An Improved Randomized Approximation Algorithm for Maximum Triangle Packing

Zhi-Zhong Chen¹, Ruka Tanahashi¹, and Lusheng Wang²

Abstract. This paper deals with the maximum triangle packing problem. For this problem, Hassin and Rubinstein gave a randomized polynomial-time approximation algorithm and claimed that it achieves an expected ratio of $\frac{89}{169}(1-\epsilon)$ for any constant $\epsilon>0$. However, their analysis was flawed. We present a new randomized polynomial-time approximation algorithm for the problem which achieves an expected ratio very close to their claimed expected ratio.

1 Introduction

In the maximum triangle packing problem (MTP for short), we are given an edge-weighted complete graph G=(V,E) such that the edge weights are nonnegative and |V| is a multiple of 3. The objective is to find a partition of V into $\frac{1}{3}|V|$ disjoint subsets each of size exactly 3 such that the total weight of edges whose endpoints belong to the same subset is maximized. MTP is a classic NP-hard problem; indeed, it is contained in Garey and Johnson's famous book on the theory of NP-completeness [2]. MTP is not only NP-hard but also MAX SNP-hard [5], implying that it does not admit a polynomial-time approximation scheme unless P=NP. A stronger hardness result has been obtained by Chlebík and Chlebíková [1]: No polynomial-time approximation algorithm can approximate MTP within a ratio of 0.9929 unless P=NP.

On the positive side, Hassin and Rubinstein [3] have presented a randomized polynomial-time approximation algorithm for MTP. In [3], they claimed that their algorithm achieves an expected ratio of $\frac{89}{169}(1-\epsilon)$ for any constant $\epsilon > 0$. However, the first author of this paper pointed out a flaw in their analysis to them and they [4] have corrected the expected ratio to $\frac{43}{83}(1-\epsilon)$.

In this paper, we obtain a new randomized polynomial-time approximation algorithm for MTP by substantially modifying the algorithm due to Hassin and Rubinstein. Like their algorithm, our algorithm starts by computing a maximum cycle cover \mathcal{C} in the input graph G, then processes \mathcal{C} to obtain three triangle packings of G, and finally outputs the maximum weighted packing among the three packings. Unlike their algorithm, our algorithm processes triangles in \mathcal{C} in a different way than the other cycles in \mathcal{C} , and tries to connect the cycles in \mathcal{C} by

Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan

² Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

using some edges in a maximum-weight b-matching (rather than a maximum-weight matching) between the cycles. Although our algorithm may look similar to the one in [3], our algorithm needs a deeper analysis of various probabilities. By carefully analyzing the new algorithm, we show that it achieves an expected ratio of $\frac{88.85}{169}(1-\epsilon)$ for any constant $\epsilon>0$. Although the new ratio (namely, $\frac{88.85}{169}(1-\epsilon)$) may seem to be only slightly better than the old ratio (namely, $\frac{43}{3}(1-\epsilon)$), it is of interest for the following two reasons: First, the new ratio is very close to $\frac{89}{169}(1-\epsilon)$ which is the expected ratio wrongly claimed in [3]; hence our new algorithm and its analysis can be viewed as an almost complete correction of the flaw committed in [3]. Second, the improvement (achieved by our new algorithm) from $\frac{43}{83}(1-\epsilon)$ to $\frac{88.85}{169}(1-\epsilon)$ is almost half the improvement (achieved by the algorithm in [3]) from the trivial ratio $\frac{1}{2}$ to $\frac{43}{83}(1-\epsilon)$.

Our randomized algorithm is too sophisticated to derandomize. However, we can modify it to obtain another randomized algorithm which achieves a slightly smaller expected ratio but can be derandomized using the pessimistic estimator method [6]; the resulting deterministic polynomial-time approximation algorithm for MTP still achieves a better ratio (namely, $\frac{43.1}{83}(1-\epsilon)$) than the expected ratio achieved by Hassin and Rubinstein's randomized algorithm [4]. We omit the details here.

2 Basic Definitions

Throughout the remainder of this paper, a graph means an undirected graph without parallel edges or self-loops whose edges each have a nonnegative weight. A graph G has a vertex set V(G) and an edge set E(G). We denote the weight of a subgraph H of G by w(H). For a function b mapping each vertex v of G to a nonnegative integer, a b-matching of G is a subset F of E(G) such that each vertex v of G is incident to at most b(v) edges in F. A path component of G is a connected component of G that is a path.

For a random event A, $\Pr[A]$ denotes the probability that A occurs. For a random event A and one or more random events B_1, \ldots, B_h , $\Pr[A \mid B_1, \ldots, B_h]$ denotes the probability that A occurs given the occurrences of B_1, \ldots, B_h . For a random variable X, $\mathcal{E}[X]$ denotes the expected value of X. For a random variable X and one or more random events B_1, \ldots, B_h , $\mathcal{E}[X \mid B_1, \ldots, B_h]$ denotes the expected value of X given the occurrences of B_1, \ldots, B_h .

3 Sketch of Hassin and Rubinstein's Algorithm

Throughout this section, fix an instance G of MTP and an arbitrary constant $\epsilon > 0$. Moreover, fix a maximum-weight triangle packing $\mathcal{O}pt$ of G.

To compute a triangle packing of large weight, Hassin and Rubinstein's algorithm [3] (H&R-algorithm for short) starts by computing a maximum-weight cycle cover \mathcal{C} of G. It then breaks each cycle $C \in \mathcal{C}$ with $|C| > \frac{1}{\epsilon}$ into cycles of length at most $\frac{1}{\epsilon}$. This is done by removing a set F of edges in C with

 $w(F) \leq \epsilon \cdot w(C)$ and then adding one edge between the endpoints of each resulting path. In this way, the length of each cycle in \mathcal{C} becomes short, namely, is at most $\frac{1}{\epsilon}$. H&R-algorithm then uses \mathcal{C} to compute three triangle packings P_1 , P_2 , and P_3 of G, and further outputs the packing whose weight is maximum among the three.

Computing P_1 and P_2 from C in H&R-algorithm is easy:

Lemma 1. [3] Let $\alpha \cdot w(\mathcal{C})$ be the total weight of edges in triangles in \mathcal{C} . Then, $w(P_1) \geq \frac{1+\alpha}{2} \cdot w(\mathcal{C}) \geq \frac{1+\alpha}{2} (1-\epsilon) \cdot w(\mathcal{O}pt)$.

Lemma 2. [3] Let $\beta \cdot w(\mathcal{O}pt)$ be the total weight of those edges $\{u,v\}$ such that some triangle in $\mathcal{O}pt$ contains both u and v and some cycle in \mathcal{C} contains both u and v. Then, $w(P_2) \geq \beta \cdot w(\mathcal{O}pt)$.

Unlike P_1 and P_2 , the computation of P_3 from \mathcal{C} in H&R-algorithm is done by a complicated randomized subroutine which can be sketched as follows: Because of P_2 , we only need to consider how to find a triangle packing of large weight when $\mathcal{O}pt$ contains a heavy set of edges between cycles in \mathcal{C} . So, assume that $\mathcal{O}pt$ contains a heavy set of edges between cycles in C. Then, G must contain a heavy matching M consisting of edges whose endpoints belong to different cycles in C. Thus, we want P_3 to contain not only as many edges of \mathcal{C} but also as many edges of M as possible. Towards this goal, one way is to mark each edge of $\mathcal C$ with a probability 0 < q < 1 such that adjacent edges in \mathcal{C} and edges in different cycles in \mathcal{C} are marked independently at random and each cycle in \mathcal{C} has at least one edge marked. Let R be the set of marked edges. We say that an edge e of M survives the marking process if both endpoints of e become of degree at most 1 in graph $\mathcal{C}-R$. Note that each edge of M survives the marking process with probability $(2q-q^2)^2$. Let \mathcal{C}' be the graph obtained from $\mathcal{C}-R$ by adding the edges of M. Then, the expected weight of \mathcal{C}' is $(1-q)w(\mathcal{C})+(2q-q^2)^2w(M)$. Moreover, each connected component of \mathcal{C}' is either a path, or a cycle containing at least two edges of M. So, after removing one edge of M from each cycle in C', we obtain a collection of paths whose expected total weight is at least $(1-q)w(\mathcal{C})+\frac{1}{2}(2q-q^2)^2w(M)$. These paths are then patched together into a Hamiltonian cycle of G which is then cut into paths of length 2 by removing one third of its edges. The resulting paths of length 2 lead to a triangle packing whose expected weight is at least $\frac{2}{3}(1-q)w(\mathcal{C})+\frac{1}{3}(2q-q^2)^2w(M)$, which is large if w(M) is large.

4 New Computation of P_3

This section details our new computation of P_3 , which is basically a significant refinement of the computation of P_3 in H&R-algorithm. We inherit the notations in the last section.

There are two main ideas in our new computation of P_3 . First, the weight of the matching M computed in H&R-algorithm (outlined above) may be as small as $\frac{1}{3}w(\mathcal{O}pt)$. In our new computation, we instead compute a maximum-weight

b-matching M_1 consisting of edges whose endpoints belong to different cycles in C, where b(v) = 2 for every vertex v. Note that $w(M_1)$ is close to $w(\mathcal{O}pt)$ when $\mathcal{O}pt$ contains a heavy set of edges between cycles in C. If we are lucky enough that M_1 contains no cycle of odd length, then we can partition M_1 into two matchings among which the heavier one has weight close to $\frac{1}{2}w(\mathcal{O}pt)$ and we can use it as M. Suppose that C is a cycle of odd length in M_1 . The crucial point is that with a significantly high probability, at least one edge of C will not survive the marking process. Thus, with a significantly high probability, we can partition the survived edges of M_1 into two matchings among which the heavier one can be used as M.

Second, it is unnecessary to require that each triangle C in C have at least one edge marked because if C has no edge marked then C can be included in P_3 as it is. That is, we may distinguish the triangles in C from the other cycles and mark the edges in triangles in C with a smaller probability (so that the edges in triangles have a larger probability to remain in P_3).

Next, we detail our new computation of P_3 from C. The first step is as follows:

- 1. Compute a maximum-weight b-matching M_1 in a graph G_1 , where
 - $-V(G_1) = V(G),$
 - $-E(G_1)$ consists of those $\{u,v\} \in E(G)$ such that u and v belong to different cycles in \mathcal{C} , and
 - -b(v) = 2 for each $v \in V(G_1)$. (Comment: Note that b(v) is an upper bound on the degree of v in G_1 and hence is not necessarily the degree of v in G_1 .)

Note that $w(M_1)$ is close to $w(\mathcal{O}pt)$ when $\mathcal{O}pt$ contains a heavy set of edges between cycles in \mathcal{C} . So, we want to add the edges of M_1 to \mathcal{C} . However, adding the edges of M_1 to \mathcal{C} yields a graph which may have a lot of vertices of degree 3 or 4 and is hence far from a triangle packing of G. To remedy this situation, we want to compute a set R of edges in \mathcal{C} and a subset M of M_1 such that adding the edges of M to $\mathcal{C} - R$ yields a graph in which each connected component is a cycle or path.

The next two steps of our algorithm are for computing the set R. Before describing the details, we need to define several notations. Let C_1, \ldots, C_r be the cycles in \mathcal{C} . Moreover, throughout the remainder of this section, let p be the smallest real number satisfying the inequality $\frac{27}{20}p^2 - \frac{9}{10}p^3 \ge \frac{27}{320}$; the reason why we select p in this way will become clear in Lemma 11. Note that $0.276 ; hence <math>(1-p)^2 > \frac{1}{2}$ and $\frac{27}{80}p - \frac{9}{80}p^2 \ge \frac{27}{320}$. Now, we are ready to describe Steps 2 and 3 of our algorithm.

- 2. In parallel, for each cycle C_i in C, process C_i by performing the following steps:
 - (a) Initialize R_i to be the empty set.
 - (b) If $|C_i| = 3$, then for each edge e of C_i , add e to R_i with probability p.
 - (c) If $|C_i| \ge 4$, then perform the following steps:
 - i. Choose one edge e_1 from C_i uniformly at random.

- ii. Starting at e_1 and going clockwise around C_i , label the other edges of C_i as e_2, \ldots, e_c , where c is the number of edges in C_i .
- iii. Add the edges e_j with $j \equiv 1 \pmod{4}$ and $j \leq c 3$ to R_i . (Comment: R_i is a matching of C_i and $|R_i| = \lfloor \frac{|C_i|}{4} \rfloor$.)
- iv. If $c \equiv 1 \pmod{4}$, then add e_{c-1} to R_i with probability $\frac{1}{4}$. (Comment: R_i remains to be a matching of C_i . Moreover, $\mathcal{E}[|R_i|] = \frac{|C_i|-1}{4} + 1 \cdot \frac{1}{4} =$
- v. If $c \equiv 2 \pmod{4}$, then add e_{c-1} to R_i with probability $\frac{1}{2}$. (Comment: R_i remains to be a matching of C_i . Moreover, $\mathcal{E}[|R_i|] = \frac{|C_i|-2}{4} + 1 \cdot \frac{1}{2} =$
- vi. If $c \equiv 3 \pmod{4}$, then add e_{c-2} to R_i with probability $\frac{3}{4}$. (Comment: R_i remains to be a matching of C_i . Moreover, $\mathcal{E}[|R_i|] = \frac{|C_i|-3}{4} + 1 \cdot \frac{3}{4} =$ 3. Let $R = R_1 \cup \cdots \cup R_r$.

The next lemma is obvious from Step 2b:

Lemma 3. For every triangle C_i in C and for every vertex v of C_i , the following hold:

- 1. v is incident to no edge of R with probability $(1-p)^2$.
- 2. v is incident to exactly one edge of R with probability 2p(1-p).
- 3. v is incident to exactly two edges of R with probability p^2 .

Note that our algorithm processes those cycles C_i of \mathcal{C} with $|C_i| \geq 4$ as in the H&R-algorithm. So, we have the following lemma:

Lemma 4. For every cycle C_i of C with $|C_i| \geq 4$, the following hold:

- 1. For every edge e of C_i , $\Pr[e \in R] = \frac{1}{4}$.
- 2. For every vertex v of C_i , v is incident to at least one edge of R with probability $\frac{1}{2}$.

Proof. We include the proof for completeness. Consider an arbitrary cycle C_i of \mathcal{C} with $|C_i| \geq 4$. By the comments on Steps 2(c)iv through 2(c)vi, we have $\mathcal{E}[|R_i|] =$ $\frac{|C_i|}{4}$. Moreover, each edge of C_i is added to R_i with the same probability. Thus, $\Pr[e \in R_i] = \frac{1}{4}$ for every edge e of C_i , and hence each vertex of C_i is incident to at least one edge of R with probability $\frac{1}{2}$.

We next turn to the computation of the subset M of M_1 . Steps 4 through 9 of our algorithm are for this purpose.

- 4. Let M_2 be the set of all edges $\{u,v\} \in M_1$ such that both u and v are of degree 0 or 1 in graph C-R. Let G_2 be the graph $(V(G), M_2)$.
- 5. For each odd cycle C of G_2 , select one edge uniformly at random and delete it from G_2 .
- 6. Partition the edge set of G_2 into two matchings N_1 and N_2 .

- 7. For each edge e of G_2 which alone forms a connected component of G_2 , add e to the matching N_i ($i \in \{1, 2\}$) which does not contain e.
- 8. Select M from N_1 and N_2 uniformly at random. (Comment: $M \subseteq M_1$ is a matching of G.)
- 9. Let \mathcal{C}' be the graph obtained from graph $\mathcal{C} R$ by adding the edges in M.

The next lemma is clear from the above construction of C':

Lemma 5. The following hold:

- 1. Each connected component of C' is a cycle or path.
- 2. Every triangle in C' is also a triangle in C.
- 3. Every cycle C in C' with $|C| \geq 4$ contains at least two edges in M.

The next lemma will be used to show that for each edge $e \in M_1$, e is included in the output triangle packing by our algorithm with high probability.

Lemma 6. For each $e \in M_1$, $\Pr[e \in M \mid e \in M_2] \ge \frac{9}{20}$.

Proof. Assume that the event $e = \{u, v\} \in M_2$ occurs. Let K be the connected component of G_2 that contains e. If K is not an odd cycle, then clearly e is in M with probability at least $\frac{1}{2} \geq \frac{9}{20}$. So, assume that K is an odd cycle. We distinguish two cases as follows:

Case 1: K is an odd cycle of length at least 5. In this case, K must contain a vertex $z \notin \{u, v\}$ such that the cycle in \mathcal{C} containing z contains neither u nor v. Let B_z be the event that the degree of z in the graph $\mathcal{C} - R$ is 2. By Statement 1 of Lemma 3 and Statement 2 of Lemma 4, B_z occurs with probability $(1-p)^2$ or $\frac{1}{2}$ independently of the event $e \in M_2$. Obviously, when B_z occurs, e is contained in M with probability at least $\frac{1}{2}$. On the other hand, when B_z does not occur, e is contained in M with probability at least $\frac{|K|-1}{|K|} \cdot \frac{1}{2} \geq \frac{2}{5}$. So, the probability that e is in M is at least $\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{2}{5} = \frac{9}{20}$.

Case 2: K is a triangle. In this case, let z be the vertex in K other than u and v. Note that u, v, and z belong to different cycles in C. Let B_z be the event that the degree of z in the graph C - R is 2. By Statement 1 of Lemma 3 and Statement 2 of Lemma 4, B_z occurs with probability $(1-p)^2$ or $\frac{1}{2}$ independently of the event $e \in M_2$. Obviously, when B_z occurs, e is definitely contained in M because of Step 7. On the other hand, when B_z does not occur, e is contained in M with probability at least $\frac{1}{3}$. So, the probability that e is in M is at least $\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{3} = \frac{2}{3} > \frac{9}{20}$.

By Lemma 5, C' is a collection of disjoint paths and cycles. Our plan is to transfrom C' into a triangle packing of G as follows:

- First, break each nontriangle cycle in \mathcal{C}' by removing one edge.
- Next, patch the path components of \mathcal{C}' together into a single path Y.
- Finally, cut Y into paths of length 2 by removing one third of its edges.
 (Comment: Each path of length 2 can be trivially transformed into a triangle by adding the edge between its endpoints.)

The nontriangle cycles in \mathcal{C}' should be broken carefully. Steps 10 through 11 of our algorithm are for this purpose.

- 10. Classify the cycles C of C' into three types: superb, good, or ordinary. Here, C is superb if |C| = 3; C is good if |C| = 6, $|E(C) \cap M| = 2$, and there are triangles C_i and C_j in C such that $|E(C_i) \cap E(C)| = 2$ and $|E(C_j) \cap E(C)| = 2$; C is ordinary if it is neither good nor superb.)
- 11. For each ordinary cycle C in C', choose one edge in $E(C) \cap M$ uniformly at random and delete it from C'.
- 12. For each good cycle C in C', change C back to two triangles in C as follows: Delete the two edges of $M \cap E(C)$ from C to obtain two paths Q_1 and Q_2 of length 2, add the edge between the endpoints of Q_1 , and add the edge between the endpoints of Q_2 . (Comment: Because of the maximality of C, this step does not decrease w(C'). Moreover, after this step, each cycle of C' is a triangle.)

We next show that each edge of M_1 remains in C' after Step 11 with high probability.

Lemma 7. For each edge $e \in M$ such that at least one endpoint of e appears in a non-triangle in C, e survives the deletion in Step 11 with probability at least $\frac{3}{4}$.

Proof. Without loss of generality, we may assume that C_1 is not a triangle and contains one endpoint v of e. Because the cycles in C are processed independently in Step 2, we may assume that C_1 is processed after the other cycles in C have been processed.

Consider the time point t at which our algorithm has just finished processing all the cycles in C other than C_1 . Let S^t be the set of all matchings N in the graph $(V(G), M_1)$ such that each connected component of the graph obtained from $C - (E(C_1) \cup R_2 \cup \cdots \cup R_r)$ by adding the edges of N is a path or cycle. For each matching $N \in S^t$, let $p^t(N)$ be the probability that the matching M constructed in Step 8 equals N. Note that $p^t(N)$ only depends on the random choices made by our algorithm when processing C_1 and later in Steps 5 and 8. Further let B_e^t be the event that e is contained in C' immediately after Step 11.

Further let B_e^t be the event that e is contained in \mathcal{C}' immediately after Step 11. Let \mathcal{S}_e^t be the set of all matchings $N \in \mathcal{S}^t$ with $e \in N$ and $p^t(N) > 0$. We claim that for each matching $N \in \mathcal{S}_e^t$, $\Pr[B_e^t \mid M = N] \geq \frac{3}{4}$. If this claim indeed holds, then

$$\Pr[B_e^t \mid e \in M] = \sum_{N \in \mathcal{S}_e^t} \Pr[B_e^t \mid M = N] \cdot \frac{p^t(N)}{\sum_{N' \in \mathcal{S}_e^t} p^t(N')} \geq \frac{3}{4}$$

which implies the lemma immediately. So, it remains to prove the claim.

To prove the claim, consider an arbitrary matching $N \in \mathcal{S}_e^t$. Assume that the event M = N occurs. Let K be the graph obtained from $\mathcal{C} - (E(C_1) \cup R_2 \cup \cdots \cup R_r)$ by adding the edges of N. Let Q be the connected component of K in which v appears. Note that Q is a path and v is an endpoint of Q. Let u be the endpoint of Q other than v. If u does not appear in C_1 , then B_e^t occurs with probability 1.

So, assume that u appears in C_1 . Then, because $|C_1| \ge 4$ and our new algorithm processes each non-triangle C_i in \mathcal{C} in the same way as H&R-algorithm does, Lemma 2 in [3] guarantees that B_e^t occurs with probability at least $\frac{3}{4}$. This completes the proof of the claim and hence that of the lemma.

Lemma 8. For each $e \in M_1$ such that neither endpoint of e appears in a triangle in C, e is contained in C' immediately after Step 11 with probability at least $\frac{27}{320}$.

Proof. Consider an edge $e = \{u, v\}$ in M_1 such that neither u nor v appears in a triangle in \mathcal{C} . Let B_u (respectively, B_v) be the event that u (respectively, v) is incident to one edge in R. Note that when both B_u and B_v occur, e is contained in M_2 . So, by Lemma 6, $\Pr[e \in M \mid E_u \text{ and } E_v] \geq \frac{9}{20}$. Moreover, by the comment on Step 3, $\Pr[E_u \text{ and } E_v] = \frac{1}{4}$. Hence, $\Pr[e \in M] \geq \frac{9}{80}$. Consequently, by Lemma 7, the probability that e is contained in \mathcal{C}' immediately after Step 11 is at least $\frac{9}{80} \cdot \frac{3}{4} = \frac{27}{320}$.

Lemma 9. For each $e \in M_1$ such that exactly one endpoint of e appear in a triangle in C, e is contained in C' immediately after Step 11 with probability at least $\frac{27}{320}$.

Proof. Consider an edge $e = \{u, v\}$ in M_1 such that u appears in a triangle in \mathcal{C} but v does not. Let B_1 be the event that u is incident to exactly one edge in R and so does v. Similarly, let B_2 be the event that u is incident to exactly two edges in R and v is incident to exactly one edge in R. Note that when B_1 or B_2 occurs, e is contained in M_2 . So, by Lemma 6, $\Pr[e \in M \mid E_1] \geq \frac{9}{20}$ and $\Pr[e \in M \mid E_2] \geq \frac{9}{20}$. Moreover, by Statement 2 of Lemma 3 and Statement 2 of Lemma 4, $\Pr[E_1] = 2p(1-p) \cdot \frac{1}{2} = p(1-p)$ and $\Pr[E_2] = p^2 \cdot \frac{1}{2} = \frac{1}{2}p^2$. Hence, $\Pr[e \in M \text{ and } E_1] \geq \frac{9}{20}p(1-p)$ and $\Pr[e \in M \text{ and } E_2] \geq \frac{9}{40}p^2$.

Obviously, when B_1 occurs and $e \in M$, e survives the deletion in Step 11 with probability at least $\frac{3}{4}$ by Lemma 7. The crucial point is that when B_2 occurs and $e \in M$, e survives the deletion in Step 11 with probability 1. Therefore, the probability that e is contained in \mathcal{C}' immediately after Step 11 is at least $\frac{9}{20}p(1-p)\cdot\frac{3}{4}+\frac{9}{40}p^2\cdot 1\geq \frac{27}{320}$.

Lemma 10. Suppose that $e = \{u_1, v_1\}$ is an edge in M such that both u_1 and v_1 appear in triangles in C and both u_1 and v_1 are incident to exactly one edge in R. Then, the probability that e is contained in C' immediately after Step 11 is at least $\frac{3}{4}$.

Proof. Without loss of generality, we may assume that C_1 (respectively, C_2) is the cycle in \mathcal{C} to which u_1 (respectively, v_1) belongs. Because the cycles in \mathcal{C} are processed independently in Step 2, we may assume that C_1 and C_2 are processed after the other cycles in \mathcal{C} have been processed.

Consider the time point t at which our algorithm has just finished processing all the cycles in \mathcal{C} other than C_1 and C_2 . Let \mathcal{S}^t be the set of all matchings N in the graph $(V(G), M_1)$ such that each connected component of the graph obtained from $\mathcal{C} - (E(C_1) \cup E(C_2) \cup R_3 \cup \cdots \cup R_r)$ by adding the edges of N is a path or cycle. For each matching $N \in \mathcal{S}^t$, let $p^t(N)$ be the probability that

the matching M constructed in Step 8 equals N. Note that $p^t(N)$ only depends on the random choices made by our algorithm when processing C_1 and C_2 and later in Steps 5 and 8. Further let $B_{1,1}^t$ be the event that both u_1 and v_1 are incident to exactly one edge in R, and let B_e^t be the event that e is contained in C' immediately after Step 11.

Let \mathcal{S}_e^t be the set of all matchings $N \in \mathcal{S}^t$ with $e \in N$ and $p^t(N) > 0$. We claim that for each matching $N \in \mathcal{S}_e^t$, $\Pr[B_e^t \mid M = N \text{ and } B_{1,1}^t] \geq \frac{3}{4}$. If this claim indeed holds, then

$$\Pr[B_e^t \mid e \in M \text{ and } B_{1,1}^t] = \sum_{N \in \mathcal{S}_e^t} \Pr[B_e^t \mid M = N \text{ and } B_{1,1}^t] \cdot \frac{p^t(N)}{\sum_{N' \in \mathcal{S}_e^t} p^t(N')} \geq \frac{3}{4}$$

which implies the lemma immediately. So, it remains to prove the claim.

To prove the claim, consider an arbitrary matching $N \in \mathcal{S}_e^t$. Assume that the events M = N and $B_{1,1}^t$ occur. Then, B_e^t occurs with probability at least $\frac{1}{2}$ because each cycle C in the graph C' constructed in Step 9 with $E(C) \cap M_1 \neq \emptyset$ contains at least two edges of N. Our goal is to show that B_e^t occurs with probability at least $\frac{3}{4}$. First, we need several definitions:

- Let u_2 and u_3 be the vertices of C_1 other than u_1 .
- Let v_2 and v_3 be the vertices of C_2 other than v_1 .
- Let H^t be the graph obtained from $C (E(C_1) \cup E(C_2) \cup R_3 \cup \cdots \cup R_r)$ by adding the edges of N. (Comment: The degree of each vertex of $V(C_1) \cup V(C_2)$ in H^t is 0 or 1.)

Since N is a matching, there are at most two paths Q in H^t such that one endpoint of Q is in $\{u_2, u_3\}$ and the other is in $\{v_2, v_3\}$. We distinguish three cases as follows:

Case 1: There is no path Q in H^t such that one endpoint of Q is in $\{u_2, u_3\}$ and the other is in $\{v_2, v_3\}$. In this case, it is easy to see that B_e^t occurs with probability 1.

Case 2: There are two paths Q in H^t such that one endpoint of Q is in $\{u_2, u_3\}$ and the other is in $\{v_2, v_3\}$. Without loss of generality, we may assume that H^t contains a path between u_2 and v_2 and contains another path between u_3 and v_3 . Note that each vertex in $V(C_1) \cap V(C_2)$ is incident to an edge in N. So, exactly one of the following four events occurs:

```
 \begin{array}{l} -R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_2\},\{v_1,v_3\},\{u_2,u_3\},\{v_2,v_3\}\}.\\ -R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_3\},\{v_1,v_2\},\{u_2,u_3\},\{v_2,v_3\}\}.\\ -R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_2\},\{v_1,v_2\},\{u_2,u_3\},\{v_2,v_3\}\}.\\ -R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_3\},\{v_1,v_3\},\{u_2,u_3\},\{v_2,v_3\}\}. \end{array}
```

Obviously, when either of the first two events occurs, e does not appear in a cycle in the graph \mathcal{C}' constructed in Step 9 and hence B_e^t occurs with probability 1. Moreover, if we concentrate on the random choices made when processing C_1 and C_2 , the four events occur with the same probability (namely, $(1-p)^2p^4$). Thus, B_e^t occurs with probability at least $\frac{2(1-p)^2p^4}{4(1-p)^2p^4} \cdot 1 + \frac{2(1-p)^2p^4}{4(1-p)^2p^4} \cdot \frac{1}{2} = \frac{3}{4}$.

Case 3: There is exactly one path Q in H^t such that one endpoint of Q is in $\{u_2, u_3\}$ and the other is in $\{v_2, v_3\}$. Without loss of generality, we may assume that H^t contains a path between u_2 and v_2 . If N contains an edge incident to u_3 and another edge incident to v_3 , then the same discussion in Case 2 applies. So, it suffices to consider the following two subcases:

Case 3.1: Exactly one of u_3 and v_3 is incident to an edge in N. Without loss of generality, we may assume that u_3 is incident to an edge in N but v_3 is not. Then, each vertex in $V(C_1) \cap V(C_2)$ other than v_3 is incident to an edge in N. So, exactly one of the following six events occurs:

```
 -R \cap (E(C_1) \cup E(C_2)) = \{\{u_1, u_2\}, \{v_1, v_2\}, \{u_2, u_3\}\}. 
 -R \cap (E(C_1) \cup E(C_2)) = \{\{u_1, u_2\}, \{v_1, v_2\}, \{u_2, u_3\}, \{v_2, v_3\}\}. 
 -R \cap (E(C_1) \cup E(C_2)) = \{\{u_1, u_2\}, \{v_1, v_3\}, \{u_2, u_3\}, \{v_2, v_3\}\}. 
 -R \cap (E(C_1) \cup E(C_2)) = \{\{u_1, u_3\}, \{v_1, v_2\}, \{u_2, u_3\}, \{v_2, v_3\}\}. 
 -R \cap (E(C_1) \cup E(C_2)) = \{\{u_1, u_3\}, \{v_1, v_2\}, \{u_2, u_3\}\}. 
 -R \cap (E(C_1) \cup E(C_2)) = \{\{u_1, u_3\}, \{v_1, v_3\}, \{u_2, u_3\}, \{v_2, v_3\}\}.
```

Obviously, when either of the first four events occurs, e does not appear in a cycle in the graph \mathcal{C}' constructed in Step 9 and hence B_e^t occurs with probability 1. Moreover, if we concentrate on the random choices made when processing C_1 and C_2 , then the first and the fifth events occur with the same probability (namely, $(1-p)^3p^3$), while the other events occur with the same probability (namely, $(1-p)^2p^4$). Thus, B_e^t occurs with probability at least $\frac{(1-p)^3p^3+3(1-p)^2p^4}{2(1-p)^3p^3+4(1-p)^2p^4}\cdot 1+\frac{(1-p)^3p^3+(1-p)^2p^4}{2(1-p)^3p^3+4(1-p)^2p^4}\cdot \frac{1}{2}\geq \frac{3}{4}$.

Case 3.2: Neither u_3 nor v_3 is incident to an edge in N. In this case, each vertex in $V(C_1) \cap V(C_2)$ other than u_3 and v_3 is incident to an edge in N. So, exactly one of the following nine events occurs:

```
\begin{split} &-R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_2\},\{v_1,v_2\},\{v_2,v_3\}\}.\\ &-R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_2\},\{v_1,v_2\},\{u_2,u_3\}\}.\\ &-R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_2\},\{v_1,v_2\},\{u_2,u_3\},\{v_2,v_3\}\}.\\ &-R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_2\},\{v_1,v_3\},\{u_2,u_3\},\{v_2,v_3\}\}.\\ &-R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_3\},\{v_1,v_2\},\{u_2,u_3\},\{v_2,v_3\}\}.\\ &-R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_2\},\{v_1,v_2\}\}.\\ &-R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_2\},\{v_1,v_3\},\{v_2,v_3\}\}.\\ &-R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_3\},\{v_1,v_2\},\{u_2,u_3\}\}.\\ &-R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_3\},\{v_1,v_3\},\{u_2,u_3\}\}.\\ &-R\cap (E(C_1)\cup E(C_2))=\{\{u_1,u_3\},\{v_1,v_3\},\{u_2,u_3\},\{v_2,v_3\}\}. \end{split}
```

Obviously, when one of the first five events occurs, e does not appear in a cycle in the graph \mathcal{C}' constructed in Step 9 and hence B_e^t occurs with probability 1. As for the last four events, we can say the following:

- Suppose that |E(Q)| = 1. Then, when the sixth event occurs, e appears in a good cycle in the graph \mathcal{C}' constructed in Step 9 and hence B_e^t occurs with probability 1. Of course, when the ith event with $i \in \{7, 8, 9\}$ occurs, e appears in an ordinary cycle K in the graph \mathcal{C}' constructed in Step 9 with $|E(K) \cap N| \geq 2$ and hence B_e^t occurs with probability $\frac{1}{2}$.

– Suppose that $|E(Q)| \geq 2$. Then, Q contains at least two edges of N. So, when the ith event with $i \in \{6, \ldots, 9\}$ occurs, e appears in an ordinary cycle K with $|E(K) \cap N| \geq 3$ in the graph \mathcal{C}' constructed in Step 9 and hence B_e^t occurs with probability at least $\frac{2}{3}$.

Furthermore, if we concentrate on the random choices made when processing C_1 and C_2 , the first, the second, the seventh, and the eighth events occur with the same probability (namely, $p^3(1-p)^3$), the third, the fourth, the fifth, and the ninth events occur with the same probability (namely, $p^4(1-p)^2$), and the sixth event occurs with probability $p^2(1-p)^4$. Thus, if |E(Q)|=1, then B_e^t occurs with probability at least $\frac{2p^3(1-p)^3+3p^4(1-p)^2+p^2(1-p)^4}{4p^3(1-p)^3+4p^4(1-p)^2+p^2(1-p)^4} \cdot 1 + \frac{2p^3(1-p)^3+p^4(1-p)^2}{4p^3(1-p)^3+4p^4(1-p)^2+p^2(1-p)^4} \cdot \frac{1}{2} \geq \frac{3}{4}$. On the other hand, if $|E(Q)| \geq 2$, then B_e^t occurs with probability at least $\frac{2p^3(1-p)^3+3p^4(1-p)^2}{4p^3(1-p)^3+4p^4(1-p)^2+p^2(1-p)^4} \cdot 1 + \frac{p^2(1-p)^4+2p^3(1-p)^3+p^4(1-p)^2}{4p^3(1-p)^3+4p^4(1-p)^2+p^2(1-p)^4} \cdot \frac{2}{3} \geq \frac{3}{4}$. This completes the proof of the claim and hence that of the lemma.

Lemma 11. For each $e \in M_1$ such that both endpoints of e appear in triangles in C, e is contained in C' immediately after Step 11 with probability at least $\frac{27}{320}$.

Proof. Consider an edge $e = \{u, v\}$ in M_1 such that both u and v appear in a triangle in C. Let B_0 be the event that both u and v are incident to exactly one edge in R, and let B_1 be the event that both u and v are incident to at least one edge in R and at least one of them is incident to exactly two edges in R.

Note that when B_0 or B_1 occurs, e is contained in M_2 . So, by Lemma 6, $\Pr[e \in M \mid E_0] \ge \frac{9}{20}$ and $\Pr[e \in M \mid E_1] \ge \frac{9}{20}$. Moreover, by Statements 2 and 3 of Lemma 3 $\Pr[E_0] = 2p(1-p) \cdot 2p(1-p) = 4p^2(1-p)^2$ and $\Pr[E_1] = p^2 \cdot 2p(1-p) + 2p(1-p) \cdot p^2 + p^4 = 4p^3 - 3p^4$. Hence, $\Pr[e \in M \text{ and } E_0] \ge \frac{9}{5}p^2(1-p)^2$ and $\Pr[e \in M \text{ and } E_1] \ge \frac{9}{20}(4p^3 - 3p^4)$.

By Lemma 10, when B_0 occurs and $e \in M$, e survives the deletion in Step 11 with probability at least $\frac{3}{4}$. The crucial point is that when B_1 occurs and $e \in M$, e survives the deletion in Step 11 with probability 1. Therefore, the probability that e is contained in \mathcal{C}' immediately after Step 11 is at least $\frac{9}{5}p^2(1-p)^2 \cdot \frac{3}{4} + \frac{9}{20}(4p^3 - 3p^4) \cdot 1 = \frac{27}{20}p^2 - \frac{9}{10}p^3 \ge \frac{27}{320}$.

By the comment on Step 12, each connected component of \mathcal{C}' after Step 12 is a triangle or path. So, it is now almost trivial to transform \mathcal{C}' into a triangle packing. Step 12 of our algorithm is for this purpose.

- 12. If C' has at least one path component, then perform the following steps:
 - (a) Connect the path components of \mathcal{C}' into a single cycle Y by adding some edges of G.
 - (b) Break Y into paths each of length 2 by removing a set F of edges from Y with $w(F) \leq \frac{1}{3} \cdot w(Y)$.
 - (c) For each path Q of length 2 obtained in Step 12b, add the edge between the endpoints of Q.

(Comment: After this step, C' is a triangle packing of G.)

13. Let $P_3 = C'$.

5 Analysis of the Approximation Ratio

By the comment on Step 3, the expected total weight of edges of \mathcal{C} remaining in \mathcal{C}' immediately after Step 11 is at least $\left((1-p)\alpha+\frac{3}{4}(1-\alpha)\right)w(\mathcal{C})=\left(\frac{3}{4}-(p-\frac{1}{4})\alpha\right)w(\mathcal{C})\geq\left(\frac{3}{4}-(p-\frac{1}{4})\alpha\right)(1-\epsilon)w(\mathcal{O}pt)$. Moreover, by Lemmas 8, 9, and 11, the expected total weight of edges of M_1 remaining in \mathcal{C}' immediately after Step 11 is at least $\frac{27}{320}w(M_1)$. Furthermore, by the construction of M_1 , $w(M_1)$ is larger than or equal to the total weight of those edges $\{u,v\}$ such that some triangle in $\mathcal{O}pt$ contains both u and v but no cycle in \mathcal{C} contains both u and v. So, $w(M_1) \geq (1-\beta)w(\mathcal{O}pt)$. Now, since $w(P_3)$ is at least two-thirds of the total weight of edges in \mathcal{C}' immediately after Step 11, we have

$$\mathcal{E}[w(P_3)] \ge \frac{2}{3} \left(\frac{3}{4} - (p - \frac{1}{4})\alpha \right) (1 - \epsilon)w(\mathcal{O}pt) + \frac{2}{3} \cdot \frac{27}{320} (1 - \beta)w(\mathcal{O}pt) \quad (1)$$

$$= \left(\frac{89}{160} - \frac{1}{2}\epsilon - \frac{2}{3}(p - \frac{1}{4})(1 - \epsilon)\alpha - \frac{9}{160}\beta \right) w(\mathcal{O}pt). \quad (2)$$

So, by Lemmas 1 and 2, we have

$$\frac{4}{3}(p - \frac{1}{4})w(P_1) + \frac{9}{160}w(P_2) + w(P_3) \ge \frac{187 + 320p - (320p + 160)\epsilon}{480} \cdot w(\mathcal{O}pt).$$

Therefore, the weight of the best packing among P_1 , P_2 , and P_3 is at least

$$\frac{187 + 320p - (320p + 160)\epsilon}{640p + 347} \cdot w(\mathcal{O}pt) \ge \frac{187 + 320p}{347 + 640p} \cdot (1 - \epsilon)w(\mathcal{O}pt).$$

In summary, we have proven the following theorem:

Theorem 1. For any constant $\epsilon > 0$, there is a polynomial-time randomized approximation algorithm for MTP that achieves an expected ratio of $\frac{187+320p}{347+640p} \cdot (1-\epsilon) > \frac{88.85}{169} \cdot (1-\epsilon)$.

References

- Chlebík, M., Chlebíková, J.: Approximating Hardness for Small Occurrence Instances of NP-Hard Problems. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 152–164. Springer, Heidelberg (2003)
- Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)
- 3. Hassin, R., Rubinstein, S.: An Approximation Algorithm for Maximum Triangle Packing. Discrete Applied Mathematics 154, 971–979 (2006)
- Hassin, R., Rubinstein, S.: Erratum to gAn approximation algorithm for maximum triangle packingh: [Discrete Applied Mathematics 154 (2006) 971-979]. Discrete Applied Mathematics 154, 2620–2620 (2006)
- 5. Kann, V.: Maximum Bounded 3-Dimensional Matching Is MAX SNP-Complete. Information Processing Letters 37, 27–35 (1991)
- Raghavan, P.: Probabilistic Construction of Deterministic Algorithms: Approximating Packing Integer Programs. Journal of Computer and System Sciences 38, 683

 707 (1994)