice, we recommend testers to define their
MRs in a style so that they are directly coded in certain executable specification languages such
as Prolog. As such, the implementation of MRs is a non-issue when testers use our methodology.
In the next section, we further describe a few major assumptions of our proposal.

Assumptions and Terminologies

In this section, we list out a few major assumptions to establish our model for the online testing of
services. These assumptions facilitate us to propose an infrastructure, namely metamorphic
service, to be discussed in the Metamorphic Service section. We also clarify our terminologies on
offline testing and online testing.

We make the following assumptions: A service could be wrapped up by another (wrapper)
service. It is based on the understanding that services are loosely coupled amongst themselves
and they recognize one another through the common service registries. We assume that in the
common service registries, the entries of the former service are replaced by the entries of the
latter service for the testing purpose. This allows the latter service to query and catch messages
for the former. In our model, we use a message as a test case or test result of a service. This kind
of treatment is also adapted by other researchers (Tsai et al., 2004; Offutt and Xu, 2004). It
enables the wrapper service to construct test cases and evaluate their test results.

 5

International Journal of Web Services Research , Vol.X, No.X, 200X

Furthermore, we agree with other researchers that a service is self-contained and independent to
the contexts of other services. It also outputs results on every input.

We refer the term online testing to the testing of a service under the SOA environment, and the
term offline testing to the testing of a service without interaction with other services relevant to
the service under test. We also term offline testing and testing in the offline mode interchangeably,
and online testing and testing in the online mode interchangeably. Moreover, for the offline
testing, we refer a stub service as a service, since it is obvious in the context that the service under
test does not interact with any other peer services of the SOA application when it is subject to an
offline testing. In the next section, we will present our testing proposal.

AN ONLINE TESTING APPROACH

In this section, an online testing methodology will be presented. We propose to test a service in
two distinct modes, namely offline mode and online mode. Informally, we propose to use the test
oracle available to the offline testing and make it also available to the online testing via
metamorphic relations. In the Overview section, we first introduce the two modes of testing. Next,
in the Metamorphic Service section, we propose a core design artifact of our approach, the
metamorphic service, which serves as a surrogate of the services under test to relay messages. At
the same time, it constructs follow-up test cases and evaluates results accordingly. It then
summarizes the methodology in the Testing in the Online Mode section.

Overview

The offline mode tests a service in the absence of interacting services. We view that it strongly
resembles to the convention techniques for the unit test of a conventional program. Many test data
selection strategies (such as dataflow testing (Beizer, 1990; Zhu et al., 1997)) and test oracle
construction for the unit test of conventional programs have been researched for years. As testers
could control the offline environment (such as providing test drivers and stub services, and
messages), it is relatively easier to define test sets to test a service and validate the test results in
such a mode. Thus, whether a test case reveals a failure or not, for offline testing, can be
determined through the checking of their test results against certain test oracle.

The above observation motivates us to apply the successful test cases of an offline testing as the
original test cases for the online testing mode. In the sequel, we restrict ourselves to discuss the
online testing mode. We presume that a set of successful test cases for the offline testing is
available.

 6

International Journal of Web Services Research , Vol.X, No.X, 200X

Offline TestingTest Driver
offline test case

failed offline
test case

Debugging

Online Testing

successful original offline test case

Metamorphic Testing Follow-up
online test case
violating
a metamorphic
relation

Follow-up online test case which
does not violate any metamorphic relation

passed

Offline TestingTest Driver
offline test case

failed offline
test case

Debugging

Online Testing

successful original offline test case

Metamorphic Testing Follow-up
online test case
violating
a metamorphic
relation

Follow-up online test case which
does not violate any metamorphic relation

passed

For online testing, as these original test cases are determined to be successful in advance, any
violation of a corresponding metamorphic relation should be due to the failures of the follow-up
test cases. Thus, when their corresponding follow-up test cases are for online testing, our
approach pinpoints the online failure-causing inputs automatically even if the test oracle for
online testing is not available. Figure 1 depicts the relation between offline testing and our
proposal for online testing.

Figure 1. The Integration between offline and online testing

Interested readers may compare the above strategy and the strategy that an original test case is
unknown to be successful. In the latter strategy, when a violation of a metamorphic relation is
detected, testers still need to further evaluate whether the violation is due to the original test case
(no matter it is in the offline or online testing mode) or due to the follow-up (online) test case.
Therefore, this alternative strategy may incur more overheads than our proposal. We will further
study this issue in our empirical experiment in the Experiment section.

We will introduce a fundamental building box of our approach in the Metamporphic Services
section, and then elaborate our online testing approach in the rest of this section. To ease our
discussion, in the sequel, we use a metamorphic relation with two input-output pairs. The
extension of the approach to more than ones input-output pairs is not hard.

Metamorphic Service (MS)

We formulate a metamorphic service as a service that has the characteristics of being an access
wrapper (Mecella and Pernici, 2001; Umar, 1997) and being an agent to conduct metamorphic
testing. A metamorphic service imitates all the data and application access paths of the service
being encapsulated. It also embodies the program logics, which is the implementation of
metamorphic relations, to compute follow-up test cases based on an incoming (or outgoing)
message, and evaluates test results according to the implemented metamorphic relations.§

Since a metamorphic service is a service, it dynamically discovers a service implementation to
receive a follow-up test case. The result of the follow-up test case will send to the metamorphic
service for the detection of failures. The metamorphic service checks the test results against other

§ We refer readers to Section 0 for the role of a tester in the design and implementation of metamorphic relations, and refer readers to
Section 0 for the illustration to construct test cases in the metamorphic approach.

 7

International Journal of Web Services Research , Vol.X, No.X, 200X

test cases by using its metamorphic relations. Any violation of an implemented metamorphic
relation reveals a failure.

Testing in the Online Mode

The testing in the online mode validates whether a service can interact correctly with other
services. The following shows the self-explanatory methodological steps for this mode.

(ON-1). For a service under test S, collect the set of service descriptions DS that represents
the services interacting with S.

(ON-2). Design a metamorphic relations MRi applicable to test S in the online mode.
(ON-3). Implement MRi in the metamorphic service MS of the service S.
(ON-4). Repeat Steps (ON-2) to (ON-3) until no additional metamorphic relation is

required for online testing.
(ON-5). For each available successful offline test case to, do

i. MS uses applicable MRi to construct the following-up test case tf of to.
ii. MS invokes S to execute tf.

iii. MS obtains the corresponding results tf
iv. If MS detect a failure by using MRi, then report the failure and go to Step

(ON-7).
v. Repeat Steps (On-5-i) to (On-5-iv) until no more applicable MRi.

(ON-6). Report that no failure is found.
(ON-7). Exit

Step (ON-1) collects the service description that the service under test intends to collaborate.
They facilitate testers to define and implement relevant metamorphic relations** in Steps (ON-2)
and (ON-3) respectively.

If a tester does not identify any further metamorphic relation, Step ON-4 naturally stops, because
there is no additional metamorphic relation in the tester’s context. On the other hand, if a tester
knows a metamorphic relation, but is incompetent to implement such a relation, it is obvious that
the tester cannot use such a metamorphic relation according our methodology; unless the tester
seeks helps to implement the metamorphic relation.

Step (ON-5) uses an original test case to construct a follow-up test case. It also invokes the
service under test to execute the follow-up test case, and collects the test result of the follow-up
test case. Next, it evaluates the results until no more implemented and applicable metamorphic
relation is available. When it detects a violation of any metamorphic relation, in Step (On-5-iv), it
reports the failure and stops the testing. Otherwise, the process iterates, using another original test
case until no more original test case is available. If no failure could be detected by any test case,
the process will report such a case in Step (ON-6) and stop at Step (ON-7).

After presenting our approach in this section, the next section will demonstrate a way to use
metamorphic testing to reveal failures related to the relative correctness for the testing of a
service. We will then present an empirical experiment of our proposal in the Experiment section.

** Although services are highly recommended to publish their functional properties for other services to judge its usefulness in their
areas of concerns and to subscribe to use the service, yet the design of metamorphic relations, the implicit form of functional
properties, is not within the scope of this paper. We refer interested readers to a case study (Chen et al., 2004) on the selection of
effective metamorphic relations for more details.

 8

International Journal of Web Services Research , Vol.X, No.X, 200X

AN ILLUSTRATION SCENARIO

In this section, our proposal for online testing will be further illustrated by an example. We first
describe an application and its faults. Then, we illustrate how these faults can be revealed.

Figure 2 shows a foreign exchange dealing service application with five services, namely FXDS1
to FXDS5. In particular, FXDS2 is embraced by a metamorphic service. We denote the
metamorphic service as MS. It has three metamorphic relations, namely MR1, MR2 and MR3. To
ease our discussion, we restrict ourselves to discuss the exchange of US dollars to Renminbi.

A bank normally offers cross-currency rates inquiry services. A sample USD−RMB exchange
rate is a pair of values such as 8.2796/8.2797. The first value and the second value in the pair
refer to the bid rate and the ask rate, respectively. The difference between the two values in such
a pair is known as the spread. We will use this rate for the following illustration, and assume
these rates to be provided by the service FXDS4.

Suppose the expected behaviors of FXDS2 include:

(i) It provides a uniform exchange rate for any deal order.

(ii) It provides a better, or at least the same, exchange rate to its clients than its rivals (e.g. the
service FXDS3).

(iii) It checks the exchange rates from central banks dynamically (e.g. the service FXDS4 for
Central Bank of China, or FXDS5 for European Central Bank).

Also suppose that the implementation FXDS2 contains the following two faults:

Figure 2. A foreign exchange services system.

FXDS2 by
HKG Bank

FXDS4 by
CBC

FXDS3 by
Japanese Bank

FXDS1 by
US Bank

FXDS5 by
ECU

deal with $x

FXDS2(x)

mo =
RMB rate
request

FXDS4(RMB)

deal with $nxMR1

MR1: n FXDS2(x) = FXDS2(nx)

FXDS2(nx)

deal with $nx

MR2
FXDS3(nx)

FXDS2(x)

MR2: n FXDS2(x) ≥ FXDS3(nx)

mf =
RMB
rate
request

MR3

FXDS5(RMB)

MR3: FXDS2(x, m o) >
FXDS2(x, m f)

(a) It uses the bid rate or the ask rate to process a deal order non-deterministically.

 9

International Journal of Web Services Research , Vol.X, No.X, 200X

(b) The rate provider logic has faults to cause it to use the minimum (that is, the worst rate)
instead of the maximum (that is, the best rate) for its rate calculations.

To test the service FXDS2, testers can apply our testing proposal, which is illustrated as follows.

Testers first formulate metamorphic relations. For the requirement (i), testers can check whether
the output amount of service FXSD2 for a deal order is proportional to the deal order size. It
forms the first metamorphic relation:

MR1: nFXDS2(x) = FXDS2(nx).

Consider an original test message to: a deal order of x (= US$100). FXDS2 correctly uses the
above bid rate to output a message FXDS2(US$100) = 827.96 = 8.2796 × 100 in the offline
testing mode by using stubs. The metamorphic service MS constructs a follow-up test case tf: a
deal order of US$200 = 2 × x. It then passes this message to FXDS2 to execute in the online
testing mode. (This is shown as the top-right dotted arrow in Figure 2.)

Suppose, unfortunately, FXDS2 incorrectly uses the above ask rate and outputs FXDS2(US$200)
= 1655.94 = 2× 827.97. Since both messages FXDS2(US$100) and FXDS2(US$200) can be
checked by MS via MR1, we have, 2 × FXDS2(US$100) = 1655.92 ≠ 1655.94 =
FXDS2(US$200). It violates the equation MR1. Hence, a failure related to the fault (a) is
revealed and reported by the metamorphic service.

Readers may be interested to know the results of other combinations of using bid and ask rates for
either the original or the follow-up test cases. When the original test case and the follow-up test
cases use the bid rate or the ask rate, then the equation MR1 will be ineffective to reveal the fault.
However, when the original test case incorrectly uses the ask rate and the follow-up test case
correctly uses the bid rate, MR1 would reveal the fault.

Let us continue to describe the scenarios to reveal the fault (b). We also begin with the
formulations of two metamorphic relations. For the requirement (ii), testers may enlarge or shrink
a deal order size by a multiplier. (In practice, a deal order size applicable to a global bank may
not be applicable to a small foreign exchange shop at a street corner.) Such a follow-up deal order
will be forwarded to a competing service (e.g. FXDS3). Next, one can determine whether the
output of FXDS2 of the same order size is better than or equal to that provided by a rival service.
This formulates the metamorphic relation:

MR2: nFXDS2(x) ≥ FXDS3(n x).

For the requirement (iii), testers may formulate the metamorphic relation:

MR3: value(FXDS2(x)) > value(FXDS2(y))
if centralbank(FXDS2(x)) = mo and centralbank(FXDS2(y)) = mf

Alternatively, in a shorthand notation:

MR3: FXDS2(x, mo) > FXDS2(x, mf)

MR3 means that if the target exchange is between USD and RMB, then the rate, provided by the
Central Bank of China via the rate request mo, should be strictly better than that due to any other
rate request mf from other central banks. We note that we choose to show the outgoing messages

 10

International Journal of Web Services Research , Vol.X, No.X, 200X

that interact with other services as parameters in the metamorphic relation in the shorthand
notation to ease our discussion. We also deliberate use a different notation (that is, mo and mf ,
instead of to and tf) for outgoing messages that serve as test cases for the metamorphic testing
being illustrated.

According to MR2, a follow-up test case mf can be formulated: deal order of US$60 = 0.3 × 200.
Suppose that an implementation of the service FXDS3 is discovered dynamically, and the latter
correctly receives mf and returns a message FXDS3(US$60) = 60 × 8.2796 = 496.776 to MS.
Both messages FXDS2(US$200) and FXDS3(US$60) are verified by the metamorphic service
via MR2. We have, 0.3 × FXDS2(US$200) = 496.782 > 496.776 = FXDS3(US$60). It satisfies
MR2. Hence, no failure will be reported by MS for this particular follow-up test case.

On the other hand, for online testing, in the execution of a deal order as the input, FXDS2 needs
to communicate with services of central banks to collect relevant exchange rates. Thus, the
original test case to will trigger an outgoing message mo, a USD−RMB rate request, for such a
purpose. Suppose that FXDS2 discovers both FXDS4 and FXDS5 to provide the quotes of
exchange rates for USD−RMB. For the illustration purpose, further suppose that the exchange
rate provided by the European Central Bank via FXDS5 for USD−RMB is 8.2795/8.2798. This
spread is wider than that provided by FXDS4, and thus is poorer.

MS uses the metamorphic relation MR3 to produce the follow-up test case mf of mo. Owing to the
faults (a) and (b), FSDS2 incorrectly selects the ask rate of the service FXDS4 to process the deal
order. FSDS2 will output a message FXDS2(US$100) = 827.98 = 8.2798 × 100. We have, in the
shorthand notation, FXDS2(US$100, mo) = 827.96 < 827.98 = FXDS2(US$100, mf). It violates
MR3, and MS reports a failure due to the combination of faults (a) and (b).

We have illustrated the usefulness of using a metamorphic service for the testing of services. In
reality, there are domain-specific rounding practices compliant to the international accounting
practice. Since rounding rules are a part of the application domain, it is natural for the designed
metamorphic relations to take this type of rounding rules into account. This type of domain-
specific rounding does not affect the metamorphic approach for services testing. It is worth
mentioning that there could be implementation-specific rounding errors also. We refer readers to
a previous work on metamorphic testing (Chen et al., 2003) for using a metamorphic approach to
identify failures in the presence of the implementation-specific rounding errors. In the next
section, we report an experiment that applies our proposal and discuss observations therein.

EXPERIMENT

In this section, we examine two issues in our proposal through an empirical experiment. We
would like to study the testing overhead when some of the original test cases have failed. This is
to validate our proposal to use successful test cases applicable to offline testing as the original test
cases for online testing. Our rationale is that if the overhead, on the contrary, is marginal; it is
unnecessary to predetermine the successfulness of original test cases. This also helps reduce the
testing effort for the online testing of services.

The Subject Program

The subject service implements a service-oriented calculator of arithmetic expressions. It is
developed in C++ on Microsoft Visual Studio for .NET 2003 as a web services. It consists of 16
classes with 2,480 lines of code.

 11

International Journal of Web Services Research , Vol.X, No.X, 200X

Functionally, the calculator accepts an arithmetic expression consisting of constants of designated
data type and arithmetic operators. The set of supported operators are {+,−,×,÷} in which each
operator is overloaded to enable every operand belonging to different data types. Five data types
of operands are supported: integer, long integer, decimal, floating-point number, and floating-
point number with double precision. Each operator is implemented as a supportive service of the
subject service.

The subject service parses the inputted arithmetic expressions, locates other services, and
composes the results from the results returned by its individual supportive services. In the case
where different data types are associated with an operator in a sub-expression, the subject service
is responsible to resolve the appropriate data types and to pass the sub-expression to an applicable
supportive service. In the design of the application, we choose to allow at most three concurrent
instances of the above logic in the subject service. They together with an expression dispatcher
instance compose our subject service. The expression dispatcher discovers the above supportive
services of the subject service, and sends outgoing and receives incoming messages for the latter
services. The metamorphic service for the subject service is composed of the dispatcher and a
program unit that implements a set of metamorphic relations, which will be explained in the next
section.

All the above services are developed by a team of five developers. They have completed certain
formal software engineering training. Before doing the experiment, they have gained at least one
year of research-oriented and application software development to develop location-based
systems, mobile positioning systems and common business applications.

Experimental Setup

In this section, we describe the setup configuration for the testing of the subject service.
Specifically, we present the selection of the original test cases, the metamorphic relations, and our
experience in finding and implementing the metamorphic relations for the experiment.

As described previously, every instance of services is executed on a designated machine. In total,
14 personal computers are used. All the machines to collect our data are located in the
Compuware Software Testing Laboratory of the Hong Kong Institute of Vocational Education
(Tsing Yi).

The selection of the set of the original test cases is a black-box combinatorial testing approach.
This allows the test cases to serve as the original test cases for both the offline testing mode and
online mode. Consider an arithmetic expression of length 3, which we mean to have an
expression having 3 values and 2 operators (e.g., 13 + 0.45 − 7). In our experiment, there are five
types of data type and four types of operator. In total, there are 2,000, (that is, 53 × 42),
combinations, not counting the possible choices of value to initialize each variable. Since the
length of an arithmetic expression could be ranged from zero to a huge figure, we choose to fix
the length to three in this experiment. This minimizes the potential problem of using a very long
expression to compare with a very short expression in our subsequent analysis. We also initialize
test cases that do not cause integer value overflow, and the overflow of other data types alike. We
are aware that we have implemented some design decisions in the test case selection process. We
minimize these highlighted threats by designing our metamorphic relations neutral to these
design decisions.

 12

International Journal of Web Services Research , Vol.X, No.X, 200X

In ideal cases, a user would perceive every calculation as if it is derived analytically using
mathematics. However, some expressions would incur rounding errors due to the limitation of
programming or system configuration. Different orders of evaluations of an expression could thus
produce inconsistent results. A good calculator would provide consistent results to its users. For
example, the arithmetic expression “(1 ÷ 3) × 3” would be evaluated as “(1 × 3) ÷ 3” by a good
calculator.

We follow the above general guideline to formulate our metamorphic relations. We first describe
how we determine and implement metamorphic relations. Next, we will describe the chosen
metamorphic relations.

The arithmetic operators for the calculator application domain naturally define associative and
commutative properties amongst arithmetic operators. We use these properties as the basis to
design our metamorphic relations. This aligns with our objective to design such relations neutral
to the selection of the original test cases. Since these properties naturally occur in the domain
application, we experience a marginal effort to design associative and commutative relations and
convert them into their corresponding formats in the sense of metamorphic relation. Furthermore,
since the .NET framework for C++ directly supports the chosen operators, the effort to implement
the metamorphic relations in our experiment is also marginal.

The types of metamorphic relation used in the experiment are as follows. Suppose A, B and C are
operands of some data type in the set {integer, long integer, floating point number, floating point
number with double precision}, and θ1 and θ2 are overloaded operators in the set {+, −, ×, ÷}.
Consider the expression “(A θ1 B) θ2 C”. A commutative-property rule to generate the follow-up
test cases is: “(A θ1 B) θ2 C” ⇒ “C θ2 (A θ1 B)”. It derives the follow-up test case “C θ2 (A θ1
B)” based on the original test case “(A θ1 B) θ2 C”.

Let us denote our subject service by S. The corresponding metamorphic relation of the above
commutative rule would be: S(“(A θ1 B) θ2 C”) = S(“C θ2 (A θ1 B)”). A metamorphic relation
derived from an associative rule is S (“(A θ1 B) θ2 C”) = S(“A θ1 (B θ2 C)”). We also design
variants of the follow-up test case derivation rules to deal with the division operator: “(A × B) ÷
C)” ⇒ “(1 ÷ C) × (A × B) ”, and other similar rules alike. The generation of test cases is
implemented as logics in our program.

Let us continue the discussion on the execution of test cases. Even a program is ideal; messages
could still be lost or corrupted in a distributed environment. Our subject application does not
implement a sophisticated fail-and-retry strategy to handle these anticipated scenarios. To
compensate the lacking of this kind of strategy, we choose to abort the execution of a test case
when a service returns no output after a timing threshold. After some trials-and-errors in our
laboratory environment, we choose the threshold to be 50 seconds per execution of a pair of
(original and follow-up) test cases. A typical test case will yield the result with three seconds.

Based on the implementation of the subject application, we create additionally six consecutive
faulty versions of the set of supportive services. Each version injects one additional mutation fault
to its immediate ancestor. The six consecutive faults are created in the following order: changing
a “+” operator to the operator “−”; changing a “−” operator to the “+” operator’; changing a “×”
operator to a “−” operator; swapping the operand of a “÷” operator; changing a “−” operator to
the “×” operator; and changing a “×” operator to a “+” operator. These faults support operands of
the following data types respectively: floating-point number with double precision, integer,

 13

International Journal of Web Services Research , Vol.X, No.X, 200X

decimal, floating-point number with single precision, long integer, and floating-pointer number
with single precision.

The following configurations were deployed for offline testing and online testing.

• The subject application (the subject service with the original version of the supportive

services) simulates an offline testing environment. The original non-faulty versions of the
supportive services serve as stub services for the offline testing, in the sense of conventional
testing. Inexperienced developers implement the subject service and, thus, it naturally
contains real faults. Some random test cases do reveal failures from the subject service. We
however have reviewed that a set of test cases for the subject service for offline testing are
successful. This set of test cases could be used as the original test cases for online testing
according to our approach. We refer this set of test cases to as the set of original test cases in
the experiment.

• A faulty application (the subject service with a faulty version of the supportive services)

simulates an online testing environment. A faulty version of the supportive services is not
identical in behavior to its original counterpart (the test stub used in the offline testing). The
six faulty versions therefore facilitate us to re-use the above set of original test cases yet
provide failed test results for some of the elements. This allows us to compare the effect of
failed original test cases. In order to avoid biases towards a particular faulty implementation,
we put all original test cases and their results of the faulty versions in the same pool for
analysis and treat them homogenously.

In total, we executed 22,503 follow-up test cases and also 22,503 original test cases. These two
figures are the same because we use metamorphic relations with two input-output pairs in this
experiment. For the original version, we execute 3,987 pairs of test cases, and for each faulty
version, we execute 3,086 pairs of test cases. To facilitate us to evaluate the effectiveness of test
cases, we also mark every test case to be successful or failed, according to the expected result of
the arithmetic expression. The result is shown in the next section.

Empirical Results

In this section, we will present the empirical results of the experiment and discuss our
observations from the results. In summary, our experimental result shows that our approach uses
16% less in terms of effort to detect 13% more in terms of failures, compared to the control
experiment having no prior confirmation of test results of original test cases.

We first analyze the overhead of including failed original test cases for online testing. According
to the above experimental setup, we have collected a pool of 18,516 (= 3,086 × 6) pairs of test
cases from the six faulty versions. Some of the pairs contain failed original test cases. We evenly
partition the pool into 18 groups so that each group consists of around 1,000 test cases. For the i-
th group (for i = 1 to 18), we use database queries to help us randomly draw around 5i percent of
its elements having failed original test cases and all elements having successful original test cases
to calculate the overhead in terms of test result checking. The total number of elements drawn
from each group is shown in Table 1.

 14

International Journal of Web Services Research , Vol.X, No.X, 200X

Group 2 4 6 8 10 12 14 16 18 Total
Percentages of
failed test cases
drawn

10% 20% 30% 40% 50% 60% 70% 80% 90% -

No. of elements
drawn 767 791 809 839 885 904 945 973 997 7,910

Table 1. No. of elements drawn from selected groups

The calculation of the overhead of a test pair is as follows.

• If no violation of the associated metamorphic relation is detected, then the overhead value is

zero. It is because the test pair cannot reveal any failure.

• If a violation of the associated metamorphic relation is detected, then the overhead value is

equal to the number of actual failure-causing test case(s) in the test pair. In other words, if
both test cases are failure-causing inputs, the overhead value will be two; otherwise, it will be
one.

We further define that the number of additional test result checking to confirm the failure-causing
inputs for a set of test pairs, denoted by Ω, is the sum of the overhead of every test pair in the set.

Numer of additional test result checking to
confirm the failure-causing inputs

0

50

100

150

200

250

10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 3. The overheads for different percentages of failed original test cases

Figure 3 shows the value of Ω for 10%, 20% and up to 90% of total number of the failed original
test cases of a group for the calculation. The mean value is 141 and the standard derivation is 29.4.
(We are aware that there are inadequate numbers of data to calculate a good standard derivation
statistically. We show the value just to give readers an impression about the skewness of data set.)

As expected, the value of Ω increases when the percentage increases. When more failed original
test cases are added to a set for the calculation of Ω, the chance to detect a failure increases.

However, as we increase the number of test cases from 762 (for group 2) to 997 (for group 18),
the change in Ω is moderate and is equal to 77 (= 173 – 96). When around 10% of failed original

 15

International Journal of Web Services Research , Vol.X, No.X, 200X

test cases are included, the value of Ω is 96. This initial value, 96, is even larger than the
cumulated change, 77, increasing the percentages from 10% to 90%.

It confirms our assertion that the inclusion of small percentages of failed original test cases for the
online testing of a service accounts for a major source of overhead in terms of additional test
result checking. This substantiates our recommendation of using successful original test cases
only for online testing to alleviate the test oracle problem.

We also observe that the overall percentage is not high. The mean is 15.9%. It suggests that even
testers had to include inevitably some failed original test cases; measures should be taken to
minimize such an inclusion.

We further examine the chance that we would miss to detect a failure if some failed original test
cases are used for online testing. In our experiment, we use simple equations (instead of
inequality) as metamorphic relations deliberately. We recall that, in our methodology, an original
test case is known to be successful. It follows that any failure detected by the metamorphic testing
approach would be due to the failure of the follow-up test case. On the other hand, when no
violation of a metamorphic relation (in the form of equation) could be detected, the follow-up test
case will be regarded as successful in the experiment.

For a set of test pairs, we define ω as the number of test pairs that each pair consist of failed
original and follow-up test cases, and at the same time, the associated metamorphic relation
cannot detect the failure. The ω thus measures the missed opportunities to detect failures for
online testing.

We also use the data sets reported in Table 1 to calculate ω for each group. The results are shown
in Figure 4. The mean value is 118.7, that is, 13% of all failure-causing cases. The corresponding
standard derivation is 64.2. The minimum is 25 for Group 2 (that is, the 10% group) and the
maximum is 212 for Group 18 (that is, the 90% group).

The trend of missed detection of failures ω is increasing as the percentage of failed original test
cases included in a group increases. Moreover, the number of missed detection appears
proportional to the percentages of failed original test cases in the data set. This observation looks
interesting and warrants further investigations.

 16

International Journal of Web Services Research , Vol.X, No.X, 200X

Number of failure-causing inputs that are
missed when the corresponding original

test cases are failed

0

50

100

150

200

250

10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 4. The number of missed detection of failure-causing inputs

RELATED WORK

Literatures on function testing research for SOA applications or Web services are not plenty.
Bloomberg (2002) overviews a few major types of testing activity for testing web services. We
refer interested readers to the work of Bloomberg (Bloomberg, 2002) for the overview. In the rest
of the section, we review selected related work on providing tools for testing, exception handling
testing, generation of test cases and test result evaluation for service-oriented programs.

The use of testing tool is an indispensable part to automate testing activities. Dustar and Haslinger
(2004) propose to develop an experimental testing tool prototype to conduct batch mode and
online mode testing. Their tool is reported to expect to handle several types of testing such as
functional test and reliability test. Deng et al. (2004) extend AGENDA, a database application
testing tool that populates database instances as a part of a test case, to test web-based database
applications. Rather than populating test database instances, SOATest (Parasoft, 2005) also reads
data from different data sources to conduct testing. On the Internet, there are quite a few tools to
conduct load and stress tests for web services. Their discussions are not within the scope of this
paper.

To generate test cases, Offutt and Xu (2004) propose a set of mutation operators to perturb
messages of Web services. They also suggest three types of rule to develop test cases based on
the XML schema of messages. Their initial result on a sample application shows that 78% of
seeded faults can be revealed. These faults include communication faults in SOAP, faults in
statements for database query languages and conventional faults. The mutated messages could be
considered as a method to construct follow-up test cases in the sense of metamorphic testing.
Their empirical study of their approach is valuable. Rather than injecting faults to messages,
Looker and Xu (2003) inject faults in SOAP-based programs to test the programs for robustness.

Chen et al. (2004a) also aims at testing for robustness. They focus on testing the exception
handling of Java web services through a data flow coverage approach. They propose to inject
faults to system calls to trigger exception throws and require test cases to cover the exception-

 17

International Journal of Web Services Research , Vol.X, No.X, 200X

oriented def-use relations. Through their subject programs are Java-based web service program;
their techniques are not specialized to services testing.

Tsai et al. (2004, 2005) propose an approach to testing Web services that each service has
multiple implementations with the same intended functionality. They apply test cases to a set of
implementations of the same intended functionality progressively. Their test results are ranked by
a majority voting strategy to assign a winner as the test oracle. A small set of winning
implementations are selected for the integration testing purpose. At an integration testing level,
they follow the same approach except using a weighted version of the majority voting strategy
instead. To deal with the test case selection problem, their research group (Tsai et al., 2002a)
proposes to generate test cases based on WSDL. Although WSDL-based testing has been
proposed for a few years and implemented in testing tools such as SOATest (Parasoft, 2005),
their version of WSDL (Tsai et al., 2002b) extends the standardized WSDL (W3C, 2001) to
include features to express semantics. It is not difficult to use other voting strategies instead of the
majority voting strategy in their approach.

The advantages of semantics checking are also observed by other researchers. An immediate
example is our adaptation of metamorphic relation in this paper. Keckel and Lohmann (2005), on
the other hand, propose to apply the notion of design by contract to conduct testing for Web
services. They suggest defining formal contracts to describe the behavior of functions and
interactions of Web services. Based on the contracts, combinatorial testing is suggested to apply
to conduct conformance testing against the contracts of intended services.

Our approach uses metamorphic relations to construct follow-up test cases. It is not a fault-based
approach; whereas Looker and Xu (2003) suggest a fault-based approach to testing for program
robustness. In addition, unlike the work of Offutt and Xu (2004), these follow-up test cases in our
approach are intentionally to allow automated test result evaluations. A follow-up test case
triggers a service to produce an output. The output of a follow-up test case is allowed to be
different from the output of the original test case. Hence, it can be applied to configurations when
multiple implementations of the same functionality are too expensive to be used. This
distinguishes our work from Tsai et al. (2005). Our approach checks test results amongst
themselves; whereas the work of Keckel and Lohmann (2005) checks the test results against some
formal contract specifications. Chen et al. (2004a) is a white-box-centric approach; whereas ours
is a black-box-centric approach. The tools (Parasoft, 2005; Dustar and Haslinger, 2004) appear to
be developed as an integrated testing tool that includes a number of different testing modules.
Their architectures are unclear to us at this moment. Our metamorphic service is an access
wrapper to facilitate offline and online testing of a service. We aim at reducing the amount of
non-core elements from our metamorphic service. In this way, when exposing the function to
other services, we would like to develop the approach further so that it enjoys a good scalability.

DISCUSSION

We have presented an approach to online testing and an experiment on a simple application to
study metamorphic testing for services testing in the previous sections. The approach is useful for
the online testing of a service if testers have difficulties to obtain the expected results of a test
case in a cost-effective manner. The test oracle problem has been identified for many years ((see
also (Beizer, 1990)). In practice, many testers validate their software without a formal test oracle.
Metamorphic testing is an approach towards the problem when a metamorphic relation exists and
could be identified. We believe that this trend will continue for services testing.

 18

International Journal of Web Services Research , Vol.X, No.X, 200X

In the rest of this section, we discuss the threat to validity of the experiment. The evaluation of
using the metamorphic testing approach for services testing in the online mode is conducted in a
small application. The application domain of the subject application is generic that it uses the
basic computing functionality, namely a fundamental set of arithmetic operations and basic
(communicative and associative) properties to define metamorphic relations. It is unknown about
the impact on the results when certain domain-specific knowledge is taken into account to both
define metamorphic relations and selections of test cases. We merely use a small number of faulty
versions to conduct the experiment to discuss our findings. The statistics may be different if other
faulty versions are used. Our subject program does contain real faults and hence some
metamorphic relation instances are violated even if the original version is used. We believe that it
is common for a typical testing of a newly coded software program. However, the assumption is
not valid if other rigorous quality assurance techniques such as rigorous regressions, code
inspections or formal methods have been applied to a software development project. We have
evaluated our approach on the Microsoft .NET 2003 platform only. The present implementation
of the subject program is not portable to other platforms. There is a threat to interpret the
empirical results in other configurations. We have reviewed the set test cases and the set follow-
up test cases, and use a commercial spreadsheet to help us to check whether the target relation is
maintained in the reviewed samples.

CONCLUSIONS AND FUTURE WORK

Testing services in a services computing environment needs to deal with a number of issues. They
include: (i) the unknown communication partners until the service discovery; (ii) the imprecise
black-box information of software components; (iii) the potential existence of non-identical
implementations of the same service; and (iv) the expected behavior of a service potentially
depending on the behavior of competing services. In this paper, we treat a service as a reusable
software module with a well-defined function. A service can introduce itself so that other services
can discover and use the service. Services communicate amongst themselves through well-
defined messages and interfaces. A message is an input or an output of a service.

We have presented a testing approach to the online testing support of service-oriented
applications. We formulate the notion of metamorphic service, the service that has the
characteristics of being an access wrapper, the wrapper encapsulates the access for the service
under test and implements the metamorphic testing approach. We also propose to use the
successful test case for offline testing as the original test case for online testing, as test oracle is
much more likely to be available for offline testing. Using our online testing methodology, testers
builds a bridge between the test oracle available in the offline testing mode and the test oracle
problem encountered in the online testing mode. The services approach to conducting an online
test alleviates the problem (i). It delays the binding of communication partners of the follow-up
test cases after service discovery. Our realization of the metamorphic testing approach alleviates
the problems (ii), (iii) and (iv).

We have also conducted an experiment to evaluate the feasibility of our proposal. The
experimental results encouragingly indiciate that, on average, when the set of original test cases
are unknown to be successful, an extra 16% effort to check test results and a 13% reduction of
failure detection are observed. This supports our proposal that original test cases should be (much)
better to be successful, particularly when the checking is (much) less costly when it can be
conducted in the offline testing mode.

 19

International Journal of Web Services Research , Vol.X, No.X, 200X

There are quite a number of future directions of research. We have not evaluated our proposal
extensively. We plan to conduct more experiments. The way to control the chain reaction of the
follow-up test cases generations due to interferences of multiple metamorphic services warrants
more researches. We also plan to measure the degree of code coverage or fault coverage of our
approach.

ACKNOWLEGMENT

We would like to thank the Program Co-Chairs of The First International Workshop on Services
Engineering (SEIW 2005) to invite us to extend the preliminary version (Chan et al., 2005a) to
contribute to the special issue. We would also like to thank anonymous reviewer of the paper.
Special thanks should be given to Mr. Kwong–Tim Chan, Mr. Hoi-Shun Tam, Mr. Kwun-Ting
Lee, Mr. Yuk-Ching Lam and Mr. King–Lun Yiu of the Hong Kong Institute of Vocational
Education (Tsang Yi) who do the experiments presented in this paper. Part of the research was
done when Chan was with The University of Hong Kong. This research is supported by grants of
the Research Grants Council of Hong Kong (Project Nos. HKUST 6170/03E and
CITYU1195/03E).

REFERENCES

Bass, L., Clements, P., and Kazman, R. (2003), Software Architecture in Practice, 2e, Addison
Wesley.

Beizer, B. (1990), Software Testing Techniques, Van Nostrand Reinhold, New York.

Bloomberg, J. (2002), Testing Web services today and tomorrow, available at http://www-
106.ibm.com/developerworks/rational/library/content/rationaledge/oct02/
webtesting_therationaledge_oct02.pdf .

Chen, F., Ryder, B., Milanova, A., and Wannacott, D. (2004a), Testing of Java Web Services for
Robustness, in Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA 2004), pages 23−34, ACM Press, New York.

Chan, F.T., Chen, T.Y., Cheung, S.C., Lau, M.F., and Yiu, S.M., Application of Metamorphic
Testing in Numerical Analysis, in Proceedings of IASTED International Conference on Software
Engineering (SE 1998), Las Vegas, October 1998, pages 191−197, ACTA Press, Calgary. Canada.

Chan, W. K., Cheung, S. C., and Leung, K. R. P. H. (2005a), Towards a Metamorphic Testing
Methodology for Service-Oriented Software Applications, The First International Workshop on
Services Engineering (SEIW 2005), in Proceedings of the 5th Annual International Conference
on Quality Software (QSIC 2005), IEEE Computer Society, Los Alamitos, California.

Chan, W. K., Cheung, S. C., and Tse, T. H. (2005b), Fault-based testing of database application
programs with conceptual data model, in Proceedings of the 5th Annual International Conference
on Quality Software (QSIC 2005), IEEE Computer Society, Los Alamitos, California.

Chan, W. K., Chen, T. Y., Lu, Heng, Tse, T. H., and Yau, S. S. (2005c), A metamorphic approach
to integration testing of context-sensitive middleware-based applications, in Proceedings of the
5th Annual International Conference on Quality Software (QSIC 2005), IEEE Computer Society,
Los Alamitos, California.

 20

International Journal of Web Services Research , Vol.X, No.X, 200X

Chen, T. Y., Huang, D. H., Tse, T. H., and Zhou, Z. Q. (2004b), Case studies on the selection of
useful relations in metamorphic testing, in Proceedings of the 4th Ibero-American Symposium on
Software Engineering and Knowledge Engineering (JIISIC 2004), pages 569−583, Polytechnic
University of Madrid, Madrid, Spain.

Chen, T. Y., Tse, T. H., and Zhou, Z. Q. (2003), Fault-based testing without the need of oracles,
Information and Software Technology, 45 (1), 1−9.

Chen, T. Y., Tse, T. H., and Zhou, Z. Q. (2002), Semi-proving: an integrated method based on
global symbolic evaluation and metamorphic testing, in Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2002), pages 191−195, ACM
Press, New York.

Chen, T.Y., Cheung, S.C., and Yiu, S.M. (1998), Metamorphic testing: a new approach for
generating next test cases, Technical Report HKUST-CS98-01, Department of Computer Science,
Hong Kong University of Science and Technology, Hong Kong.

Colan, M. (2004), Service-Oriented Architecture expands the vision of Web Services, Part 1:
Characteristics of Service-Oriented Architecture, available at: http://www-
128.ibm.com/developerworks/webservices/library/ws-soaintro.html .

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S. (2002),
Unraveling the Web services web: An introduction to SOAP, WSDL, and UDDI, IEEE Internet
Computing, 6 (2), 86−93.

Deng, Y., Frankl, P., and Wang, J. (2004), Testing web database applications, SECTION:
Workshop on testing, analysis and verification of web services (TAV-WEB) papers, SIGSOFT
Software Engineering Notes, 29 (5).

Dustar, S., and Haslinger, S. (2004), Testing of Service-Oriented Architectures: A Practical
Approach, in Proceedings of the 5th Annual International Conference on Object-Oriented and
Internet-Based Technologies, Concepts, and Applications for a Networked World (NODe 2004),
pages 97−112, LNCS 3263, Springer-Verlag, Berlin, Heideberg.

Frankl, P. G. and Weyuker, E. J. (1988), An Applicable Family of Data Flow Testing Criteria,
IEEE Transactions on Software Engineering, 14 (10), 1483−1498.

Kapfhammer, G. M., and Soffa, M. L. (2003), A family of test adequacy criteria for database-
driven applications, in Proceedings of the 9th European software engineering conference held
jointly with 11th ACM SIGSOFT international symposium on Foundations of software
engineering (ESEC/FSE 2003), pages 98–107, ACM Press, New York.

Keckel, R. and Lohmann, M. (2005), Towards contract-based testing of Web services. Electronic
Notes in Theoretical Computer Science, 116, 145−156.

Mecella, M. and Pernici, B. (2003), Designing wrapper components for e-services in integrating
heterogeneous systems, The VLDB Journal, 10 (1), 2−15.

Kreger, H. (2003), Fulfilling the web services promise, Communications of the ACM, 46 (6),
29−34.

Looker, N., and Xu, J. (2003), Assessing the Dependability of SOAP RPC based Web Services
by Fault Injection, in Proceeding of IEEE International Workshop on Object-Oriented, Real-Time
and Dependable Systems, Capri Island, Oct. 2003.

Mukhi, N. K., Konuru, R., and Curbera, F. (2004), Cooperative middleware specialization for
service oriented architectures, in Proceedings of the 13th international World Wide Web

 21

International Journal of Web Services Research , Vol.X, No.X, 200X

conference on Alternate track papers & posters (WWW 2004), pages 206−215, ACM Press, New
York.

Parasoft Corporation (2005), SOATest,
available at http://www.parasoft.com/jsp/products/home.jsp?product=SOAP&itemId=101 .

OASIS (2005), Universal Description, Discovery and Integration (UDDI) version 3.0.2, available
at: http://uddi.org/pubs/uddi_v3.htm.

Offutt, J. and Xu, W. (2004), Generating test cases for Web services using data perturbation,
SECTION: Workshop on testing, analysis and verification of web services (TAV-WEB) papers,
SIGSOFT Software Engineering Notes, 29 (5).

Rajasekaran, P., Miller, J. A., Verma, K., Sheth, A. P. (2004), Enhancing Web Services
Description and Discovery to Facilitate Composition, in Proceeding of The First International
Workshop on Semantic Web Services and Web Process Composition (SWSWPC 2004), LNCS
3387, pages 55-68, Springer-Verlag, Berlin, Heideberg.

Tsai, W. T., Chen, Y., Paul, R., Huang, H., Zhou, X., and Wei, X. (2005), Adaptive Testing,
Oracle Generation, and Test Case Ranking for Web Services, in Proceedings of the 29th Annual
International Computer Software and Applications conference (COMPSAC 2005), pages
101−106, IEEE Computer Society, Los Alamitos, California.

Tsai, W. T., Chen, Y., Cao, Z. Bai, X., Hung, H., and Paul, R. (2004), Testing Web services using
progressive group testing, in Proceedings of Advanced Workshop on Content Computing (AWCC
2004), LNCS 3309, pages 314−322, Springer-Verlag, Berlin, Heideberg.

Tsai, W. T., Paul, R., Wang, Y., Fan, C., and Wang, D. (2002a), Extending WSDL to facilitate
Web services testing, in Proceedings of The 7th IEEE International Symposium on High-
Assurance Systems Engineering (HASE 2002), pages 171−172, IEEE Computer Society, Los
Alamitos, California.

Tsai, W. T., Paul, R., Song, W., and Cao Z. (2002b), Coyote: An XML-Based Framework For
Web Services Testing, Proceedings of The 7th IEEE International Symposium on High-
Assurance Systems Engineering (HASE 2002), pages 173−176, IEEE Computer Society, Los
Alamitos, California.

Tse, T. H., Yau, S. S., Chan, W. K., Lu, H., and Chen T. Y. (2004), Testing context-sensitive
middleware-based software applications, in Proceedings of the 28th Annual International
Computer Software and Applications Conference (COMPSAC 2004), pages 458−466, IEEE
Computer Society, Los Alamitos, California.

W3C (2003), SOAP Version 1.2 Part 1: Messaging Framework, available at:
http://www.w3.org/tr/soap12-part1/.

W3C (2002), Web Services Activity, available at: http://www.w3.org/2002/ws .

W3C (2005), Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,
available at: http://www.w3.org/tr/wsdl20/ .

W3C (2004), Extensible Markup Language (XML) 1.0 (Third Edition), available at:
http://www.w3.org/TR/2004/REC-xml-20040204/ .

W3C (2001), XML Schema, available at: http://www.w3.org/xml/schema .

 22

http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3387&spage=55
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3387&spage=55
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3387&spage=55
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3387&spage=55

International Journal of Web Services Research , Vol.X, No.X, 200X

Umar, A. (1997), Application Reengineering. Building Web-Based Applications and Dealing
With Legacy, Prentice-Hall, Englewood, Cliffs, N.J., USA.

Chunyang Ye, S.C. Cheung and W.K. Chan (2006), Publishing and composition of atomicity-
equivalent services for B2B collaboration, to appear in Proceedings of the 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China, May 20−28, IEEE
Computer Society, Los Alamitos, California.

Zhu, H., Hall, P. A. V., and May, J. H. R. (1997), Software unit test coverage and adequacy,
ACM Computing Survey, 29 (4), 366−427.

ABOUT THE AUTHORS

W.K. Chan is a post-doctorate fellow of the Hong Kong University of Science and Technology. He was
conferred with a PhD degree in Software Engineering from The University of Hong Kong in 2004. He
serves as a program committee member of international conferences, and reviews papers of top-tier
software engineering conferences and journals. His research interests include software testing, validation &
verification, and pervasive computing.

S.C. Cheung received his Ph.D. degree in Computing from the Imperial College of Science, Technology
and Medicine, University of London, London, U.K in 1994. He is an Associate Professor of Computer
Science and Engineering, and Associate Director of CyberSpace Center at the Hong Kong University of
Science and Technology. He is an associate editor of the IEEE Transactions on Software Engineering, and
participates actively into the program and organizing committees of many major international conferences
on software engineering, distributed systems and web technologies, such as ICSE, FSE, ISSTA, ASE,
ICDCS, ER, COMPSAC, APSEC, QSIC, EDOC, SCC and CEC. He co-chaired the First International
Workshop on Services Engineering in 2005. His research interests include software engineering, services
computing, ubiquitous computing, and embedded software engineering.

Karl R.P.H. Leung is a Principal Lecturer in the Department of Information & Communications
Technology at the Hong Kong Institute of Vocational Education (IVE)and the Director of the Compuware
Software Testing Laboratory of IVE. Dr. Leung is also an Adjunct Professor of the University of
Queensland, Australia and an Advisor of the Shunde Polytechnic, P.R. China. Dr. Leung is also a reviewer
of many major journals and conferences and has participated in the organization of many major
international conferences. His research areas include: Domain Modeling, Mission Critical Software
Engineering Methodology, Secure Workflow Systems, Software Testing, Mobile Location Estimation,
Ubiquitous & Location Based Systems and QoS of Video Streaming.

Dr. Leung is a Chartered Fellow of the British Computer Society, a Fellow of the Institute of Print-media
Professionals, a Senior Member of the IEEE and IEEE Computer Society, and has been an Executive
Committee member (1990-1993), General Secretary (1994), Vice-Chair (1995-1997) and Chair (1998-
1999), Past Chair since 2000, of the IEEE Hong Kong Section Computer Chapter. The Chapter won the
IEEE Most Outstanding Computer Society Chapter Award in 1998. Dr. Leung is also a C.Eng., an Ir., a
Chartered IT Professional, a RPE (Information), and a member of ACM, BCS, ACS, HKIE & HKCS.

 23

	INTRODUCTION
	PRELIMINARIES
	Service
	Metamorphic Relation (MR)
	Metamorphic Testing (MT)
	Assumptions and Terminologies

	AN ONLINE TESTING APPROACH
	Overview
	Metamorphic Service (MS)
	Testing in the Online Mode

	AN ILLUSTRATION SCENARIO
	EXPERIMENT
	The Subject Program
	Experimental Setup
	Empirical Results

	RELATED WORK
	DISCUSSION
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEGMENT
	REFERENCES
	Rajasekaran, P., Miller, J. A., Verma, K., Sheth, A. P. (2004), Enhancing Web Services Description and Discovery to Facilitate Composition, in Proceeding of The First International Workshop on Semantic Web Services and Web Process Composition (SWSWPC 2004), LNCS 3387, pages 55-68, Springer-Verlag, Berlin, Heideberg.

