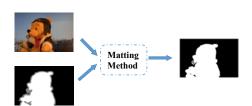


Active Matting

Xin Yang*, Ke Xu*, Shaozhe Chen, Shengfeng He, Baocai Yin, Rynson W.H. Lau * ioint first authors

Processing Systems


Introduction:

What is Image Matting?

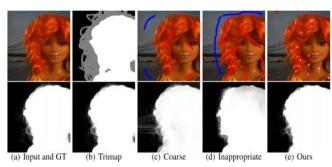

$$I_z = \alpha_z F_z + (1 - \alpha_z) B_z$$

Image Matting (Alpha Matting) aims to solve the above equation, where z = (x, y)denotes a pixel location in the input image I, F and B refer to the foreground and background images. α is the alpha matte whose values range between [0,1] defining the opacity of the foreground.

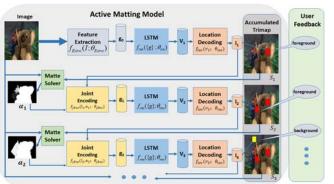
Matting Method takes a colorful image and its corresponding trimap as inputs and calculates an alpha matte.

What are the limitations of conventional methods and what are the advantages of our proposed active model?

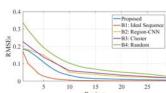
Conventional methods either require an accuracy trimap (Figure b), which is tedious to produce, or depend on the users' scribbles (Figures c and d), which rely on their expertise. In contrast, our active model is more user-friendly. It suggests proposals actively.

- > What are our contributions?
- Propose an active model to detect informative regions for creating an alpha matte.
- Propose a recurrent network with a reinforcement learning strategy.
- Demonstrate that the learned informative knowledge can be generalized.

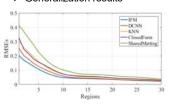
Methodology:


Reinforcement learning of the sequence.

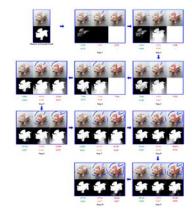
$$F = \sum_{l} p(l|I,\theta) \log p(\alpha|l,I,\theta) \qquad \frac{\partial F}{\partial \theta} = \sum_{l} p(l|I,\theta) [\log p(\alpha|l,I,\theta) \frac{\partial \log p(l|I,\theta)}{\partial \theta} + \frac{\partial \log p(\alpha|l,I,\theta)}{\partial \theta}]$$


The accuracy is measured by Root-Mean-Square-Error (RMSE). Minimizing RMSE is equivalent to maximizing object function F. The training stage is by taking derivative of F w.r.t parameters θ . The second term in the r.h.s. of the derivative is dropped as the gradient is not available.

$$\frac{\partial^F}{\partial \theta} = \frac{1}{M} \sum_{m=1}^{M} \sum_{i=1}^{T} [\log p(\alpha | \hat{l}_i^m, I, \theta) \frac{\partial \log p(\hat{l}_i^m | I, \theta)}{\partial \theta}] \approx \frac{1}{M} \sum_{m=1}^{M} \sum_{i=1}^{T} [(R_i^m - b_i) \frac{\partial \log p(\hat{l}_i^m | I, \theta)}{\partial \theta}] \quad R_i^j = \frac{\|\alpha_{l-1} - \alpha^{gt}\| - \|\alpha_i^j - \alpha^{gt}\|}{\max\{\|\alpha_{l-1} - \alpha^{gt}\| - \|\alpha_i^{sj} - \alpha^{gt}\|\}}$$


Proposed Active Model

> Comparisons with baselines



> Generalization results

Experiments:

Qualitative results

> Quantitative results

	5			P	1	0	1	Mean RMSEs
Trimap+IFM	0.094	0.046	0.021	0.018	0.051	0.017	0.022	0.031
	181s	209s	195s	192s	215s	187s	205s	204s
Ideal Sequence+IFM	0.096	0.048	0.023	0.019	0.064	0.019	0.022	0.032
Trimap+DCNN	0.117	0.049	0.021	0.019	0.079	0.019	0.021	0.033
Ideal Sequence+DCNN	0.121	0.051	0.022	0.022	0.081	0.021	0.021	0.034
Active+IFM	0.099	0.051	0.024	0.019	0.071	0.021	0.024	0.034
	55s	66s	58s	62s	54s	55s	53s	57s
Active+DCNN	0.121	0.052	0.024	0.023	0.081	0.021	0.023	0.035
Trimap+Shared	0.104	0.059	0.023	0.021	0.071	0.024	0.022	0.035
Active+Shared	0.111	0.062	0.027	0.023	0.078	0.026	0.024	0.039
Trimap+KNN	0.097	0.053	0.029	0.031	0.066	0.022	0.037	0.043
Trimap+Global	0.111	0.059	0.024	0.023	0.072	0.018	0.024	0.045
Active+KNN	0.102	0.058	0.034	0.035	0.074	0.023	0.044	0.049
Trimap+Learning	0.126	0.107	0.028	0.015	0.084	0.022	0.015	0.051
Trimap+ClosedForm	0.136	0.117	0.029	0.016	0.097	0.023	0.016	0.056

References:

IFM: [Akosy et.al. CVPR' 2017] Learning: [Zheng et.al. ICCV' 2009]

DCNN: [Cho et.al. ECCV' 2016]

Global: [He et.al. CVPR' 2011] KNN: [Chen et.al. TPAMI' 2013] Shared: [Gastal et.al. EG' 2010]