Cost-Volume Filtering-Based Stereo Matching with Improved Matching Cost and Secondary Refinement

Jianbo Jiao, Ronggang Wang, Wenmin Wang, Shengfu Dong, Zhenyu Wang, Wen Gao

Motivation

Although local method has achieved accuracy comparable to global method, outliers still exist in the final disparity map.

Focus of this work

Local Stereo matching
- Cost computation
- Cost aggregation
- Disparity computation
- Optimization
- Disparity refinement

Method

Combined cost

\[C = \alpha \cdot C_{\text{left}} + \beta \cdot C_{\text{right}} + (1 - \alpha - \beta) \cdot C_{\text{interp}} \]

Modified Color Census Transform

Exploiting the small hole graph cut belief propagation

Optimization

High complexity

Experimental results

Middlebury dataset

Real-world sequences

Quantitative evaluation compared with other local methods

Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Middlebury</th>
<th>Real-world</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visionary</td>
<td>6.4</td>
<td>7.4</td>
<td>2.4</td>
</tr>
<tr>
<td>LRM</td>
<td>6.3</td>
<td>7.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Costs1</td>
<td>6.4</td>
<td>7.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Costs2</td>
<td>6.4</td>
<td>7.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Costs3</td>
<td>6.4</td>
<td>7.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Conclusion

- Combined matching cost
- Secondary refinement scheme RADAR
- Perform well on both Middlebury and Real-world dataset

The most time-consuming parts are the cost aggregation (symmetric guided filter) and the refinement pipeline. However, both of them can be paralleled for acceleration.

Complexity

- Acceleration on CPU
- Time allocation
- Cost aggregation
- Refinement pipeline
- Cost computation etc.