
Identifying Duplications and Lateral Gene Transfers
Simultaneously and Rapidly

Zhi-Zhong Chen
Department of Information System Design

Tokyo Denki University
Email: zzchen@mail.dendai.ac.jp

Fei Deng
Department of Computer Science

City University of Hong Kong
Email: fdeng4@student.cityu.edu.hk

Lusheng Wang
Department of Computer Science

City University of Hong Kong
Email: lwang@cs.cityu.edu.hk

Abstract—This paper deals with the problem of enumerating
all minimum-cost LCA-reconciliations involving gene duplications
and lateral gene transfers (LGTs) for a given species tree 𝑆 and
a given gene tree 𝐺. Previously, Tofigh et al. [20] gave a fixed-
parameter algorithm for this problem that runs in 𝑂(𝑚+ 3𝑘𝑛)
time, where 𝑚 is the number of vertices in 𝑆, 𝑛 is the number of
vertices in 𝐺, and 𝑘 is the minimum cost of an LCA-reconciliation
between 𝑆 and 𝐺. In this paper, by refining their algorithm, we
obtain a new one for the same problem that finds and outputs
the solutions in a compact form within 𝑂(𝑚𝑛2 + 3𝑘) time.

I. INTRODUCTION

Phylogenetic trees are a commonly used model for repre-
senting the evolutionary history of a set of species. In general, a
gene tree may not be the same as its underlying species tree in
the presence of evolutionary events such as gene duplications,
gene losses, and lateral gene transfers (LGTs). The problem of
inferring these evolutionary events from a pair of species tree
and gene tree has been studied extensively in recent years [15],
[3], [11], [5], [20], [21]. Tree reconciliation has been studied as
a useful approach to this problem. A reconciliation between a
gene tree 𝐺 and a species tree 𝑆 is a mapping from the vertices
of 𝐺 to the vertices of 𝑆, thus identifying these evolutionary
events [20], [9], [7]. In this paper, we are interested in the
problem of finding all minimum-cost reconciliations between
a gene tree and the underlying species tree taking into account
gene duplications and LGTs.

The concept of reconciliations between a gene tree 𝐺 and
a species tree 𝑆 was first introduced by Goodman et al. [7] in
which they define a least common ancestor mapping from the
vertices of 𝐺 to the vertices of 𝑆. This model was subsequently
studied in the literature [18], [19], [14], [11], [9] involving gene
duplications and gene losses. Later, as the importance of LGTs
becomes widely aware, many algorithms have been proposed
to deal with LGTs. Hallett et al. [10] extend the concept of
reconciliation and use it to infer LGTs. Nakhleh et al. [17] give
a fast and accurate heuristic algorithm to reconstruct LGTs for
a species tree and a set of gene trees. Other efforts for inferring
LGTs only include [17], [16], [13], [1], [2].

As for simultaneous identification of these evolutionary
events, Górecki [8] gives a model involving duplications,
losses and LGTs. However, it requires an extended species tree
in which some edges are assumed to be LGTs as its input. An
efficient algorithm for this problem is also proposed in [6] in
which an additional time stamp function associated with the
species tree is needed. Recently, Tofigh et al. [20] introduce a

formal model to this problem involving gene duplications and
LGTs. They give a fixed-parameter algorithm for the problem
that outputs the solutions within 𝑂(𝑚+3𝑘𝑛) total time, where
𝑚 and 𝑛 are respectively the numbers of vertices in the species
tree and the gene tree, and 𝑘 is the minimum cost over all
reconciliations between the input gene tree and the species
tree. They also prove that the acyclic version of the problem
is NP-hard.

In this paper, we improve the running time of the fixed-
parameter algorithm of [20] roughly by a factor of 𝑛. In our
algorithm, we first perform a preprocessing on the input gene
tree and species tree. Then we introduce some techniques
which form the foundation of our algorithm on how to find
duplications and LGTs. Our algorithm outputs the solutions in
a compact form within 𝑂(𝑚𝑛2 + 3𝑘) total time.

The rest of this paper is organized as follows. Section II
gives some basic notations and a formal definition of the
problem we study in this paper. Section III gives a brief
review of the fixed-parameter algorithm of [20]. Section IV
shows several lemmas for our algorithm. Section V presents
our improved algorithm.

II. PRELIMINARIES

A. Basic Definitions

Let 𝐹 be a rooted forest. We use 𝑉 (𝐹) and 𝐸(𝐹) to denote
the sets of vertices and edges in 𝐹 , respectively. 𝐹 is a rooted
tree if it has only one root. 𝐹 is a rooted binary tree if it is
a rooted tree and the out-degree of every non-leaf vertex in
𝐹 is 2. Two edges (𝑢1, 𝑣1) and (𝑢2, 𝑣2) of 𝐹 are siblings if
𝑢1 = 𝑢2.

Let 𝑢 and 𝑣 be two vertices of 𝐹 . For convenience, we
view each vertex of 𝐹 as both an ancestor and a descendant
of itself in 𝐹 . If 𝑢 is an ancestor (respectively, descendant) of 𝑣
in 𝐹 , then we write 𝑢 ≥𝐹 𝑣 (respectively, 𝑣 ≤𝐹 𝑢). If 𝑢 ≥𝐹 𝑣
and 𝑢 ∕= 𝑣, then 𝑢 is a proper ancestor of 𝑣 in 𝐹 (denoted by
𝑢 >𝐹 𝑣). If 𝑢 ≤𝐹 𝑣 and 𝑢 ∕= 𝑣, then 𝑢 is a proper descendant
of 𝑣 in 𝐹 (denoted by 𝑢 <𝐹 𝑣). If 𝑢 ≥𝐹 𝑣 or 𝑢 ≤𝐹 𝑣,
then 𝑢 and 𝑣 are comparable in 𝐹 ; otherwise, 𝑢 and 𝑣 are
incomparable in 𝐹 . The lowest common ancestor of a set 𝑈
of vertices in 𝐹 is denoted by LCA𝐹𝑈 . If 𝑤 = LCA𝐹 {𝑢, 𝑣}
exists and 𝑣 is closer to 𝑤 in 𝐹 than 𝑢, then 𝑣 is higher than
𝑢 in 𝐹 (or equivalently, 𝑢 is lower than 𝑣 in 𝐹).

If 𝑣 has only one child in 𝐹 , then 𝑣 is unifurcate. If 𝑣
is a root of 𝐹 and is unifurcate, then contracting 𝑣 in 𝐹 is

128978-1-4673-5875-0/13/$31.00 c©2013 IEEE

3 4 51 2

S

1 2 1 3 2 4 65

G a
b

d fe
g

α
β

γ
ρ

θ

6

c

Fig. 1. A species tree 𝑆 and a gene tree 𝐺 on the same set {1, 2, 3, 4, 5,
6} of species.

α
γ

γ αθ
ρ

θ

R = 01

1 2 1 3 2 4 5 6

a

d

b

e

c f g

R = {(c,d), (f,4)} 2

α
ρ

αθ
θ

1 2 1 3 2 4 5 6

a

d
e

f g2
3 c

b

Fig. 2. The LCA mappings of the gene tree 𝐺 in Figure 1 into the species
tree 𝑆 in Figure 1 associated with the transfer sets 𝑅1 = ∅ and 𝑅2 =
{(𝑐, 𝑑), (𝑓, 4)}, where (1) for each vertex 𝑣, the image of 𝑣 under a mapping is
placed near 𝑣 and (2) speciation vertices and duplication vertices are enclosed
by squares and diamonds, respectively.

the operation that modifies 𝐹 by deleting 𝑣. If 𝑣 is a non-root
vertex of 𝐹 and is unifurcate, then contracting 𝑣 in 𝐹 is the
operation that modifies 𝐹 by first adding an edge from the
parent of 𝑣 to the child of 𝑣 and then deleting 𝑣.

For a rooted binary tree 𝑇 and a subset 𝑅 of 𝐸(𝑇), 𝑇 ∖𝑅
denotes the rooted forest obtained from 𝑇 by removing the
edges in 𝑅, while 𝑇 ∖∘ 𝑅 denotes the rooted forest obtained
from 𝑇 ∖𝑅 by repeatedly contracting a unifurcate vertex until
none exists. Note that each non-leaf vertex of 𝑇 ∖∘ 𝑅 has
exactly two children in 𝑇 ∖∘ 𝑅. For a vertex 𝑢 of 𝑇 , 𝑇𝑢 denotes
the subtree of 𝑇 rooted at 𝑢. Moreover, for two vertices 𝑢 and
𝑣 in 𝑇 with 𝑢 >𝑇 𝑣, 𝑇𝑢∖𝑇𝑣 denotes the tree obtained from
𝑇𝑢 by removing the edges and vertices in 𝑇𝑣 .

B. Transfer Sets and LCA-Reconciliations

Let 𝑋 be a set of existing species. A species tree on 𝑋
is a rooted binary tree 𝑆 whose leaves one-to-one correspond
to the species in 𝑋 . A gene tree on 𝑋 is a rooted binary tree
𝐺 whose leaves (not necessarily one-to-one) correspond to the
species in 𝑋 . Since two leaves of 𝐺 may correspond to the
same species in 𝑋 , 𝐺 may have more than ∣𝑋∣ leaves. Figure 1
gives an example of 𝑆 and 𝐺.

For a subset 𝑅 of 𝐸(𝐺) containing no sibling edges, the
LCA mapping of 𝐺 into 𝑆 associated with 𝑅 (denoted by 𝑀𝑅)
is defined as follows.

∙ If 𝑢 is a leaf of 𝐺, then 𝑀𝑅(𝑢) is the unique leaf of
𝑆 that corresponds to the same species in 𝑋 as 𝑢.

∙ Otherwise, 𝑀𝑅(𝑢) is LCA𝑆{𝑀𝑅(𝑣1), . . . ,𝑀𝑅(𝑣𝑘)},
where 𝑣1, . . . , 𝑣𝑘 are the leaf descendants of 𝑢 in
𝐺 ∖𝑅.

A transfer set w.r.t. (𝑆,𝐺) is a subset 𝑅 of 𝐸(𝐺) such that
no two edges of 𝑅 are siblings and 𝑀𝑅(𝑢) is incomparable to
𝑀𝑅(𝑣) in 𝑆 for every edge (𝑢, 𝑣) ∈ 𝑅. As an example, for 𝑆
and 𝐺 in Figure 1, two transfer sets 𝑅1 and 𝑅2 w.r.t. (𝑆,𝐺)
are shown in Figure 2.

Let 𝑅 be a transfer set w.r.t. (𝑆,𝐺). We call 𝑀𝑅 an LCA-
reconciliation between 𝐺 and 𝑆. With respect to (w.r.t. for

short) 𝑅, we classify the non-leaf vertices of 𝐺 into three
types as follows. For each non-leaf vertex 𝑢 with children 𝑣
and 𝑤 in 𝐺,

∙ 𝑢 is a transfer vertex if (𝑢, 𝑣) ∈ 𝑅 or (𝑢,𝑤) ∈ 𝑅;

∙ 𝑢 is a speciation vertex if it is not a transfer vertex
and 𝑀𝑅(𝑣) and 𝑀𝑅(𝑤) are incomparable in 𝑆;

∙ 𝑢 is a duplication vertex if it is not a transfer vertex
and 𝑀𝑅(𝑣) and 𝑀𝑅(𝑤) are comparable in 𝑆.

We use DV(𝑅) to denote the set of all duplication vertices
w.r.t. 𝑅. For example, in Figure 2, DV(𝑅1) = {𝑎, 𝑏, 𝑑} and
DV(𝑅2) = {𝑎, 𝑑}.

The cost of 𝑅 (denoted by Cost(𝑅)) is ∣DV(𝑅)∣+ ∣𝑅∣. For
example, the costs of the transfer sets 𝑅1 and 𝑅2 in Figure 2
are 3 and 4, respectively.

In this paper, we want to solve the following problem
(called the transfer set enumeration (TSE) problem):

∙ Input: A pair (𝑆,𝐺), where 𝑆 is a species tree on a
set 𝑋 of species and 𝐺 is a gene tree on 𝑋 .

∙ Output: All minimum-cost transfer sets 𝑅 w.r.t.
(𝑆,𝐺).

For a nonnegative integer 𝑘, a 𝑘-transfer set w.r.t. (𝑆,𝐺)
is a transfer set 𝑅 w.r.t. (𝑆,𝐺) such that Cost(𝑅) = 𝑘. To
enumerate all minimum-cost transfer sets w.r.t. (𝑆,𝐺), we can
proceed as follows:

1) Initialize 𝑘 = 0.
2) Enumerate all 𝑘-transfer sets w.r.t. (𝑆,𝐺).
3) If at least one 𝑘-transfer set is found in Step 2, then

stop; otherwise, increase 𝑘 by 1 and goto Step 2.

So, our problem has become how to perform Step 2,
i.e., how to solve the following problem (called the bounded
transfer set enumeration (BTSE) problem):

∙ Input: A triple (𝑆,𝐺, 𝑘), where 𝑆 is a species tree
on a set 𝑋 of species, 𝐺 is a gene tree on 𝑋 , and 𝑘
is an integer such that there is no 𝑘′-transfer set w.r.t.
(𝑆,𝐺) for all nonnegative integers 𝑘′ < 𝑘.

∙ Output: All 𝑘-transfer sets w.r.t. (𝑆,𝐺).

III. ALGORITHM FOR THE BTSE PROBLEM

Throughout this section, fix an input (𝑆,𝐺, 𝑘) to the BTSE
problem.

A. Candidates

For a subset 𝑈 of 𝑉 (𝐺), 𝐸[𝑈] denotes the set of all edges
(𝑢, 𝑣) in 𝐺 with 𝑢 ∈ 𝑈 . A candidate w.r.t. (𝑆,𝐺) is a triple
(𝑅,𝐷,Σ) satisfying the following conditions:

1) 𝑅 is a transfer set w.r.t. (𝑆,𝐺).
2) 𝐷 and Σ are disjoint sets of vertices in 𝐺.
3) For each 𝑢 ∈ 𝐷 ∪ Σ, 𝑅 ∩ 𝐸[{𝑢}] = ∅.
4) For each 𝑢 ∈ Σ, 𝑢 is a speciation vertex w.r.t. 𝑅, 𝑢

is not a root of 𝐺 ∖∘ 𝑅, and the parent of 𝑢 in 𝐺 ∖∘ 𝑅
belongs to 𝐷.

5) For each 𝑣 ∈ 𝐷, 𝐺 ∖∘ 𝑅 contains a directed path 𝑄
from 𝑣 to a proper descendant 𝑢 such that (1) 𝑢 ∈ Σ

2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 129

or 𝑢 is a leaf, (2) all vertices of 𝑄 except 𝑢 belong
to 𝐷, and (3) 𝑀𝑅(𝑤) = 𝑀𝑅(𝑢) for every vertex 𝑤
of 𝑄.

Throughout this subsection, let 𝐶 = (𝑅,𝐷,Σ) be a
candidate w.r.t. (𝑆,𝐺). If a vertex 𝑢 of 𝐺 is a leaf vertex
of 𝐺, belongs to 𝐷 ∪ Σ, or is incident to an edge in 𝑅, then
𝑢 is marked w.r.t. 𝐶; otherwise, it is unmarked w.r.t. 𝐶. A
vertex 𝑣 of 𝐺 is settled w.r.t. 𝐶 if each descendant of 𝑣 in 𝐺
is marked w.r.t. 𝐶 or a speciation vertex w.r.t. 𝑅. 𝐶 is final
if all vertices of 𝐺 are settled w.r.t. 𝐶. The next lemmas have
been implicitly proved in [20]) (for precise proofs, see [4]):

Lemma 1: Let 𝑅∗ be a transfer set w.r.t. (𝑆,𝐺) such that
𝑅 ⊆ 𝑅∗ and 𝐸[𝐷 ∪ Σ] ∩ 𝑅∗ = ∅. Then, for each 𝑢 ∈ Σ,
𝑀𝑅(𝑢) = 𝑀𝑅∗(𝑢) and 𝑢 is a speciation vertex w.r.t. 𝑀𝑅∗ .
Moreover, for each 𝑣 ∈ 𝐷, 𝑀𝑅(𝑣) = 𝑀𝑅∗(𝑣) and 𝑣 is a
duplication vertex w.r.t. 𝑀𝑅∗ .

Lemma 2: If 𝐶 is final, then there is no transfer set 𝑅∗
w.r.t. (𝑆,𝐺) such that 𝑅 ⊆ 𝑅∗ and Cost(𝑅∗) < Cost(𝑅).

B. Outline of the Algorithm

To enumerate all 𝑘-transfer sets w.r.t. (𝑆,𝐺), we start with
the candidate 𝐶 = (𝑅,𝐷,Σ) = (∅, ∅, ∅), and then try all
possible ways to extend it by gradually adding edges to 𝑅 and
adding vertices to Σ and 𝐷. By Lemma 1, ∣𝑅∣+ ∣𝐷∣ is a lower
bound on min𝑅∗ Cost(𝑅∗), where 𝑅∗ ranges over all transfer
sets w.r.t. (𝑆,𝐺) such that 𝑅 ⊆ 𝑅∗ and 𝐸[Σ ∪𝐷] ∩ 𝑅∗ = ∅.
Initially, the lower bound is 0 because 𝑅 and 𝐷 are empty.
However, gradually extending 𝐶 will gradually increase the
lower bound. Once the lower bound becomes > 𝑘, we can
stop extending 𝐶. By Lemma 2, we can also stop extending
𝐶 once it becomes final.

C. Extending a Candidate

Throughout this subsection, fix a non-final candidate 𝐶 =
(𝑅,𝐷,Σ) with ∣𝑅∣ + ∣𝐷∣ < 𝑘. To extend 𝐶, the idea is to
make several types of moves as defined as follows. A d-move
w.r.t. 𝐶 is an unmarked vertex 𝑢 w.r.t. 𝐶 such that

∙ 𝑢 has a child 𝑣 ∈ 𝐷 ∪ Σ in 𝐺 ∖∘ 𝑅 with 𝑀𝑅(𝑢) =
𝑀𝑅(𝑣), or

∙ all the leaf descendants of 𝑢 in 𝐺 ∖∘ 𝑅 correspond to
the same species.

Eliminating a d-move 𝑢 w.r.t. 𝐶 means modifying 𝐶 by adding
𝑢 to 𝐷.

An s-move w.r.t. 𝐶 is an unmarked speciation vertex 𝑢
w.r.t. 𝐶 such that 𝑢 is not a root of 𝐺 ∖∘ 𝑅, the parent 𝑝 of 𝑢
in 𝐺 ∖∘ 𝑅 does not belong to 𝐷 ∪ Σ, and 𝑀𝑅(𝑝) = 𝑀𝑅(𝑢).
Eliminating an s-move 𝑢 w.r.t. 𝐶 means modifying 𝐶 in one
of the following possible ways: (1) adding edge (𝑢, 𝑣) to 𝑅;
(2) adding edge (𝑢,𝑤) to 𝑅; (3) adding 𝑝 to 𝐷 and 𝑢 to Σ,
where 𝑣 and 𝑤 are the children of 𝑢 in 𝐺 and 𝑝 is the parent
of 𝑢 in 𝐺 ∖∘ 𝑅.

A move w.r.t. 𝐶 is a d- or s-move w.r.t. 𝐶. The next three
lemmas have been implicitly proved in [20] (for precise proofs,
see [4]):

Lemma 3: Suppose that 𝑢 is a d-move w.r.t. 𝐶. Let 𝑅∗ be a
transfer set w.r.t. (𝑆,𝐺) such that 𝑅 ⊆ 𝑅∗ and 𝑅∗∩𝐸[𝐷∪Σ] =

Input: A candidate 𝐶 = (𝑅,𝐷,Σ) w.r.t. (𝑆,𝐺).
Output:All final candidates (𝑅′, 𝐷′,Σ′) w.r.t. (𝑆,𝐺) such that

∣𝑅′∣+ ∣𝐷′∣ ≤ 𝑘, 𝑅 ⊆ 𝑅′, 𝐷 ⊆ 𝐷′, and Σ ⊆ Σ′.
1. If either ∣𝑅∣+ ∣𝐷∣ > 𝑘, or ∣𝑅∣+ ∣𝐷∣ = 𝑘 and at least

one vertex of 𝐺 is not settled w.r.t. 𝐶, then return.
2. If no move w.r.t. 𝐶 exists in 𝐺, then output 𝑅 and

return.
3. Find a move 𝜇 w.r.t. 𝐶 and proceed as follows.
3.1. If 𝜇 is a d-move w.r.t. 𝐶, recursively call 𝑘-

AllTransSet on input (𝑅,𝐷∪{𝜇},Σ) and then return.
3.2. If 𝜇 is an s-move, recursively call 𝑘-AllTransSet on

input (𝑅 ∪ {(𝜇, 𝜇′)}, 𝐷,Σ), (𝑅 ∪ {(𝜇, 𝜇′′)}, 𝐷,Σ),
and (𝑅,𝐷 ∪ {𝑝},Σ ∪ {𝜇}) in any order and then
return, where 𝜇′ and 𝜇′′ are the children of 𝜇 in 𝐺
and 𝑝 is the parent of 𝜇 in 𝐺 ∖∘ 𝑅.

Fig. 3. The outline of 𝑘-AllTransSet

∅. Then, 𝑅∗ contains no edge in 𝐸[{𝑢}] and (𝑅,𝐷 ∪ {𝑢},Σ)
is a candidate w.r.t. (𝑆,𝐺).

Lemma 4: Suppose that 𝑢 is an s-move w.r.t. 𝐶. Let 𝑣 and
𝑤 be the children of 𝑢 in 𝐺, 𝑝 be the parent of 𝑢 in 𝐺 ∖∘ 𝑅,
and 𝑅∗ be a transfer set w.r.t. (𝑆,𝐺) such that 𝑅 ⊆ 𝑅∗ and
𝑅∗ ∩ 𝐸[𝐷 ∪ Σ] = ∅. Then, the following statements hold:

1) Either 𝐸[{𝑝, 𝑢}] ∩ 𝑅∗ = ∅ or 𝐸[{𝑢}] ∩ 𝑅∗ is equal
to {(𝑢, 𝑣)} or {(𝑢,𝑤)}.

2) (𝑅 ∪ {(𝑢, 𝑣)}, 𝐷,Σ), (𝑅 ∪ {(𝑢,𝑤)}, 𝐷,Σ), and
(𝑅,𝐷 ∪ {𝑝},Σ ∪ {𝑢}) are candidates w.r.t. (𝑆,𝐺).

Lemma 5: Suppose that at least one vertex of 𝐺 is not
settled w.r.t. (𝑅,𝑈). Then, there is a move w.r.t. 𝐶.

Based on Lemmas 3, 4, and 5, we are now ready to describe
a recursive subroutine (called 𝑘-AllTransSet) for extending
a given candidate (𝑅,𝐷,Σ). It is depicted in Figure 3. To
enumerate all 𝑘-transfer sets w.r.t (𝑆,𝐺), it suffices to call
𝑘-AllTransSet on input (∅, ∅, ∅).

Note that to find a move in Step 3, 𝑘-AllTransSet needs
to scan the vertices of 𝐺 until it finds a move w.r.t. 𝐶 or
finds that no moves w.r.t. 𝐶 exist in 𝐺. Thus, it can take
𝑂(𝑛) time to find a single move w.r.t. 𝐶, where 𝑛 = ∣𝑉 (𝐺)∣.
So, 𝑘-AllTransSet takes 𝑂(𝑚+3𝑘𝑛) on input (∅, ∅, ∅), where
𝑚 = ∣𝑉 (𝑆)∣.

IV. USEFUL PROPERTIES OF MOVES

Throughout this section, fix an input (𝑆,𝐺, 𝑘) to the BTSE
problem and also fix a non-final candidate 𝐶 = (𝑅,𝐷,Σ) with
∣𝑅∣+ ∣𝐷∣ < 𝑘. We state three lemmas based on which our new
algorithm will be designed. For lack of space, their proofs are
given in Appendix A.

Lemma 6: Suppose that 𝑢1 is a d-move w.r.t. 𝐶. For the
candidate 𝐶 ′ = (𝑅,𝐷 ∪ {𝑢1},Σ), the following statements
hold:

1) Each d-move 𝑣 w.r.t. 𝐶 with 𝑣 ∕= 𝑢1 is also a d-move
w.r.t. 𝐶 ′.

2) Each d-move w.r.t. 𝐶 ′ is either a d-move w.r.t. 𝐶 or
the parent of 𝑢1 in 𝐺 ∖∘ 𝑅.

3) Neither child of 𝑢1 in 𝐺 ∖∘ 𝑅 is an s-move w.r.t. 𝐶 ′.

130 2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)

4) Each s-move w.r.t. 𝐶 that is not a child of 𝑢1 in
𝐺 ∖∘ 𝑅 is also an s-move w.r.t. 𝐶 ′.

5) Each s-move w.r.t. 𝐶 ′ is also an s-move w.r.t. 𝐶.

Lemma 7: Suppose that 𝑢1 is an s-move w.r.t. 𝐶. Let 𝑝1
be the parent of 𝑢1 in 𝐺 ∖∘ 𝑅 and 𝑢′

1 be the sibling of 𝑢1 in
𝐺 ∖∘ 𝑅. For the candidate 𝐶 ′ = (𝑅,𝐷 ∪ {𝑝1},Σ ∪ {𝑢1}), the
following statements hold:

1) Each d-move 𝑣 w.r.t. 𝐶 with 𝑣 ∕= 𝑝1 is also a d-move
w.r.t. 𝐶 ′.

2) Each d-move w.r.t. 𝐶 ′ is either a d-move w.r.t. 𝐶 or
the parent of 𝑝1 in 𝐺 ∖∘ 𝑅.

3) 𝑢′
1 is not an s-move w.r.t. 𝐶 ′.

4) Each s-move 𝑢2 w.r.t. 𝐶 with 𝑢2 ∕∈ {𝑢1, 𝑢
′
1} is also

an s-move w.r.t. 𝐶 ′.
5) Each s-move w.r.t. 𝐶 ′ is also an s-move w.r.t. 𝐶.

Lemma 8: Assume that 𝑢1 is an s-move w.r.t. 𝐶, its
children in 𝐺 are 𝑣1 and 𝑤1, and its children in 𝐺 ∖∘ 𝑅 are 𝑣1
and �̃�1, where 𝑣1 ≥𝐺 𝑣1 and 𝑤1 ≥𝐺 �̃�1. For the candidate
𝐶 ′ = (𝑅 ∪ {(𝑢1, 𝑣1)}, 𝐷,Σ) w.r.t. (𝑆,𝐺), the following hold:

1) Every d-move w.r.t. 𝐶 is a d-move w.r.t. 𝐶 ′.
2) If 𝑢2 is a d-move w.r.t. 𝐶 ′ but not a d-move w.r.t. 𝐶,

then 𝑢2 is a proper ancestor of 𝑢1 in 𝐺 ∖∘ 𝑅.
3) Every s-move w.r.t. 𝐶 other than 𝑢1 is still an s-move

w.r.t. 𝐶 ′.
4) If 𝑢2 is an s-move w.r.t. 𝐶 ′ but not an s-move w.r.t.

𝐶, then 𝑢2 is �̃�1 or a child of a proper ancestor of
𝑢1 in 𝐺 ∖∘ 𝑅.

V. THE NEW ALGORITHM

From Section III, we know that the bottleneck of the
algorithm in Section III is in finding a move w.r.t. the current
candidate (𝑅,𝐷,Σ). To speed up the algorithm, our idea is to
perform a preprocessing on the input trees 𝐺 and 𝑆 so that
we can find a move w.r.t. the current candidate in constant
amortized time.

A. The Preprocessing

It is known [12] that we can process a given tree 𝑇 in
linear time so that given two vertices 𝑢 and 𝑣 of 𝑇 , we can find
LCA𝑇 {𝑢, 𝑣} in 𝑂(1) time. So, as in the algorithm in [20], we
first perform a linear-time preprocessing on 𝑆 (respectively,
𝐺) so that given two vertices 𝑢 and 𝑣 of 𝑆 (respectively,
𝐺), we can find LCA𝑆{𝑢, 𝑣} (respectively, LCA𝐺{𝑢, 𝑣}) in
constant time. Then, in 𝑂(𝑛) total time, we can compute
𝑀∅(𝑢) for all vertices 𝑢 of 𝐺. Once knowing 𝑀∅, we can find
all d-moves (respectively, s-moves) w.r.t. the empty candidate
(∅, ∅, ∅) in 𝑂(𝑛) time. We refer to them as the initial d-moves
(respectively, initial s-moves) in 𝐺.

An initial move in 𝐺 is an initial d- or s-move in 𝐺. By
switching the left and the right subtrees of a vertex in 𝐺
when necessary, we can assume that 𝐺 satisfies the following
condition:

C1. For every non-leaf vertex 𝑢 of 𝐺, if the right child
of 𝑢 in 𝐺 has a descendant that is an initial move,
then so does the left child of 𝑢 in 𝐺.

A vertex 𝑤 of 𝐺 is a junction if there are two distinct
initial moves 𝑢 and 𝑣 in 𝐺 such that LCA𝐺{𝑢, 𝑣} = 𝑤 and 𝑢
is incomparable with 𝑣 in 𝐺.

We also perform a postorder traversal of 𝐺 in 𝑂(𝑛) time.
A vertex 𝑢 is smaller than another vertex 𝑣 of 𝐺 (denoted by
𝑢 < 𝑣) if the postorder number of 𝑢 is smaller than that of 𝑣.
To each junction 𝑤 of 𝐺, we associate a pair (𝜇ℓ(𝑤), 𝜇𝑟(𝑤))
of initial moves such that 𝜇ℓ(𝑤) is the smallest initial move in
𝐺𝑢 and 𝜇𝑟(𝑤) is the smallest initial move in 𝐺𝑣 , where 𝑢 and
𝑣 are the left and the right children of 𝑤 in 𝐺, respectively.
Obviously, the pairs (𝜇ℓ(𝑤), 𝜇𝑟(𝑤)) for all junctions 𝑤 of 𝐺
can be computed in 𝑂(𝑛) total time.

A critical ancestral junction of a vertex 𝑢 in 𝐺 is a junction
𝑤 in 𝐺 with 𝑤 >𝐺 𝑢 such that if 𝑢 is a descendant of the left
(respectively, right) child of 𝑤 in 𝐺, then 𝜇𝑟(𝑤) (respectively,
𝜇ℓ(𝑤)) is not a child of 𝑤 in 𝐺. For each non-leaf vertex 𝑢
of 𝐺 such that 𝑢 has a critical ancestral junction in 𝐺, we
associate 𝑢 with the smallest critical ancestral junction 𝜗(𝑢).
For convenience, if 𝑢 is a non-leaf vertex of 𝐺 with no critical
ancestral junction in 𝐺, we let 𝜗(𝑢) be undefined. Obviously,
𝜗(𝑢) for all non-leaf vertices 𝑢 of 𝐺 can be computed in 𝑂(𝑛)
total time.

Example 1: Let 𝑆 and 𝐺 be as in Figure 1. Obviously,
there is no initial d-move in 𝐺, the initial s-moves in 𝐺 are 𝑒,
𝑓 , and 𝑔, and the junctions in 𝐺 are 𝑎 and 𝑏. Moreover, the
pair (𝑒, 𝑓) of initial s-moves is associated with 𝑏, while the
pair (𝑒, 𝑔) of initial s-moves is associated with 𝑎. Furthermore,
𝜗(𝑓) = 𝑏, 𝜗(𝑔) = 𝑎, and 𝜗(𝑎) through 𝜗(𝑒) are undefined.

We next define a function 𝜑1 : 𝑉 (𝐺)×𝑉 (𝑆)×{0, 1} →
𝑉 (𝐺) as follows. Consider an arbitrary triple (𝑢0, 𝛼0, 𝑏) such
that 𝑢0 ∈ 𝑉 (𝐺), 𝛼0 ∈ 𝑉 (𝑆), and 𝑏 ∈ {0, 1}. Let 𝑢1, 𝑢2, . . . ,
𝑢ℎ be the ancestors of 𝑢0 in 𝐺, where 𝑢𝑖 >𝐺 𝑢𝑖−1 for all
1 ≤ 𝑖 ≤ ℎ. For each 1 ≤ 𝑖 ≤ ℎ, let 𝑣𝑖 be the child of 𝑢𝑖 that
is not an ancestor of 𝑢0 in 𝐺. Imagine the situation where we
have a candidate 𝐶 = (𝑅,𝐷,Σ) such that 𝑀𝑅(𝑢0) = 𝛼0, all
of the edges in 𝑅 and the vertices in 𝐷∪Σ appear in 𝐺𝑢0

, and
𝑏 = 0 if and only if 𝑢0 ∕∈ 𝐷. If one or more vertices among 𝑢1,
. . . , 𝑢ℎ, 𝑣1, . . . , 𝑣ℎ are moves w.r.t. 𝐶, then 𝜑1(𝑢0, 𝛼0, 𝑏) is the
smallest one among such moves; otherwise, 𝜑1(𝑢0, 𝛼0, 𝑏) is
undefined. Even without knowing 𝐶 exactly, we can compute
𝜑1(𝑢0, 𝛼0, 𝑏) from 𝑢0 and 𝛼0 in 𝑂(𝑛) time (for lack of space,
we omit the details). So, the function 𝜑1 can be computed in
𝑂(𝑛2𝑚) total time.

We further define a function 𝜑2 : 𝑉 (𝐺)×𝑉 (𝐺)×𝑉 (𝑆) →
𝑉 (𝑆) as follows. Consider an arbitrary triple (𝑢, 𝑣, 𝛼) such
that {𝑢, 𝑣} ⊆ 𝑉 (𝐺), 𝑢 >𝐺 𝑣, and 𝛼 ∈ 𝑉 (𝑆). Imagine the
situation where we have a transfer set 𝑅 such that 𝑀𝑅(𝑣) = 𝛼
and each edge (𝑥, 𝑦) ∈ 𝑅 with 𝑢 ≥𝐺 𝑥 also satisfies
that 𝑣 ≥𝐺 𝑥. Then, 𝜑2(𝑢, 𝑣, 𝛼) = 𝑀𝑅(𝑢). Note that even
without knowing 𝑅, we can compute 𝜑2(𝑢, 𝑣, 𝛼) from 𝑢, 𝑣,
and 𝛼 as follows. Let 𝑣1, . . . , 𝑣ℎ be the siblings of those
ancestors 𝑤 of 𝑣 in 𝐺 with 𝑤 <𝐺 𝑢. Then, 𝜑2(𝑢, 𝑣, 𝛼) =
LCA𝑆{𝛼,𝑀∅(𝑣1), . . . ,𝑀∅(𝑣ℎ)}. Obviously, we can compute
𝜑2(𝑢, 𝑣, 𝛼) in 𝑂(𝑛) time. So, the function 𝜑2 can be computed
in 𝑂(𝑛3𝑚) total time. Indeed, we can improve the complexity
to 𝑂(𝑛2𝑚) time. To see this, it suffices to observe that for each
pair (𝑣, 𝛼) with 𝑣 ∈ 𝑉 (𝐺) and 𝛼 ∈ 𝑉 (𝑆), we can compute
𝜑2(𝑢1, 𝑣, 𝛼), . . . , 𝜑2(𝑢𝑏, 𝑣, 𝛼) in 𝑂(𝑛) total time, where 𝑢1,
. . . , 𝑢𝑏 are the proper ancestors of 𝑣 in 𝐺.

Example 2: Let 𝑆 and 𝐺 be as in Figure 1. Then,
𝜑1(𝑏, 𝜌, 0) = 𝑔 and 𝜑2(𝑎, 𝑏, 𝜌) = 𝛼. Moreover, 𝜑1(𝑑, 1, 1) =
𝑓 , 𝜑1(𝑒, 2, 0) = 𝑓 , 𝜑2(𝑑, 𝑒, 2) = 𝜃, 𝜑2(𝑐, 𝑒, 2) = 𝜌,

2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 131

𝜑2(𝑏, 𝑒, 2) = 𝛾 and 𝜑2(𝑎, 𝑒, 2) = 𝛼.

B. Finding and Eliminating Moves

Let 𝐶 = (𝑅,𝐷,Σ) be a candidate w.r.t. (𝑆,𝐺). A move
𝑣 w.r.t. 𝐶 is extreme if no proper descendant of 𝑣 in 𝐺 is a
move w.r.t. 𝐶.

After the preprocessing on 𝐺 and 𝑆, our algorithm starts
with the empty candidate 𝐶0 = (𝑅0, 𝐷0,Σ0) = (∅, ∅, ∅), and
then proceeds to eliminate an extreme move 𝜇0 w.r.t. 𝐶0 if
there is any. If 𝜇0 is a d-move w.r.t. 𝐶0, then there is only one
way to eliminate it; otherwise, there are three ways to eliminate
𝜇0 and so we need to try all of them (by making three recursive
calls of the algorithm in any order). More specifically, if 𝜇0

is a d-move w.r.t. 𝐶0, then eliminating 𝜇0 requires modifying
𝐶0 by adding 𝜇0 to 𝐷0; otherwise, eliminating 𝜇0 requires
modifying 𝐶0 by either adding an edge to 𝑅0 or adding a
vertex to 𝐷0 and another to Σ0. In any case, we use 𝐶1 to
denote the modified 𝐶0. In general, once we obtain a candidate
𝐶𝑖 = (𝑅𝑖, 𝐷𝑖,Σ𝑖) (𝑖 ≥ 0), we then try to find a move w.r.t. 𝐶𝑖.
If no move w.r.t. 𝐶𝑖 exists, then we are done. Otherwise, we
eliminate a move w.r.t. 𝐶𝑖 to obtain a new candidate 𝐶𝑖+1 =
(𝑅𝑖+1, 𝐷𝑖+1,Σ𝑖+1). The main difficulty is how to find a move
w.r.t. 𝐶𝑖+1 once we obtain 𝐶𝑖+1. We detail how to do this in
constant amortized time below.

In the remainder of this section, for each integer 𝑖 ≥ 0, the
phrase “at time 𝑖” means the time point immediately before
eliminating a move 𝜇𝑖 w.r.t. 𝐶𝑖. During the execution of the
algorithm, we always maintain the following invariant:

I1. For every integer 𝑖 ≥ 0, 𝜇𝑖 is an extreme move
w.r.t. 𝐶𝑖 and we know 𝑀𝑅𝑖

(𝜇𝑖) at time 𝑖.

Since we find all initial moves in the preprocessing on
𝐺 and 𝑆, we can assume that the smallest initial move 𝜇0

is available for free. To give the reader a glimpse how our
algorithm works, we assume that 𝜇0 is an s-move w.r.t. 𝐶0,
and detail what will happen after eliminating 𝜇0. Let 𝑢0, 𝑢1,
. . . , 𝑢ℎ be the ancestors of 𝜇0 in 𝐺 with 𝑢𝑖 >𝐺 𝑢𝑖−1 for all
𝑖 ∈ {1, . . . , ℎ}. Note that 𝑢0 = 𝜇0 and 𝑢ℎ is the root of 𝐺.
Moreover, by Condition C1, 𝑢𝑖−1 is the left child of 𝑢𝑖 in 𝐺
for each 1 ≤ 𝑖 ≤ ℎ. For each 𝑖 ∈ {1, . . . , ℎ}, let 𝑣𝑖 be the right
child of 𝑢𝑖 in 𝐺. Recall that we have three ways to eliminate
𝜇0. The first way is to add 𝑢1 to 𝐷 and 𝜇0 to Σ, the second
way is to add edge (𝜇0, 𝑣0) to 𝑅, and the third way is to add
edge (𝜇0, 𝑤0) to 𝑅, where 𝑣0 and 𝑤0 are the children of 𝜇0

in 𝐺. So, 𝐶1 = (∅, {𝑢1}, {𝜇0}), 𝐶1 = ({(𝜇0, 𝑣0)}, ∅, ∅), or
𝐶1 = ({(𝜇0, 𝑤0)}, ∅, ∅).

Case 1: 𝐶1 = (∅, {𝑢1}, {𝜇0}). In this case, we proceed
based on Lemma 7. Depending on whether 𝑢1 is a junction in
𝐺, we distinguish two subcases as follows.

Case 1.1: 𝑢1 is not a junction in 𝐺. In this case, 𝑢1 is settled
w.r.t. 𝐶1. We then check if 𝜗(𝑢1) and 𝜑1(𝑢1, 𝛼, 1) are defined
or not, where 𝛼 = 𝑀∅(𝑢1). If both are undefined, then there
is no move w.r.t. 𝐶1. So, suppose that 𝜗(𝑢1) or 𝜑1(𝑢1, 𝛼, 1)
is defined. If 𝜑1(𝑢1, 𝛼, 1) is defined and 𝜗(𝑢1) is either
undefined or defined but LCA𝐺(𝑢1, 𝜑1(𝑢1, 𝛼, 1)) <𝐺 𝜗(𝑢1),
then 𝜑1(𝑢1, 𝛼, 1) is an extreme move w.r.t. 𝐶1; otherwise,
𝜇𝑟(𝜗(𝑢1)) is an extreme move w.r.t. 𝐶 ′.

Case 1.2: 𝑢1 is a junction in 𝐺. In this case, if either
(1) 𝜇𝑟(𝑢1) = 𝑣1 and 𝑣1 is a d-move w.r.t. 𝐶1 or (2) 𝜇𝑟(𝑢1) <𝐺

𝑣1, then 𝜇𝑟(𝑢1) is an extreme move w.r.t. 𝐶1. Otherwise, 𝑢1

is settled w.r.t. 𝐶1 and we proceed as in Case 1.1.

Case 2: 𝐶1 = ({(𝜇0, 𝑣0)}, ∅, ∅). In this case, we proceed
based on Lemma 8. Obviously, if 𝑤0 is an s-move w.r.t. 𝐶1,
then it is also an extreme move w.r.t. 𝐶1. Otherwise, we check
if 𝜗(𝜇0) and 𝜑1(𝜇0, 𝛼0, 0) are defined or not, where 𝛼0 =
𝑀𝑅1

(𝜇0) = 𝑀∅(𝑤0).

Case 2.1: Both 𝜑1(𝜇0, 𝛼0, 0) and 𝜗(𝜇0) are undefined. In
this case, there is no move w.r.t. 𝐶1.

Case 2.2: 𝜑1(𝜇0, 𝛼0, 0) is defined but 𝜗(𝜇0) is not. In this
case, 𝜑1(𝜇0, 𝛼0, 0) is an extreme move w.r.t. 𝐶1.

Case 2.3: 𝜗(𝜇0) is defined but 𝜑1(𝜇0, 𝛼0, 0) is not. In this
case, 𝜇𝑟(𝜗(𝜇0)) is an extreme move w.r.t. 𝐶1.

Case 2.4: Both 𝜑1(𝜇0, 𝛼0, 0) and 𝜗(𝜇0) are defined.
In this case, if 𝜗(𝑢0) >𝐺 LCA𝐺(𝑢0, 𝜑1(𝑢0, 𝛼0, 0)), then
𝜑1(𝜇0, 𝛼0, 0) is an extreme move w.r.t. 𝐶1. Otherwise,
𝜇𝑟(𝜗(𝜇0)) is an extreme move w.r.t. 𝐶1.

Case 3: 𝐶2 = ({(𝜇0, 𝑤0)}, ∅, ∅). This case is similar to
Case 2.

In the above, we have seen how to find an extreme move
w.r.t. 𝐶1 in constant time after eliminating an extreme s-move
w.r..t 𝐶0. In general, for 𝑖 ≥ 1, we need to find an extreme
move 𝜇𝑖 w.r.t. 𝐶𝑖 after eliminating an extreme move 𝜇𝑖−1 w.r.t.
𝐶𝑖−1. When 𝑖 = 1, this is easy to do because even if 𝑅1 ∕= 𝑅0,
it is easy to compute 𝛼0 = 𝑀𝑅1

(𝜇0) and 𝜑1(𝜇0, 𝛼0, 0) can be
used (to find 𝜇1) as it is (in the sense that all of the edges in
𝑅1 and the vertices in 𝐷1∪Σ1 appear in 𝐺𝜇0

). However, when
𝑖 ≥ 2, it may happen that 𝜇𝑖−1 has a proper ancestor 𝑤 in 𝐺
such that some edges in 𝑅𝑖−1 or some vertices in 𝐷𝑖−1∪Σ𝑖−1

appear in 𝐺𝑥, where 𝑥 is the child of 𝑤 in 𝐺 that is not an
ancestor of 𝜇𝑖−1 in 𝐺. If this really happens, 𝜑1(𝜇𝑖−1, 𝛼𝑖−1, 0)
and 𝜑1(𝜇𝑖−1, 𝛼𝑖−1, 1) cannot be necessarily used (to find 𝜇𝑖)
as it is, where 𝛼𝑖−1 = 𝑀𝑅𝑖

(𝜇𝑖−1). To overcome this difficulty,
our idea is to use a stack to keep track of such vertices 𝑤. The
details of finding an extreme move 𝜇𝑖 w.r.t. 𝐶𝑖 after eliminating
an extreme move 𝜇𝑖−1 w.r.t. 𝐶𝑖−1 are very lengthy, we omit
the details for the lack of space.

C. A Sped-up Version of 𝑘-AllTransSet

Even if we can find the next move (to be eliminated) in
amortized constant time, it is still unclear that 𝑘-AllTransSet
can run in 𝑂(3𝑘) time, because (1) we need to always
memorize the current candidate 𝐶 = (𝑅,𝐷,Σ), ∣𝑅∣ + ∣𝐷∣,
𝐺 ∖∘ 𝑅, the move 𝜇 w.r.t. 𝐶 to be eliminated next, the
content of the stack, and so on, and (2) updating them can
be expensive. Nonetheless, we can design a sped-up version
(called 𝑘-AllTransSet2) of 𝑘-AllTransSet so that the following
lemma holds (for details, see Appendix B):

Lemma 9: Subroutine 𝑘-AllTransSet2 finds and outputs all
optimal transfer sets w.r.t. (𝑆,𝐺) in 𝑂(3𝑘+#𝑠𝑜𝑙 ⋅𝑘) time or in
𝑂(3𝑘) time but in a compact form, where #𝑠𝑜𝑙 is the number
of 𝑘-transfer set w.r.t. (𝑆,𝐺).

132 2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)

Input: A species tree 𝑆 and a gene tree 𝐺 on the same
set of species.

Output: All optimal transfer sets w.r.t. (𝑆,𝐺).
1. Preprocessing step: Perform the preprocessing as

described in Section V-A.
2. Initialize 𝑘 = 0.
3. While no transfer set w.r.t. (𝑆,𝐺) has been out-

putted, perform the following:
3.1. Initialize the global variables defined in Sec-

tion V-C for 𝑆, 𝐺 and 𝑘.
3.2. Call the subroutine 𝑘-AllTransSet2.
3.3. Increase 𝑘 by 1.

Fig. 4. The algorithm for enumerating all optimal transfer sets

D. The Algorithm for Enumerating Optimal Transfer Sets

We are now ready to present the new algorithm for enu-
merating all optimal transfer sets w.r.t. a given pair (𝑆,𝐺) of
a species tree and a gene tree. It is detailed in Figure 4.

Theorem 10: Given a pair (𝑆,𝐺) of a species tree and a
gene tree on the same set of species, we can find and output
all optimal transfer sets w.r.t. (𝑆,𝐺) in 𝑂(𝑚𝑛2+3𝑘+#𝑠𝑜𝑙 ⋅𝑘)
time or in 𝑂(𝑚𝑛2 + 3𝑘) time but in a compact form, where
𝑘 is the cost of an optimal transfer set w.r.t. (𝑆,𝐺), #𝑠𝑜𝑙 is
the number of 𝑘-transfer set w.r.t. (𝑆,𝐺), and 𝑚 and 𝑛 are the
number of vertices in 𝑆 and 𝐺, respectively.

Proof: It suffices to show that the algorithm in Figure 4
runs in 𝑂(𝑚𝑛2 + 3𝑘 + #𝑠𝑜𝑙 ⋅ 𝑘) time. To this end, first note
that by the discussion in Section V-A, the preprocessing step
takes 𝑂(𝑛2𝑚) time. Moreover, the time needed for outputting
the optimal transfer sets w.r.t. (𝑆,𝐺) is 𝑂(#𝑠𝑜𝑙 ⋅ 𝑘). So, we
hereafter ignore the time needed for the preprocessing and
for outputting the optimal transfer sets. By Lemma 17, the
algorithm takes 𝑂(

∑𝑘
𝑖=0 3

𝑖) = 𝑂(3𝑘) time. Q.E.D.

REFERENCES

[1] L. Addario-Berry, M. Hallett, and J. Lagergren, “Towards identifying
lateral gene transfer events,” in Proc. 8th Pacific Symp. on Biocomputing
(PSB03). Citeseer, 2003, pp. 279–290.

[2] R. Beiko and N. Hamilton, “Phylogenetic identification of lateral
genetic transfer events,” BMC evolutionary biology, vol. 6, no. 1, p. 15,
2006.

[3] M. Charleston, “Jungles: a new solution to the host/parasite phylogeny
reconciliation problem,” Mathematical Biosciences, vol. 149, no. 2, pp.
191–223, 1998.

[4] Z.-Z. Chen, F. Deng, and L. Wang, “Simultaneous identification of
duplications, losses, and lateral gene transfers,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, pp. 1515–1528, 2012.

[5] M. Csűrös and I. Miklós, “A probabilistic model for gene content
evolution with duplication, loss, and horizontal transfer,” in Research
in computational molecular biology. Springer, 2006, pp. 206–220.

[6] J. Doyon, C. Scornavacca, K. Gorbunov, G. Szöllősi, V. Ranwez, and
V. Berry, “An efficient algorithm for gene/species trees parsimonious
reconciliation with losses, duplications and transfers,” Comparative
Genomics, pp. 93–108, 2011.

[7] M. Goodman, J. Czelusniak, G. Moore, A. Romero-Herrera, and
G. Matsuda, “Fitting the gene lineage into its species lineage, a
parsimony strategy illustrated by cladograms constructed from globin
sequences,” Systematic Zoology, pp. 132–163, 1979.

[8] P. Górecki, “Reconciliation problems for duplication, loss and horizon-
tal gene transfer,” in Proceedings of the eighth annual international
conference on Resaerch in computational molecular biology. ACM,
2004, pp. 316–325.

[9] R. Guigo, I. Muchnik, and T. Smith, “Reconstruction of ancient
molecular phylogeny,” Molecular Phylogenetics and Evolution, vol. 6,
no. 2, pp. 189–213, 1996.

[10] M. Hallett and J. Lagergren, “Efficient algorithms for lateral gene
transfer problems,” in Proceedings of the fifth annual international
conference on Computational biology. ACM, 2001, pp. 149–156.

[11] M. Hallett and J. Lagergren, “New algorithms for the duplication-loss
model,” in Proceedings of the fourth annual international conference
on Computational molecular biology. ACM, 2000, pp. 138–146.

[12] D. Harel and R. Tarjan, “Fast algorithms for finding nearest common
ancestors,” SIAM Journal on Computing, vol. 13, no. 2, pp. 338–355,
1984.

[13] G. Jin, L. Nakhleh, S. Snir, and T. Tuller, “Maximum likelihood of
phylogenetic networks,” Bioinformatics, vol. 22, no. 21, p. 2604, 2006.

[14] B. Ma, M. Li, and L. Zhang, “From gene trees to species trees,” SIAM
Journal on Computing, vol. 30, no. 3, pp. 729–752, 2000.

[15] W. Maddison, “Gene trees in species trees,” Systematic biology, vol. 46,
no. 3, p. 523, 1997.

[16] G. Manolo and D. Vincent, “Detecting lateral gene transfers by statisti-
cal reconciliation of phylogenetic forests,” BMC Bioinformatics, vol. 11.

[17] L. Nakhleh, D. Ruths, and L. Wang, “Riata-hgt: a fast and accurate
heuristic for reconstructing horizontal gene transfer,” Computing and
Combinatorics, pp. 84–93, 2005.

[18] R. Page, “Maps between trees and cladistic analysis of historical
associations among genes, organisms, and areas,” Systematic Biology,
vol. 43, no. 1, p. 58, 1994.

[19] R. Page and M. Charleston, “From gene to organismal phylogeny:
Reconciled trees and the gene tree/species tree problem,” Molecular
Phylogenetics and Evolution, vol. 7, no. 2, pp. 231–240, 1997.

[20] A. Tofigh, M. Hallett, and J. Lagergren, “Simultaneous identification
of duplications and lateral gene transfers,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, pp. 517–535, 2011.

[21] L. Zhang, Y. Ng, T. Wu, and Y. Zheng, “Network model and efficient
method for detecting relative duplications or horizontal gene transfers,”
Proc. IEEE First Int’l Conf. in Computational Advances in Bio and
Medical Sciences (ISSABS), pp. 214-219, 2011.

Appendix A: Omitted Proofs

The next lemma has been implicitly proved in [20] (for a
precise proof, see [4]):

Lemma 11: Suppose that 𝑢 is a speciation vertex w.r.t. 𝑅.
Let 𝑅∗ be a transfer set w.r.t. (𝑆,𝐺) such that 𝑅 ⊆ 𝑅∗ and
𝐸[{𝑢}] ∩ 𝑅∗ = ∅. Then, 𝑀𝑅(𝑢) = 𝑀𝑅∗(𝑢). Moreover, 𝑢 is
also a speciation vertex w.r.t. 𝑅∗.

Lemma 12: Suppose that 𝑢 is a d-move w.r.t. a candidate
𝐶 = (𝑅,𝐷,Σ) and 𝐶 ′ = (𝑅′, 𝐷′,Σ′) is another candidate
such that 𝑅 ⊆ 𝑅′, 𝐷 ⊆ 𝐷′, and Σ ⊆ Σ′. Then, 𝑢 remains to
be a d-move w.r.t. 𝐶 ′ if and only if 𝑢 ∕∈ 𝐷′.

Proof: The “only-if” part is obvious. To prove the “if”
part, assume that 𝑢 ∕∈ 𝐷′. Since 𝑢 is a d-move w.r.t. 𝐶, 𝑢 has
a child 𝑣 in 𝐺 ∖∘ 𝑅 such that 𝑀𝑅(𝑢) = 𝑀𝑅(𝑣) and either
𝑣 ∈ 𝐷 ∪ Σ or all the descendants of 𝑣 in 𝐺 ∖∘ 𝑅 correspond
to the same species. In either case, 𝑀𝑅′(𝑣) = 𝑀𝑅(𝑣) and
𝑀𝑅(𝑣) ≥𝑆 𝑀𝑅(𝑤), where 𝑤 is the other child of 𝑢 in
𝐺 ∖∘ 𝑅. Moreover, since 𝑅 ⊆ 𝑅′, 𝑀𝑅(𝑤) ≥𝑆 𝑀𝑅′(𝑤).
So, 𝑀𝑅′(𝑣) ≥𝑆 𝑀𝑅′(𝑤) and in turn 𝑀𝑅′(𝑢) = 𝑀𝑅′(𝑣).
Consequently, neither edge incident to 𝑢 can belong to 𝑅′
because 𝑅′ is a transfer set. Moreover, 𝑢 ∕∈ Σ′ because 𝑢 is
not a speciation vertex w.r.t. 𝑅′. Now, since 𝑢 ∕∈ 𝐷′, 𝑢 is a
d-move w.r.t. 𝐶 ′. Q.E.D.

Lemma 13: Suppose that 𝑢 is an s-move w.r.t. a candidate
𝐶 = (𝑅,𝐷,Σ) and 𝐶 ′ = (𝑅′, 𝐷′,Σ′) is another candidate
such that 𝑅 ⊆ 𝑅′, 𝐷 ⊆ 𝐷′, and Σ ⊆ Σ′. Then, 𝑢 remains to
be an s-move w.r.t. 𝐶 ′ if and only if neither does the parent

2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 133

of 𝑢 in 𝐺 ∖∘ 𝑅′ belong to 𝐷′ ∪Σ′ nor is 𝑢 incident to an edge
in 𝑅′.

Proof: The “only-if” part is obvious. To prove the “if”
part, assume that neither does the parent 𝑝′ of 𝑢 in 𝐺 ∖∘ 𝑅′
belong to 𝐷′ ∪ Σ′ nor is 𝑢 incident to an edge in 𝑅′.
Let 𝑝 and 𝑣 be the parent and the sibling of 𝑢 in 𝐺 ∖∘ 𝑅,
respectively. Since 𝑢 is an s-move w.r.t. 𝐶, 𝑀𝑅(𝑢) ≥𝑆 𝑀𝑅(𝑣).
Moreover, since 𝑢 is a speciation vertex w.r.t. 𝑅, Lemma 11
implies that 𝑀𝑅′(𝑢) = 𝑀𝑅(𝑢). Furthermore, since 𝑅 ⊆ 𝑅′,
𝑀𝑅(𝑣) ≥𝑆 𝑀𝑅′(𝑣). So, 𝑀𝑅′(𝑢) ≥𝑆 𝑀𝑅′(𝑣) and in turn
𝑀𝑅′(𝑢) = 𝑀𝑅′(𝑝). Thus, neither edge incident to 𝑝 in 𝐺
belongs to 𝑅′ because 𝑅′ is a transfer set. Hence, 𝑝′ = 𝑝.
In addition, 𝑢 ∕∈ Σ′ because 𝐶 ′ is a candidate and 𝑝′ ∕∈ 𝐷′.
Moreover, 𝑢 ∕∈ 𝐷′ because 𝑢 is a speciation vertex w.r.t. 𝑅′ by
Lemma 11. Therefore, 𝑢 is still an s-move w.r.t. 𝐶 ′. Q.E.D.

Lemma 14: Suppose that 𝑢1 is a d-move w.r.t. 𝐶. For the
candidate 𝐶 ′ = (𝑅,𝐷 ∪ {𝑢1},Σ), the following hold:

1) Each d-move 𝑣 w.r.t. 𝐶 with 𝑣 ∕= 𝑢1 is also a d-move
w.r.t. 𝐶 ′.

2) Each d-move w.r.t. 𝐶 ′ is either a d-move w.r.t. 𝐶 or
the parent of 𝑢1 in 𝐺 ∖∘ 𝑅.

3) Neither child of 𝑢1 in 𝐺 ∖∘ 𝑅 is an s-move w.r.t. 𝐶 ′.
4) Each s-move w.r.t. 𝐶 that is not a child of 𝑢1 in

𝐺 ∖∘ 𝑅 is also an s-move w.r.t. 𝐶 ′.
5) Each s-move w.r.t. 𝐶 ′ is also an s-move w.r.t. 𝐶.

Proof: Statements 1 and 4 follow from Lemmas 12 and 13
immediately, respectively. Statements 3 and 5 are obvious. To
prove Statement 2, suppose that 𝑢2 is a d-move w.r.t. 𝐶 ′ but
not a d-move w.r.t. 𝐶. Since 𝑢2 is a d-move w.r.t. 𝐶 ′, 𝑢2 ∕= 𝑢1.
Moreover, since 𝐶 and 𝐶 ′ have the same transfer set (namely,
𝑅), the reason that 𝑢2 becomes a d-move w.r.t. 𝐶 ′ can only
be that 𝑢1 is a child of 𝑢2 in 𝐺 ∖∘ 𝑅. Q.E.D.

Lemma 15: Suppose that 𝑢1 is an s-move w.r.t. 𝐶. Let 𝑝1
be the parent of 𝑢1 in 𝐺 ∖∘ 𝑅 and 𝑢′

1 be the sibling of 𝑢1 in
𝐺 ∖∘ 𝑅. For the candidate 𝐶 ′ = (𝑅,𝐷 ∪ {𝑝1},Σ ∪ {𝑢1}), the
following hold:

1) Each d-move 𝑣 w.r.t. 𝐶 with 𝑣 ∕= 𝑝1 is also a d-move
w.r.t. 𝐶 ′.

2) Each d-move w.r.t. 𝐶 ′ is either a d-move w.r.t. 𝐶 or
the parent of 𝑝1 in 𝐺 ∖∘ 𝑅.

3) 𝑢′
1 is not an s-move w.r.t. 𝐶 ′.

4) Each s-move 𝑢2 w.r.t. 𝐶 with 𝑢2 ∕∈ {𝑢1, 𝑢
′
1} is also

an s-move w.r.t. 𝐶 ′.
5) Each s-move w.r.t. 𝐶 ′ is also an s-move w.r.t. 𝐶.

Proof: Statements 1 and 4 follow from Lemmas 12 and 13
immediately, respectively. Statements 3 and 5 are obvious. To
prove Statement 2, suppose that 𝑢2 is a d-move w.r.t. 𝐶 ′ but
not a d-move w.r.t. 𝐶. Since 𝑢2 is a d-move w.r.t. 𝐶 ′, 𝑢2 ∕= 𝑝1.
Moreover, since 𝐶 and 𝐶 ′ have the same transfer set (namely,
𝑅), the reason that 𝑢2 becomes a d-move w.r.t. 𝐶 ′ can only be
that a child 𝑣2 of 𝑢2 in 𝐺 ∖∘ 𝑅 belongs to {𝑝1, 𝑢1}. However, 𝑣2
cannot be 𝑢1 because otherwise 𝑢2 would be 𝑝1. So, 𝑣2 = 𝑝1
and in turn 𝑢2 is the parent of 𝑝1 in 𝐺 ∖∘ 𝑅. Q.E.D.

Lemma 16: Suppose that 𝑢1 is an s-move w.r.t. 𝐶, its
children in 𝐺 are 𝑣1 and 𝑤1, and its children in 𝐺 ∖∘ 𝑅 are 𝑣1
and �̃�1, where 𝑣1 ≥𝐺 𝑣1 and 𝑤1 ≥𝐺 �̃�1. For the candidate

𝐶 ′ = (𝑅 ∪ {(𝑢1, 𝑣1)}, 𝐷,Σ) w.r.t. (𝑆,𝐺), the following
statements hold:

1) Every d-move w.r.t. 𝐶 is a d-move w.r.t. 𝐶 ′.
2) If 𝑢2 is a d-move w.r.t. 𝐶 ′ but not a d-move w.r.t. 𝐶,

then 𝑢2 is a proper ancestor of 𝑢1 in 𝐺 ∖∘ 𝑅.
3) Every s-move w.r.t. 𝐶 other than 𝑢1 is still an s-move

w.r.t. 𝐶 ′.
4) If 𝑢2 is an s-move w.r.t. 𝐶 ′ but not an s-move w.r.t.

𝐶, then 𝑢2 is �̃�1 or a child of a proper ancestor of
𝑢1 in 𝐺 ∖∘ 𝑅.

Proof: Statements 1 and 3 follow from Lemmas 12
and 13 immediately, respectively. For convenience, let 𝑅′ =
𝑅 ∪ {(𝑢1, 𝑣1)}. We next prove Statements 2 and 4 separately.

Statement 2: Suppose that 𝑢2 is a d-move w.r.t. 𝐶 ′ but not a
d-move w.r.t. 𝐶. Towards a contradiction, assume that 𝑢2 is not
a proper ancestor of 𝑢1 in 𝐺 ∖∘ 𝑅. Then, the subtree of 𝐺 ∖∘ 𝑅
rooted at 𝑢2 is the same as the subtree of 𝐺 ∖∘ 𝑅′ rooted at
𝑢2. But now, since 𝐶 and 𝐶 ′ have the same sets of duplication
vertices and speciation vertices (namely, 𝐷 and Σ), 𝑢2 cannot
become a d-move w.r.t. 𝐶 ′. So, we have a contradiction.

Statement 4: Two simple but crucial observations are in
order. First, for each vertex 𝑥 of 𝐺 that is not an ancestor of 𝑢1

in 𝐺 ∖∘ 𝑅, 𝑀𝑅(𝑥) = 𝑀𝑅′(𝑥). Moreover, for each vertex 𝑥 ∕∈
{𝑢1, 𝑣1}, 𝑥 is unmarked w.r.t. 𝐶 if and only if 𝑥 is unmarked
w.r.t. 𝐶 ′. Suppose that 𝑢2 is an s-move w.r.t. 𝐶 ′ but not an
s-move w.r.t. 𝐶. Let 𝑟 be the root ancestor of 𝑢1 in 𝐺 ∖∘ 𝑅.
For a contradiction, assume that 𝑢2 is neither �̃�1 nor a child of
a proper ancestor of 𝑢1 in 𝐺 ∖∘ 𝑅. Then, since neither 𝑣1 nor
𝑟 is an s-move w.r.t. 𝐶 ′, 𝑢2 is neither an ancestor nor a child
of an ancestor of 𝑢1 in 𝐺 ∖∘ 𝑅. So, by the two observations in
the above, the fact that 𝑢2 is an s-move w.r.t. 𝐶 ′ implies that
𝑢2 is also an s-move w.r.t. 𝐶. However, this is a contradiction.
Q.E.D.

Appendix B: Speeding up 𝑘-AllTransSet

We here present 𝑘-AllTransSet2, which is a sped-up ver-
sion of 𝑘-AllTransSet. It is depicted in Figure 5. Unlike 𝑘-
AllTransSet, 𝑘-AllTransSet2 has no input. So, we use global
variables to memorize the following:

∙ The current candidate 𝐶 = (𝑅,𝐷,Σ). (Comment:
Initially, 𝐶 = (∅, ∅, ∅).)

∙ ∣𝑅∣+ ∣𝐷∣. (Comment: Initially, ∣𝑅∣+ ∣𝐷∣ = 0.)

∙ The move 𝜇 w.r.t. 𝐶 to be eliminated next. (Comment:
Initially, 𝜇 is the smallest initial move.)

∙ 𝐺 ∖∘ 𝑅. (Comment: Initially, 𝐺 ∖∘ 𝑅 is a copy of 𝐺.)

Lemma 17: Subroutine 𝑘-AllTransSet2 takes 𝑂(3𝑘+#𝑠𝑜𝑙 ⋅
𝑘) time, where #𝑠𝑜𝑙 is the number of 𝑘-transfer set w.r.t.
(𝑆,𝐺).

Proof: Obviously, the total time needed for outputting the
optimal transfer sets is 𝑂(#𝑠𝑜𝑙 ⋅𝑘). So, in the remainder of this
proof, we ignore the time needed for outputting the optimal
transfer sets.

We use another global stack (called the history stack) to
keep track of the history of how the global variables have

134 2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)

Input: None.
Output: All transfer sets 𝑅′ w.r.t. (𝑆,𝐺) whose cost is at

most 𝑘.
1. If ∣𝑅∣+ ∣𝐷∣ ≥ 𝑘, then return.
2. Let 𝜇′ and 𝜇′′ be the children of 𝜇 in 𝐺.
3. If 𝜇 is a d-move w.r.t. 𝐶, then perform the

following steps:
3.1. Modify 𝐶 by adding 𝜇 to 𝐷.
3.2. Try to find an extreme move 𝜈 w.r.t. 𝐶.
3.3. If 𝜈 is found in Step 3.2, then set 𝜇 = 𝜈 and

recursively call 𝑘-AllTransSet2; otherwise, output
𝑅.

3.4. Restore the global variables so that they have the
same values as they did before Step 3, and then
return.

4. If 𝜇 is an s-move w.r.t. 𝐶, then perform the
following steps:

4.1. Modify 𝐶 by adding 𝑝 to 𝐷 and 𝜇 to Σ, where 𝑝
is the parent of 𝜇 in 𝐺 ∖∘ 𝑅.

4.2. Try to find an extreme move 𝜈 w.r.t. 𝐶.
4.3. If 𝜈 is found in Step 4.2, then set 𝜇 = 𝜈 and

recursively call 𝑘-AllTransSet2; otherwise, output
𝑅.

4.4. Restore the global variables so that they have the
same values as they did before Step 4.

4.5. Modify 𝐶 by adding (𝜇, 𝜇′) to 𝑅.
4.6. Try to find an extreme move 𝜈 w.r.t. 𝐶.
4.7. If 𝜈 is found in Step 4.6, then set 𝜇 = 𝜈 and

recursively call 𝑘-AllTransSet2; otherwise, output
𝑅.

4.8. Restore the global variables so that they have the
same values as they did before Step 4.

4.9. Modify 𝐶 by adding (𝜇, 𝜇′′) to 𝑅.
4.10. Try to find an extreme move 𝜈 w.r.t. 𝐶.
4.11. If 𝜈 is found in Step 4.10, then set 𝜇 = 𝜈 and

recursively call 𝑘-AllTransSet2; otherwise, output
𝑅.

4.12. Restore the global variables so that they have the
same values as they did before Step 4, and then
return.

Fig. 5. The subroutine 𝑘-AllTransSet2

been modified. Initially, the history stack is empty. Every time
we modify a global variable, we memorize how it is done
in the history stack. With the help of this stack, we can
perform Steps 3.4, 4.4, 4.8, and 4.12 of 𝑘-AllTransSet2 in
𝑂(1) time. Moreover, by the discussion in Section V-B, we can
perform Steps 3.2, 4.2, 4.6, and 4.10 in 𝑂(1) amortized time.
So, excluding the recursive calls, each step of 𝑘-AllTransSet2
can be done in 𝑂(1) amortized time. Now, since there are a
total number of at most 𝑂(3𝑘) recursive calls, the total time
complexity is 𝑂(3𝑘). Q.E.D.

It is worth mentioning that we cannot have an algorithm
for enumerating all optimal transfer sets for a given pair (𝑆,𝐺)
whose time complexity is better than 𝑂(#𝑠𝑜𝑙 ⋅ 𝑘). This is
because there are #𝑠𝑜𝑙 optimal transfer sets and it takes 𝑂(𝑘)
time to output each of them. Of course, #𝑠𝑜𝑙 is always smaller
than or equal to 3𝑘. Indeed, #𝑠𝑜𝑙 is usually much smaller than
3𝑘.

We can also output all optimal transfer sets w.r.t. (𝑆,𝐺) in a
compact form as follows. Remember that during the execution
of 𝑘-AllTransSet2, 𝑅 is always the current transfer set. We

view 𝑅 as a stack so that the earlier an edge is added to 𝑅,
the closer the edge is to the bottom of 𝑅. When 𝑅 becomes the
first optimal transfer set w.r.t. (𝑆,𝐺), we output it completely.
Later, every time 𝑅 becomes an optimal transfer set w.r.t.
(𝑆,𝐺) again, we only output those edges of 𝑅 that have been
pushed into 𝑅 after the previous optimal transfer set w.r.t.
(𝑆,𝐺) has been (partially or completely) outputted. In this
way, the total time needed for outputting the optimal transfer
sets w.r.t. (𝑆,𝐺) does not exceed the total time needed for
seeking them. So, we have:

Lemma 18: Subroutine 𝑘-AllTransSet2 finds and outputs
all optimal transfer sets w.r.t. (𝑆,𝐺) in a compact form within
𝑂(3𝑘) time.

2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 135

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

