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Abstract—Twisted cubes are variants of hypercubes. In this paper, we study the optimal embeddings of paths of all possible lengths

between two arbitrary distinct nodes in twisted cubes. We use TQn to denote the n-dimensional twisted cube and use distðTQn; u; vÞ
to denote the distance between two nodes u and v in TQn, where n � 1 is an odd integer. The original contributions of this paper are

as follows: 1) We prove that a path of length l can be embedded between u and v with dilation 1 for any two distinct nodes u and v and

any integer l with distðTQn; u; vÞ þ 2 � l � 2n � 1 ðn � 3Þ and 2) we find that there exist two nodes u and v such that no path of length

distðTQn; u; vÞ þ 1 can be embedded between u and v with dilation 1 ðn � 3Þ. The special cases for the nonexistence and existence of

embeddings of paths between nodes u and v and with length distðTQn; u; vÞ þ 1 are also discussed. The embeddings discussed in

this paper are optimal in the sense that they have dilation 1.

Index Terms—Twisted cube, interconnection network, path, edge-pancyclicity, embedding, dilation.

Ç

1 INTRODUCTION

INTERCONNECTION networks take a key role in parallel
computing systems. An interconnection network can be

represented by a graph G ¼ ðV ;EÞ, where V represents the
node set and E represents the edge set. In this paper, we use
graphs and interconnection networks interchangeably.

Graph embedding is to embed a graph into another graph.
It can be formally defined as: Given two graphs G1 ¼
ðV1; E1Þ and G2 ¼ ðV2; E2Þ, an embedding from G1 to G2 is
an injective mapping  : V1 ! V2. G1 and G2 are called guest
graph and host graph, respectively. An important perfor-
mance metric of embedding is dilation. The dilation of
embedding  is defined as

dilðG1; G2;  Þ ¼ maxfdistðG2;  ðuÞ;  ðvÞÞjðu; vÞ 2 E1g;

where distðG2;  ðuÞ;  ðvÞÞ denotes the distance between the
two nodes  ðuÞ and  ðvÞ in G2. The smaller the dilation of
an embedding is, the shorter the communication delay that
the graph G2 simulates the graph G1. We call  the optimal
embedding from G1 to G2 if  has the smallest dilation in all
the embeddings from G1 to G2. Clearly, the dilation of the
optimal embedding is at least 1. Under this circumstance,
G1 is a subgraph of G2. Finding the optimal embedding of
graphs is NP-hard.

Many graph embeddings take cycles, trees, meshes,
paths, etc., as guest graphs [3], [10], [12], [14], [16], [21], [22]

because these interconnection networks are widely used in
parallel computing systems. Path embeddings are especially
important because paths are the common structures used to
model linear arrays in parallel processing [5], [6], [17], [18],
[19], [20].

Twisted cubes [1], [13] are variants of hypercubes. The
n-dimensional twisted cube has 2n nodes and n2n�1 edges.
It possesses some desirable features for interconnection
networks [13]. Its diameter, wide diameter, and faulty
diameter are about half of those of the n-dimensional
hypercube [4]. A complete binary tree can be embedded
into it [2]. It has the same diagnosability as the
n-dimensional hypercube under the t=k-diagnosis strategy
based on the well-known PMC diagnostic model [9]. It was
shown that it is pancyclic [4] and ðn� 2Þ-Hamiltonian and
ðn� 3Þ-Hamiltonian connected [15]. Recently, it was proven
that it has edge-pancyclicity [11], which is a stronger
property compared with its pancyclicity.

In this paper, we discuss the optimal embeddings of
paths of various lengths between any two nodes in twisted
cubes. We use TQn to denote the n-dimensional twisted cube
and use distðTQn; u; vÞ to denote the distance between two
nodes u and v in TQn, where n � 1 is an odd integer. The
original contributions of this paper are as follows:

1. We prove that a path of length l can be embedded
between u and v with dilation 1 for any two
distinct nodes u and v and any integer l with
distðTQn; u; vÞ þ 2 � l � 2n � 1 ðn � 3Þ.

2. We find that there exist two nodes u and v such that
no path of length distðTQn; u; vÞ þ 1 can be em-
bedded between u and v with dilation 1 ðn � 3Þ.

The special cases for the nonexistence and existence of
embeddings of paths between nodes u and v and with
length distðTQn; u; vÞ þ 1 are also discussed.

The embeddings discussed in this paper are optimal in
the sense that they have dilation 1.

The rest of this paper is organized as follows: In
Section 2, we give some definitions and notations used in
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the paper. In Section 3, we study the embeddings of paths
of all possible lengths between arbitrary two distinct nodes
with dilation 1 in twisted cubes. Section 3 discusses the
nonexistence and existence of embeddings of paths of
length distðTQn; u; vÞ þ 1 for two nodes u and v in TQn.
The final section concludes this paper.

2 PRELIMINARIES

Let G ¼ ðV ;EÞ be a graph. A path P from node u to node v
in G is denoted by P : u ¼ uð0Þ; uð1Þ; . . . ; uðkÞ ¼ v. Nodes u and
v are called the two end nodes of path P . If u ¼ v, then P is
called a cycle. Path P can also be denoted by

u ¼ uð0Þ; uð1Þ; . . . ; uði�1Þ; P1; u
ðjþ1Þ; uðjþ2Þ; . . . ; uðkÞ ¼ v;

where P1 is the subpath of P from uðiÞ to uðjÞ, i.e.,

uðiÞ; uðiþ1Þ; . . . ; uðjÞ ði � jÞ. The subpath P1 can be denoted

by pathðP; uðiÞ; uðjÞÞ. The length of path P is denoted by

lenðP Þ. The node set of P is denoted by V ðP Þ.
Let C: u ¼ uð0Þ; uð1Þ; . . . ; uðkÞ ¼ v; u be a cycle in G. We

use C � ðu; vÞ to denote the path u ¼ uð0Þ; uð1Þ; . . . ; uðkÞ ¼ v
after deleting the edge ðu; vÞ in C and use C � ðv; uÞ to
denote the path v ¼ uðkÞ; uðk�1Þ; . . . ; uð0Þ ¼ u after deleting
the edge ðv; uÞ in C.

For u; v 2 V ðGÞ, we call v to be a neighbor of u if
ðu; vÞ 2 EðGÞ. The distance between u and v is defined as
distðG; u; vÞ ¼ minflenðP ÞjP is a path between u and v in Gg.
The diameter of G is defined as

diamðGÞ ¼ maxfdistðG; u; vÞju; v 2 V ðGÞg:

G is called a pancyclic graph if G contains any cycle of
length l with 3 � l � jV j, i.e., any cycle of length l with
3 � l � jV j can be embedded into G with dilation 1.
However, there is no cycle of length 3 in twisted cubes.
For convenience of discussion in this paper, we call G a
pancyclic graph if G contains any cycle of length l with
4 � l � jV j. Similarly, we define edge-pancyclic graphs as
follows.
G is called an edge-pancyclic graph if, for every edge ðu; vÞ

and any integer l with 4 � l � jV j, any cycle of length l can
be embedded into G with dilation 1 such that ðu; vÞ is in
this cycle.

Given two graphs G0 ¼ ðV 0; E0Þ and G00 ¼ ðV 00; E00Þ, if
there exists a bijection ’ from V 0 to V 00 such that ðu0; v0Þ 2 E0
if and only if ð’ðu0Þ; ’ðv0ÞÞ 2 E00 for any two nodes u0; v0 2 V 0,
then we say that G0 is isomorphic to G00.

Let G1 and G2 be two subgraphs of G. We use G1

S
G2

to denote the subgraph induced by the node subset

V ðG1Þ
S
V ðG2Þ in G. The Cartesian product of G1 and G2 is

defined as the graph G1 �G2, where V ðG1 �G2Þ ¼
V ðG1Þ � V ðG2Þ and, for any x; y 2 V ðG1 �G2Þ with x ¼
ðu1; u2Þ and y ¼ ðv1; v2Þ, ðx; yÞ 2 EðG1 �G2Þ if and only if
u1 ¼ v1 and ðu2; v2Þ 2 EðG2Þ or u2 ¼ v2 and ðu1; v1Þ 2 EðG1Þ.

A binary string u of length n is denoted by

un�1un�2 . . .u0. The ith bit ui of u can also be written as

bitðu; iÞ. The complement of ui is denoted by ui ¼ 1� ui.
In [13], the n-dimensional twisted cube TQn was defined. It

is an n-regular graph with 2n nodes and n2n�1 edges,

where n is an odd integer. We label all the nodes of TQn

by binary strings of length n. In this paper, we do not

distinguish between the nodes of TQn and their labels. If

u ¼ un�1un�2 . . .u02 V ðTQnÞ, for 0 � i � n� 1, we define

fðu; iÞ ¼ ui
L
ui�1

L
. . .
L
u0, where

L
is the exclusive

operation. According to the definition of TQn in [13], we

may give a recursive definition of TQn for any odd integer
n � 1 as follows:

Definition 1. The one-dimensional twisted cube TQ1 is defined as

the complete graph with two nodes labeled 0 and 1. For an odd

integer n � 3, TQn consists of four subcubes, TQ00
n�2, TQ01

n�2,

TQ10
n�2, and TQ11

n�2, where TQab
n�2 is isomorphic to TQn�2

and V ðTQab
n�2Þ ¼ fabxjx 2 V ðTQn�2Þg and EðTQab

n�2Þ ¼
fðabx; abyÞjðx; yÞ 2 EðTQn�2Þg for any a; b 2 f0; 1g and

V ðTQnÞ ¼
[

a;b2f0;1g
V ðTQab

n�2Þ; EðTQnÞ¼
[

a;b2f0;1g
EðTQab

n�2Þ
[
E0;

where, for the nodes u ¼ un�1un�2 . . .u0,

v ¼ vn�1vn�2 . . . v0 2 V ðTQnÞ;

ðu; vÞ 2 E0 if u and v satisfy one of the following conditions:

1. u ¼ vn�1vn�2vn�3 . . . v0,
2. u ¼ vn�1 vn�2vn�3 . . . v0 and fðu; n� 3Þ ¼ 0, or
3. u ¼ vn�1 vn�2vn�3 . . . v0 and fðu; n� 3Þ ¼ 1.

Fig. 1 and Fig. 2 show TQ3 and TQ5, respectively.
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Fig. 1. The three-dimensional twisted cube TQ3, where (a) and (b)

demonstrate two different drawings of TQ3.

Fig. 2. The five-dimensional twisted cube TQ5, where the end nodes of a

missing edge are marked with arrows labeled with the same letter.



Notation 1. For n � 3 and a; b 2 f0; 1g, the four ðn� 2Þ-
dimensional subcubes of TQn are denoted by TQab

n�2,

TQ
ð1�aÞb
n�2 , TQ

að1�bÞ
n�2 , and TQ

ð1�aÞð1�bÞ
n�2 , respectively. For exam-

ple, if a ¼ 0 and b ¼ 1, then TQab
n�2 denotes TQ01

n�2 and

TQ
ð1�aÞð1�bÞ
n�2 denotes TQ10

n�2.

For convenience, in the following sections, the para-
meter n always denotes an odd integer.

3 EMBEDDING PATHS OF VARIOUS LENGTHS

BETWEEN ANY TWO DISTINCT NODES

In this section, we study the optimal embeddings of paths
of all possible lengths. Theorem 2 is the major result, which
states that a path with length l can be embedded between
any two nodes u and v with dilation 1 in TQn, where
distðTQn; u; vÞ þ 2 � l � 2n � 1 ðn � 3Þ. To prove Theorem 2,
we need to introduce Lemmas 1, 2, 3, and 4 and Theorem 1.
Lemma 1 discusses the existence of a shortest path between
any two nodes in TQn and the special properties of this
shortest path. The other three lemmas and Theorem 1 are
from [7], [10], [11], and [13], respectively.

To prove Lemma 1, we need to use the shortest path

routing algorithm proposed by Abraham and Padmanab-

han in [1]. The 0th “double bit” of node u ¼ un�1un�2 . . .u0

is defined as the single bit u0 and the jth “double bit” is

defined as u2ju2j�1 for 1 � j � n�1
2 . Let u; v be any two nodes

in TQn. The double Hamming distance of u and v, denoted

by hdðu; vÞ, is defined as the number of different double bits

between u and v. Clearly, distðTQn; u; vÞ � hdðu; vÞ.
By using the algorithm proposed in [1], a shortest path

between any two nodes can be found. Let u and v be two
nodes in TQn. Let z ¼ u. The detailed algorithm is described
as follows:

1. If z ¼ v, then the path is determined.
2. Assume that there exist neighbors w of z such that

hdðw; vÞ ¼ hdðz; vÞ � 1. Let w0 be the w that differs
from z with the largest double bit. Then, reset z to
be w0.

3. Assume that all the neighbors of z, say w, satisfy
hdðw; vÞ � hdðz; vÞ. Let j be the smallest index of
double bits that z differs from v. Choose w0 to be the
neighbor of z that differs from z in the 2jth bit. Then,
reset z to be w0.

We call this shortest path routing algorithm the AP
algorithm. By this algorithm, we will prove the following
lemma:

Lemma 1. For any u; v 2 V ðTQnÞ and any a; b 2 f0; 1g, we
have:

1. If u; v 2 V ðTQab
n�2Þ, then there exists a shortest path P

between u and v in TQn such that P is in TQab
n�2.

2. If u 2 V ðTQab
n�2Þ and v 2 V ðTQð1�aÞbn�2 Þ, then there

exists a shortest path P : vð0Þ ¼ u; vð1Þ; . . . ; vðlÞ ¼ v
between u and v in TQn such that

fvð0Þ; vð1Þ; . . . ; vðkÞg � V ðTQab
n�2Þ

and fvðkþ1Þ; vðkþ2Þ; . . . ; vðlÞg � V ðTQð1�aÞbn�2 Þ for a cer-
tain integer k with 0 � k � l� 1.

3. If u 2 V ðTQab
n�2

S
TQ

ð1�aÞb
n�2 Þ and

v 2 V TQ
að1�bÞ
n�2

[
TQ

ð1�aÞð1�bÞ
n�2

� �
;

then there exists a shortest path P : vð0Þ ¼
u; vð1Þ; . . . ; vðlÞ ¼ v between u and v in TQn such

that fvð0Þ; vð1Þ; . . . ; vðkÞg � V ðTQab
n�2

S
TQ

ð1�aÞb
n�2 Þ and

fvðkþ1Þ; vðkþ2Þ; . . . ; vðlÞg � V ðTQað1�bÞ
n�2

S
TQ

ð1�aÞð1�bÞ
n�2 Þ

for a certain integer k with 0 � k � l� 1.

Proof.

1. Let P : vð0Þ ¼ u; vð1Þ; . . . ; vðlÞ ¼ v be a shortest path
between u and v in TQn achieved by using the AP
algorithm. Then, for any vðkÞ 2 P with 1 � k � l,
we always have

bitðvðkÞ; n� 1ÞbitðvðkÞ; n� 2Þ ¼
bitðvð0Þ; nÞbitðvð0Þ; n� 1Þ ¼ ab:

Thus, we are done.
2. Let vð0Þ ¼ un�1un�2 . . . u0, vð1Þ ¼ un�1un�2 . . . u0.

Then, vð1Þ 2 V ðTQð1�aÞbn�2 Þ, un�1un�2 ¼ ab, and

hdðvð1Þ; vÞ ¼ hdðvð0Þ; vÞ � 1. By the AP algorithm,

vð1Þ is in a shortest path between u and v in TQn.

By item 1, we can let P1 be a shortest path

between vð1Þ and v in TQn such that P1 is in

TQ
ð1�aÞb
n�2 . Then,

vð0Þ ¼ u; P1

is a shortest path between u and v in TQn, where

fug � V ðTQab
n�2Þ and V ðP1Þ � V ðTQð1�aÞbn�2 Þ. Thus,

we are done.
3. Let P : uð0Þ ¼ u; uð1Þ; . . . ; uðlÞ ¼ v be a shortest path

between u and v in TQn. Since uð0Þ ¼ u 2
V ðTQab

n�2

S
TQ

ð1�aÞb
n�2 Þ and

uðlÞ ¼ v 2 V TQ
að1�bÞ
n�2

[
TQ

ð1�aÞð1�bÞ
n�2

� �
;

there must exist an integer m such that vðmÞ 2
V ðP Þ

T
V ðTQab

n�2

S
TQ

ð1�aÞb
n�2 Þ and

vðmþ1Þ 2 V ðP Þ
\
V TQ

að1�bÞ
n�2

[
TQ

ð1�aÞð1�bÞ
n�2

� �
:

Let k be the smallest integer such that vðkÞ 2
V ðTQab

n�2

S
TQ

ð1�aÞb
n�2 Þ and

vðkþ1Þ 2 V TQ
að1�bÞ
n�2

[
TQ

ð1�aÞð1�bÞ
n�2

� �
:

By items 1 and 2, we can let P1 be a shortest path
between vðkþ1Þ and v in TQn such that P1 is in
TQ

að1�bÞ
n�2

S
TQ

ð1�aÞð1�bÞ
n�2 . Then,

uð0Þ ¼ u; uð1Þ; . . . ; uðkÞ; P1

is a shortest path between u and v in TQn,

where fuð0Þ; uð1Þ; . . . ; uðkÞg � V ðTQab
n�2

S
TQ

ð1�aÞb
n�2 Þ

and V ðP1Þ � V ðTQað1�bÞ
n�2

S
TQ

ð1�aÞð1�bÞ
n�2 Þ: Thus, we

are done. tu
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Crossed cubes are also variants of hypercubes [7]. The
n-dimensional crossed cube is denoted by CQn, which has
the same degree, node number, and edge number as TQn.
CQ3 is shown in Fig. 3. In [11], the edge-pancyclicity of
crossed cubes was proven:

Theorem 1 [11]. TQn is an edge-pancyclic graph for n � 3.

Obviously, Theorem 1 is equivalent to the following
corollary:

Corollary 1. For any integer n � 3, any x; y 2 V ðTQnÞ with
distðTQn; x; yÞ ¼ 1, and any integer l with 3 � l � 2n � 1,
a path of length l can be embedded between x and y with
dilation 1 in TQn.

On the other hand, we introduce the following lemma
in [11]:

Lemma 2 [11]. TQ3 is isomorphic to CQ3.

The following lemma gives a result on path embedding
in CQn [10]:

Lemma 3 [10]. If n � 3, for any u; v 2 V ðCQnÞ, u 6¼ v, and
any integer l, dnþ1

2 e þ 1 � l � 2n � 1, there exists a path of
length l between u and v in CQn.

Lemma 4 provides the diameter of TQn [13]:

Lemma 4 [13]. diamðTQnÞ ¼ dnþ1
2 e.

With the above lemmas and corollary, we will prove the
major result on path embedding in TQn in the following
theorem. We will adopt induction on n to prove this
theorem. In the induction part of the proof, we identify
three cases according to the locations of two specific nodes.
In each case, we further deal with many subcases according
to the size of the given length of embedded path. This
makes the proof long.

Theorem 2. For any integer n � 3, any u; v 2 V ðTQnÞ with
u 6¼ v, and any integer l with distðTQn; u; vÞþ 2� l� 2n� 1,
a path of length l can be embedded between u and v with
dilation 1 in TQn.

Proof. We use induction on n.
By Lemma 4, for any u; v 2 V ðTQnÞ with u 6¼ v, we

have distðTQn; u; vÞ 2 f1; 2g. By Lemma 2 and Lemma 3,
we can easily verify that the theorem holds when n ¼ 3.

Supposing that the theorem holds for n¼ � � 2 ð� � 5Þ,
we consider the case for n ¼ � .

Let u and v be any two different nodes in TQ� . By
Corollary 1, the theorem holds when

distðTQ� ; u; vÞ ¼ 1:

Therefore, by Lemma 4, we only need to consider the
case for 2 � distðTQ� ; u; vÞ � diamðTQ� Þ ¼ d�þ1

2 e: For any
a; b 2 f0; 1g, without loss of generality, we deal with the
following cases:

Case 1. u; v 2 V ðTQab
��2Þ. For

distðTQ� ; u; vÞ þ 2 � l � 2� � 1;

we have the following subcases:
Case 1.1. distðTQ� ; u; vÞ þ 2 � l � 2��2 � 1. By Lem-

ma 1, item 1, distðTQab
��2; u; vÞ ¼ distðTQ� ; u; vÞ. By the

induction hypothesis, there is a path of length l between
u and v in TQab

��2 and, thus, in TQ� .

Case 1.2. l ¼ 2��2. Let u0 and v0 be the neighbors, in

TQ
ð1�aÞb
��2 , of u and v, respectively. By the induction

hypothesis, there is a path P of length 2��2 � 2 between

u0 and v0 in TQ
ð1�aÞb
��2 . Then,

u; P ; v

is a path of length l between u and v in TQab
��2

S
TQ

ð1�aÞb
��2

and, thus, in TQ� .
Case 1.3 . 2��2 þ 1 � l � 2��1 � 1. Let l1 ¼ bl�1

2 c,
l2 ¼ ðl� 1Þ � l1. Then, l1 þ l2 ¼ l� 1 and, by Lemma 4,

distðTQab
��2; u; vÞ þ 2 �

�
� � 1

2

�
þ 2

� 2��3 � l1 � l2 � 2��2 � 1:

By the induction hypothesis, there is a path P1 of length l1

between u and v in TQab
��2 (See Fig. 4a). Select an edge

ðu0; v0Þ in the pathP1 and letu0 be betweenu and v0. Further,

respectively, select the neighbors u00 and v00, in TQ
ð1�aÞb
��2 , of

the nodes u0 and v0. By Definition 1, ðu00; v00Þ 2 EðTQð1�aÞb��2 Þ.
Since 4 � d��1

2 e þ 2 � l2 � 2��2 � 1, by Corollary 1, there is

a path P2 of length l2 between u00 and v00 in TQ
ð1�aÞb
��2 . Then,

pathðP1; u; u
0Þ; P2; pathðP1; v

0; vÞ

is a path of length ðl1 � 1Þ þ l2 þ 2 ¼ l between u and v

in TQab
��2

S
TQ

ð1�aÞb
��2 and, thus, in TQ� .

Case 1.4. 2��1 � l � 2� � 1. Let l1 ¼ bl�1
2 c and

l2 ¼ ðl� 1Þ � l1. Then, l1 þ l2 ¼ l� 1 and

2��2 � 1 � l1 � l2 � 2��1 � 1:

We first prove the following claim:

Claim. There is a path P1 of length l1 such that

there is an edge ðw; xÞ in P1 with w 2 V ðTQab
��2Þ and

x 2 V ðTQð1�aÞb��2 Þ.
For 2��2 � l1 � 2��1 � 1, from Case 1.2 and Case 1.3,

we can deduce that there is a path P1 of length l1 between

u and v in TQab
��2

S
TQ

ð1�aÞb
��2 . Since l1 � jV ðTQab

��2Þj, P1

satisfies the conditions in the claim. For l1 ¼ 2��2 � 1, let

l0 ¼ 2��2 � 3. Then,

distðTQab
��2; u; vÞ þ 2 � d� � 1

2
e

þ 2 � 2��2 � 3 ¼ l0 � 2��2 � 1:

By the induction hypothesis, there is a path P 0 of length l0

between u and v in TQab
��2. Select an edge ðu0; v0Þ in the
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Fig. 3. The three-dimensional crossed cube CQ3.



path P1 and let u0 be between u and v0. Further,

respectively, select the neighbors u00 and v00 in TQ
ð1�aÞb
��2

of the nodes u0 and v0. By Definition 1, ðu00; v00Þ 2
EðTQð1�aÞb��2 Þ: Then, pathðP 0; u; u0Þ; u00; v00; pathðP1; v

0; vÞ is

a path of length ðl0 � 1Þþ 3¼ l1 between u and v in

TQab
��2

S
TQ

ð1�aÞb
��2 . Let w ¼ u0 and x ¼ u00. Hence, the

claim holds.

Now, we keep on with the following proof. By the

above claim, let ðw; xÞ be an edge in P1 such that w 2
V ðTQab

��2Þ and x 2 V ðTQð1�aÞb��2 Þ (See Fig. 4b). Further, let y

and z be the neighbors, in TQ
að1�bÞ
��2

S
TQ

ð1�aÞð1�bÞ
��2 , ofw and

x, respectively. By Definition 1, y and z lie in the different

subcubes TQ
að1�bÞ
��2 and TQ

ð1�aÞð1�bÞ
��2 , respectively, with

ðy; zÞ 2 EðTQað1�bÞ
��2

S
TQ

ð1�aÞð1�bÞ
��2 Þ. Without loss of gener-

ality, we assume y 2 V ðTQað1�bÞ
��2 Þ and z 2 V ðTQð1�aÞð1�bÞ��2 Þ.

Select an edge ðy; sÞ in TQ
að1�bÞ
��2 and let t be the neighbor, in

TQ
ð1�aÞð1�bÞ
��2 , of s. By Definition 1, ðz; tÞ 2 EðTQð1�aÞð1�bÞ��2 Þ.

Let l21 ¼ bl2�1
2 c, l22 ¼ ðl2 � 1Þ � l1. Then, l21 þ l22 ¼ l2 � 1

and 3 � 2��3 � 1 � l21 � l22 � 2��2 � 1. By Corollary 1,

there is a path P21 of length l21 between s and y in

EðTQað1�bÞ
��2 Þ and a path P22 of length l22 between z and t in

TQ
ð1�aÞð1�bÞ
��2 . Then,

pathðP1; u; xÞ; P22; P21; pathðP1; w; vÞ;

is a path of length ðl1 � 1Þ þ l21 þ l22 þ 3 ¼ l between u

and v in TQ� .
Case 2. u 2 V ðTQab

��2Þ and v 2 V ðTQð1�aÞb��2 Þ. For
distðTQ� ; u; vÞ þ 2 � l � 2� � 1, we have the following
subcases:

Case 2.1. distðTQ� ; u; vÞ þ 2 � l � 2��2. By Lemma 1,
item 2, without loss of generality, we can let P : u ¼
uð0Þ; uð1Þ; . . . ; uðkÞ ¼ v be a shortest path between u and v
in TQab

��2

S
TQ

ð1�aÞb
��2 such that P satisfies the following

three conditions for some integer j � 0 (See Fig. 5a):

1. uðiÞ 2V ðTQab
��2Þ for i ¼ 0; 1; . . . ; jwith 0� j� k� 2.

2. uðiÞ 2 V ðTQð1�aÞb��2 Þ for i ¼ jþ 1; jþ 2; . . . ; k.

3. lenðpathðP; uðjþ1Þ; vÞÞ � lenðpathðP; u; uðjÞÞÞ.
Then, k� j � 2. Obviously, pathðP; uðjþ1Þ; vÞ is a

shortest path between uðjþ1Þ and v in both TQ� and

TQ
ð1�aÞb
��2 . Since

dist TQ
ð1�aÞb
��2 ; uðjþ1Þ; v

� �
þ 2 ¼ ½distðTQ� ; u; vÞ þ 2�

� len path P; u; uðjþ1Þ
� �� �

¼ ½distðTQ� ; u; vÞ þ 2�

� ðjþ 1Þ � l� ðjþ 1Þ � l� 1 � 2��2 � 1;

by the induction hypothesis, there is a path P 0 of

length l� ðjþ 1Þ between uðjþ1Þ and v in TQ
ð1�aÞb
��2 . Then,

path P; u; uðjÞ
� �

; P 0

is a path of length jþ ½l� ðjþ 1Þ� þ 1 ¼ l between u and

v in TQab
��2

S
TQ

ð1�aÞb
��2 and, thus, in TQ� .

Case 2.2. 2��2 þ 1 � l � 2��1 � 1. We can always

select an edge ðx; yÞ in TQab
��2

S
TQ

ð1�aÞb
��2 such that

x 2 V ðTQab
��2Þ � fug and y 2 V ðTQð1�aÞb��2 Þ � fvg. Let

l1 ¼ bl�1
2 c, l2 ¼ ðl� 1Þ � l1. Then, l1 þ l2 ¼ l� 1 and

max dist
�
TQab

��2; u; x
�
; dist TQ

ð1�aÞb
��2 ; v; y

� �n o

þ 2 � d� � 1

2
e þ 2 � 2��3 � l1 � l2 � 2��2 � 1:

By the induction hypothesis, there is a path P1 of

length l1 between u and x in TQab
��2 and a path P2 of

length l2 between y and v in TQ
ð1�aÞb
��2 . Then,

P1; P2

is a path of length l1 þ l2 þ 1 ¼ l between u and v in

TQab
��2

S
TQ

ð1�aÞb
��2 and, thus, in TQ� .

Case 2.3. 2��1 � l � 2� � 1. Let l1 ¼ bl�1
2 c, l2 ¼

ðl� 1Þ � l1: Then, l1 þ l2 ¼ l� 1 and

2��2 � 1 � l1 � l2 � 2��1 � 1:
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From Case 2.1 and Case 2.2, we can deduce that there is a

path P1 of length l1 between u and v in TQab
��2

S
TQ

ð1�aÞb
��2

(See Fig. 5b). Clearly, there is an edge ðw; xÞ in P1 such

that w 2 V ðTQab
��2Þ and x 2 V ðTQð1�aÞb��2 Þ. Let y and z be the

neighbors, in TQ
að1�bÞ
��2

S
TQ

ð1�aÞð1�bÞ
��2 , of w and x, respec-

tively. By Definition 1, y and z are in TQ
að1�bÞ
��2 and

TQ
ð1�aÞð1�bÞ
��2 , respectively. Still, from Case 2.1 and Case 2.2,

we can deduce that there is a path P2 of length l2 between

y and z in TQ
að1�bÞ
��2

S
TQ

ð1�aÞð1�bÞ
��2 . Then,

pathðP1; u; wÞ; P2; pathðP1; x; vÞ

is a path of length ðl1 � 1Þ þ l2 þ 2 ¼ l between u and v

in TQ� .

Case 3. u 2 V ðTQab
��2

S
TQ

ð1�aÞb
��2 Þ and

v 2 V TQ
að1�bÞ
��2

[
TQ

ð1�aÞð1�bÞ
��2

� �
:

For distðTQ� ; u; vÞ þ 2 � l � 2� � 1, we have the follow-

ing subcases:

Case 3.1. distðTQ� ; u; vÞ þ 2 � l � 2��1 � 1. By Lem-

ma 1, item 3, without loss of generality, we can let P :

u ¼ uð0Þ; uð1Þ; . . . ; uðkÞ ¼ v be a shortest path between u

and v in TQ� such that P satisfies the following three

conditions for some some integer j � 0 (Similar to

Case 2.1):

1. uðiÞ 2 V ðTQab
��2

S
TQ

ð1�aÞb
��2 Þ for i ¼ 0; 1; . . . ; j with

0 � j � k� 2.
2. uðiÞ 2 V ðTQað1�bÞ

��2

S
TQ

ð1�aÞð1�bÞ
��2 Þ for i ¼ jþ 1; jþ

2; . . . ; k:
3. lenðpathðP; uðjþ1Þ; vÞÞ � lenðpathðP; u; uðjÞÞÞ.
Then, k� j � 2. Obviously, pathðP; uðjþ1Þ; vÞ is a

shortest path between uðjþ1Þ and v in both TQ� and

TQ
að1�bÞ
��2

S
TQ

ð1�aÞð1�bÞ
��2 . Considering that

uðjþ1Þ 2 V TQ
að1�bÞ
��2

� �

or uðjþ1Þ 2 V ðTQð1�aÞð1�bÞ��2 Þ and that v 2 V ðTQað1�bÞ
��2 Þ or

v 2 V ðTQð1�aÞð1�bÞ��2 Þ, without loss of generality, we only

need to consider the following two cases:

a. uðjþ1Þ; v 2 V ðTQað1�bÞ
��2 Þ and

b. uðjþ1Þ 2 V ðTQað1�bÞ
��2 Þ and v 2 V ðTQð1�aÞð1�bÞ��2 Þ.

For Case 3.1.a, by Lemma 1, item 1,

dist TQ
að1�bÞ
��2 ; uðjþ1Þ; v

� �
þ 2 ¼ ½distðTQ� ; u; vÞ þ 2�

� len path P; u; uðjþ1Þ
� �� �

¼ ½distðTQ� ; u; vÞ þ 2�

� ðjþ 1Þ � l� ðjþ 1Þ � 2��1 � 1:

For Case 3.1.b, by Lemma 1, item 2,

dist TQ
að1�bÞ
��2

[
TQ

ð1�aÞð1�bÞ
��2 ; uðjþ1Þ; v

� �
þ 2

¼ ½distðTQ� ; u; vÞ þ 2� � len path P; u; uðjþ1Þ
� �� �

� l� ðjþ 1Þ � 2��1 � 1:

Thus, for Case 3.1.a by Case 1.1, Case 1.2, and Case 1.3

and for Case 3.1.b by Case 2.1 and Case 2.2, there is a

path P 0 of length l� ðjþ 1Þ between uðjþ1Þ and v in

TQ
að1�bÞ
��2

S
TQ

ð1�aÞð1�bÞ
��2 . Then,

pathðP; u; uðjÞÞ; P 0

is a path of length jþ ½l� ðjþ 1Þ� þ 1 ¼ l between u and

v in TQab
��2

S
TQ

ð1�aÞb
��2 and, thus, in TQ� .

Case 3.2. 2��1 � l � 2� � 1. Clearly, we can always

select an edge ðx; yÞ such that x 2 V ðTQab
��2

S
TQ

ð1�aÞb
��2 Þ �

fug and

y 2 V TQ
að1�bÞ
��2

[
TQ

ð1�aÞð1�bÞ
��2

� �
� fvg:

Let l1 ¼ bl�1
2 c, l2 ¼ ðl� 1Þ � l1. Then, l1 þ l2 ¼ l� 1 and

2��2 � 1 � l1 � l2 � 2��1 � 1. By Case 1 and Case 2,

there is a path P1 of length l1 between u and x in
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TQab
��2

S
TQ

ð1�aÞb
��2 and a path P2 of length l2 between y

and v in TQ
að1�bÞ
��2

S
TQ

ð1�aÞð1�bÞ
��2 . Then,

P1; P2

is a path of length l1 þ l2 þ 1 ¼ l between u and v in TQ� .
So, we have completed the proof when n ¼ � . tu

The proof of Theorem 2 is constructive. By this proof, we
can find a path of length l between u and v for any u; v 2
V ðTQnÞ with u 6¼ v and any integer l with distðTQn; u; vÞ þ
2 � l � 2n � 1 in TQn ðn � 3Þ. For example, letting n ¼ 5,
u ¼ 00001, v ¼ 01100, and l ¼ 14, the process to find a path
of length l between u and v in TQn is as follows:

By Case 3.1, we can get a shortest path u ¼ uð0Þ ¼ 00001,
uð1Þ ¼ 01001, uð2Þ ¼ 01000, uð3Þ ¼ 01100 ¼ v between u and v

in TQ5, which satisfies Conditions 1, 2, and 3 in Case 3.1,
where j ¼ 0 and k ¼ 3. Since 8 � l� ðjþ 1Þ ¼ 13 � 15, let
l1 ¼ b13�1

2 c ¼ 6 and l2 ¼ ð13� 1Þ � l1 ¼ 6. By Case 1.3, we
can select a path

P1 : uð1Þ ¼ 01001; 01011; 01010; 01110; 01111; 01101; 01100 ¼ v

of length 6 between uð1Þ and v in TQ01
3 . Let u0 ¼ 01011,

v0 ¼ 01010, u00 ¼ 11011, and v00 ¼ 11010. Note that ðu0; v0Þ is
an edge in the path P1 and u00 and v00 are neighbors, in TQ11

3 ,
of u0 and v0, respectively. By Case 1.3, we can select a path

P2 : u00 ¼ 11011; 11111; 11101; 11001; 11000; 11110; 11010 ¼ v00

of length 6 between u00 and v00 in TQ11
3 . Then,

u ¼ 00001; 01001; 01011; P2; pathðP1; u
0; vÞ

is a path of length l ¼ 14 between u and v in TQ5.

4 NONEXISTENCE AND EXISTENCE OF EMBEDDINGS

OF PATHS WITH LENGTH distðTQn; u; vÞ þ 1

Theorem 2 gives embeddings of paths of all possible lengths
between distðTQn; u; vÞ þ 2 and 2n � 1 in TQn. In this section,
we will discuss the cases for the nonexistence and existence of
embeddings of paths with length distðTQn; u; vÞ þ 1. Theo-
rems 3 and 4 discuss the nonexistence of and Theorems 5 and
6 discuss the existence of embeddings of paths with length
distðTQn; u; vÞ þ 1, respectively. Before discussing these
results, we first introduce the following two lemmas:

Lemma 5 [4]. hdðu; vÞ � distðTQn; u; vÞ � hdðu; vÞ þ 1 for any

u; v 2 V ðTQnÞ.
Lemma 6. For any u; v 2 V ðTQnÞ, if hdðu; vÞ ¼ dnþ1

2 e, then

distðTQn; u; vÞ ¼ dnþ1
2 e.

Proof. If hdðu; vÞ ¼ dnþ1
2 e, by Lemma 5, distðTQn; u; vÞ �

hdðu; vÞ ¼ dnþ1
2 e: By Lemma 4, distðTQn; u; vÞ � dnþ1

2 e.
Hence, distðTQn; u; vÞ ¼ dnþ1

2 e. tu
Theorem 3. For any n � 1, a cycle of length 3 cannot be

embedded with dilation 1 in TQn.

Proof. We can easily verify that the result holds for
n 2 f1; 3g. Then, we will prove the following two claims:

1. For n � 3, if there is no cycle of length 3 in
TQn, then there is no a cycle of length 3 in
TQab

n

S
TQð1�aÞbn for any a; b 2 f0; 1g.

2. For n � 5, if there is no cycle of length 3 in

TQab
n�2

S
TQ

ð1�aÞb
n�2 for any a; b 2 f0; 1g, then there

is no a cycle of length 3 in TQn.

The two claims can be proved similar to the proof of
Lemma 5 in [8]. Hence, we omit the further proof. tu

Theorem 4. For anyn � 3 and any lwith 2 � l � dnþ1
2 e � 1, there

exist two nodes u; v 2 V ðTQnÞ such that distðTQn; u; vÞ ¼ l
and a path of length lþ 1 cannot be embedded between u and v

with dilation 1 in TQn.

Proof. For 2 � l � dnþ1
2 e � 1 and n � 3, let u ¼ ð11Þl0n�2l and

v ¼ 0n.
First, we prove distðTQn; u; vÞ ¼ l. Let

uðjÞ ¼ ð00Þjð11Þl�j0n�2l; j ¼ 0; 1; . . . ; l:

By the AP algorithm, we can verify that uð0Þ ¼
u; uð1Þ; . . . ; uðlÞ ¼ v is a shortest path between u and v in

TQn. Obviously, the length of this path is l. Hence,

distðTQn; u; vÞ ¼ l.
In what follows, we will prove that there does not

exist a path of length lþ 1 between u and v in TQn by
contradiction.

Suppose that there is a path, say

P : u ¼ uð0Þ; uð1Þ; . . . ; uðlþ1Þ ¼ v;

of length lþ 1 between u and v in TQn. Let uðkÞ ¼
u
ðkÞ
n�1u

ðkÞ
n�2 . . .u

ðkÞ
1 u

ðkÞ
0 for k ¼ 0; 1; . . . ; lþ 1.

Since ðuð0Þ; uð1ÞÞ 2 EðTQnÞ, by Definition 1, there is a

double bit such that uð1Þ differs from uð0Þ in this double bit.

Assume that uð1Þ differs from uð0Þ in some j1th double bit

with 0 � j1 � n�2l�1
2 . Noticing that fðuð0Þ; i0Þ ¼ 0 for any

i0 2 f0; 2; 4; . . . ; n� 3g, we have u
ð1Þ
0 ¼ u

ð0Þ
0 ¼ 1 if j1 ¼ 0

and u
ð1Þ
2j1
u
ð1Þ
2j1�1 ¼ 11 if 1 � j1 � n�2l�1

2 . Then,

hdðuð1Þ; vÞ ¼ hdðuð0Þ; vÞ þ 1 ¼ lþ 1:

By Lemma 5, distðTQn; u
ð1Þ; vÞ � hdðuð1Þ; vÞ � lþ 1 and

lenðP Þ ¼ lenðpathðP; u; uð1ÞÞÞ þ lenðpathðP; uð1Þ; vÞÞ
� 1þ distðTQn; u

ð1Þ; vÞ � lþ 2:

This contradicts that the length of the path P is lþ 1.

Therefore, n�2lþ1
2 � j1 � n�1

2 . We have the following

two cases:

1. u
ð1Þ
2j1
u
ð1Þ
2j1�1 ¼ u

ð0Þ
2j1
u
ð0Þ
2j1�1 ¼ 00 ¼ u

ðlþ1Þ
2j1

u
ðlþ1Þ
2j1�1. Then,

u
ð1Þ
i0 ¼ u

ð0Þ
i0 for all

i0 2 f0; 1; . . . ; n� 1g � f2j1 � 1; 2j1g:

Thus, hdðuð1Þ; vÞ ¼ hdðuð0Þ; vÞ � 1 ¼ l� 1.

2. u
ð1Þ
2j1
u
ð1Þ
2j1�1 ¼ u

ð0Þ
2j1
u
ð0Þ
2j1�1 ¼ 01 ¼ u

ðlþ1Þ
2j1

u
ðlþ1Þ
2j1�1. Then,

u
ð1Þ
i0 ¼ u

ð0Þ
i0 for all

i0 2 f0; 1; . . . ; n� 1g � f2j1 � 1; 2j1g:

Thus, hdðuð1Þ; vÞ ¼ hdðuð0Þ; vÞ ¼ l.
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For 1 � m � l� 2, suppose that there are m integers
j1; j2; . . . ; jm such that one of the following two cases
holds:

Case 1. uðmÞ satisfies the following three conditions:

1. u
ðmÞ
i0 ¼ 0 for all i0 2 f0; 1; . . . ; n� 2l� 1g.

2. n�2lþ1
2 � jk � n�1

2 and u
ðmÞ
2jk
u
ðmÞ
2jk�1 ¼ 00 ¼ uðlþ1Þ

2j u
ðlþ1Þ
2j�1

for all k 2 f1; 2; . . . ;mg.

3. u
ðmÞ
2jk0
u
ðmÞ
2jk0 �1 ¼ 11 for all

k0 2 fn� 2lþ 1

2
;
n� 2lþ 3

2
; . . . ;

n� 1

2
g � fj1; j2; . . . ; jmg:

Case 2. uðmÞ satisfies the following four conditions:

1. u
ðmÞ
i0 ¼ 0 for all i0 2 f0; 1; . . . ; n� 2l� 1g.

2. There is an integer q such that n�2lþ1
2 � jq � n�1

2

and u
ðmÞ
2jq
u
ðmÞ
2jq�1 ¼ 01 ¼ uðlþ1Þ

2jq
u
ðlþ1Þ
2jq�1, where q is an

integer with 1 � q � m.

3. n�2lþ1
2 � jk � n�1

2 and u
ðmÞ
2jk
u
ðmÞ
2jk�1 ¼ 00 for all

k 2 f1; 2; . . . ;mg � fqg.

4. u
ðmÞ
2jk0
u
ðmÞ
2jk0 �1 ¼ 11 for all

k0 2 n� 2lþ 1

2
;
n� 2lþ 3

2
; . . . ;

n� 1

2

� �
� fj1; j2; . . . ; jmg:

Then, we separately discuss Case 1 and Case 2 in the
following:

For Case 1, we have

hdðuðmÞ; vÞ ¼ hdðuð0Þ; vÞ �m ¼ l�m:

For uðmþ1Þ, since ðuðmÞ; uðmþ1ÞÞ 2 EðTQnÞ, by Definition 1,

there is a double bit such that uðmþ1Þ differs from uðmÞ in

this double bit. Suppose that uðmþ1Þ differs from uðmÞ in

some jmþ1th double bit with 0 � jmþ1 � n�1
2 . Similar to

the above discussion about uð0Þ and uð1Þ, it is not poss-

ible that 0 � jmþ1 � n�2l�1
2 . Hence, n�2lþ1

2 � jmþ1 � n�1
2 .

Further, we have jmþ1 62 fj1; j2; . . . ; jmg. Otherwise,

u
ðmþ1Þ
2jmþ1

u
ðmþ1Þ
2jmþ1�1 6¼ u

ðlþ1Þ
2jmþ1

u
ðlþ1Þ
2jmþ1�1 and u

ðmþ1Þ
i0 ¼ uðmÞi0 for all

i0 2 f0; 1; . . . ; n� 1g � f2jmþ1 � 1; 2jmþ1g:

Thus, hdðuðmþ1Þ; vÞ ¼ hdðuðmÞ; vÞ þ 1 ¼ l � m þ 1. By

Lemma 5,

lenðP Þ ¼ len path P; u; uðmþ1Þ
� �� �

þ len path P; uðmþ1Þ; v
� �� �

� ðmþ 1Þ þ distðTQn; u
ðmþ1Þ; vÞ � ðmþ 1Þ

þ hdðuðmþ1Þ; vÞ � ðmþ 1Þ þ ðl�mþ 1Þ ¼ lþ 2;

contradicting that the length of the path P is lþ 1. Hence,

jmþ1 62 fj1; j2; . . . ; jmg. As a result, we have n�2lþ1
2 �

jmþ1 � n�1
2 such that u

ðmÞ
2jmþ1

u
ðmÞ
2jmþ1�1 ¼ 11. Thus, we have

the following two cases for Case 1:

a. u
ðmþ1Þ
2jmþ1

u
ðmþ1Þ
2jmþ1�1¼ u

ðmÞ
2jmþ1

u
ðmÞ
2jmþ1�1¼ 00¼ uðlþ1Þ

2jmþ1
u
ðlþ1Þ
2jmþ1�1:

By Definition 1, u
ðmþ1Þ
i0 ¼ uðmÞi0 for all

i0 2 f0; 1; . . . ; n� 1g � f2jmþ1 � 1; 2jmþ1g:
Thus, hdðuðmþ1Þ; vÞ ¼ hdðuðmÞ; vÞ � 1 ¼ l� ðmþ 1Þ.

b. u
ðmþ1Þ
2jmþ1

u
ðmþ1Þ
2jmþ1�1¼ u

ðmÞ
2jmþ1

u
ðmÞ
2jmþ1�1¼ 01¼ uðlþ1Þ

2jmþ1
u
ðlþ1Þ
2jmþ1�1:

By Definition 1, u
ðmþ1Þ
i0 ¼ uðmÞi0 q for all

i0 2 f0; 1; . . . ; n� 1g � f2jmþ1 � 1; 2jmþ1g:
Thus, hdðuðmþ1Þ; vÞ ¼ hdðuðmÞ; vÞ ¼ l�m.

For Case 2, we have

hdðuðmÞ; vÞ ¼ hdðuð0Þ; vÞ � ðm� 1Þ ¼ l�mþ 1:

For uðmþ1Þ, since ðuðmÞ; uðmþ1ÞÞ 2 EðTQnÞ, by Definition 1,

there is a double bit such that uðmþ1Þ differs from uðmÞ in

this double bit. Suppose that uðmþ1Þ differs from uðmÞ in

some jmþ1th double bit with 0 � jmþ1 � n�1
2 . Similar to

the above discussion about uð0Þ and uð1Þ, it is not possible

that 0 � jmþ1 � n�2l�1
2 . Hence, n�2lþ1

2 � jmþ1 � n�1
2 .

In what follows, we will prove that

jmþ1 62 fj1; j2; . . . ; jmg:

First, we have jmþ1 6¼ jq. Otherwise, by Definition 1,

u
ðmþ1Þ
2jmþ1

u
ðmþ1Þ
2jmþ1�1 2 f11; 10g and, hence,

u
ðmþ1Þ
2jmþ1

u
ðmþ1Þ
2jmþ1�1 6¼ u

ðlþ1Þ
2jmþ1

u
ðlþ1Þ
2jmþ1�1:

Similar to the discussion in Case 1, we can deduce

hdðuðmþ1Þ; vÞ ¼ hdðuðmÞ; vÞ ¼ l�mþ 1 and lenðP Þ � lþ 2,

contradicting that the length of the path P is lþ 1.

Therefore, jmþ1 6¼ jq. Further, also similar to the discussion

in Case 1, we can deduce jmþ1 62 fj1; j2; . . . ; jmg � fjqg. To

sum up, jmþ1 62 fj1; j2; . . . ; jmg.
As a result, we have u

ðmÞ
2jmþ1

u
ðmÞ
2jmþ1�1 ¼ 11 and

n� 2lþ 1

2
� jmþ1 �

n� 1

2
:

By Definition 1, u
ðmþ1Þ
2jmþ1

u
ðmþ1Þ
2jmþ1�1 ¼ u

ðmÞ
2jmþ1

u
ðmÞ
2jmþ1�1 ¼ 00 ¼

u
ðlþ1Þ
2jmþ1

u
ðlþ1Þ
2jmþ1�1 and u

ðmþ1Þ
i0 ¼ uðmÞi0 for all

i0 2 f0; 1; . . . ; n� 1g � f2jmþ1 � 1; 2jmþ1g:
Thus, hdðuðmþ1Þ; vÞ ¼ hdðuðmÞ; vÞ � 1 ¼ l�m.

According to the discussions for Cases 1 and 2, we
have the following two cases:

Case A. For any m with 0 � m � l� 2, there exists

an integer jmþ1 with n�2lþ1
2 � jmþ1 � n�1

2 such that

uðmþ1Þ differs from uðmÞ in the jmþ1th double bit,

u
ðmþ1Þ
2jmþ1

u
ðmþ1Þ
2jmþ1�1 ¼ u

ðmÞ
2jmþ1

u
ðmÞ
2jmþ1�1 ¼ 00, and u

ðmþ1Þ
i0 ¼ uðmÞi0

for all i0 2 f0; 1; . . . ; n� 1g � f2jmþ1 � 1; 2jmþ1g. Then,

we have hdðuðl�1Þ; vÞ ¼ 1 and there is an integer i00

such that uðl�1Þ ¼ ð00Þi
00
ð11Þ0n�2i00�2. In summary,

ðuðl�1Þ; vÞ 2 EðTQnÞ. Considering that

P : u ¼ uð0Þ; uð1Þ; . . . ; uðlþ1Þ ¼ v
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is a path, we have ðuðl�1Þ; uðlÞÞ; ðuðlÞ; uðlþ1ÞÞ 2 EðTQnÞ and,
thus, uðl�1Þ; uðlÞ; uðlþ1Þ ¼ v; uðl�1Þ is a cycle of length 3,
contradicting Theorem 3.

Case B. There exists an integer m with 0 � m � l� 1
such that the following two conditions hold:

1. uðmþ1Þ differs from uðmÞ in the jmþ1th double bit

for some integer jmþ1 with n�2lþ1
2 � jmþ1 � n�1

2 ,

u
ðmþ1Þ
2jmþ1

u
ðmþ1Þ
2jmþ1�1 ¼ u

ðmÞ
2jmþ1

u
ðmÞ
2jmþ1�1 ¼ 01, and u

ðmþ1Þ
i0 ¼

u
ðmÞ
i0 for i0 2 f0; 1; . . . ; n� 1g � f2jmþ1g.

2. For any m0 2 f0; 1; . . . ; l� 1g � fmg, there exists

an integer jm0þ1 with n�2lþ1
2 � jm0þ1 � n�1

2 such

that uðm
0þ1Þ differs from uðm

0Þ in the jm0þ1th

double bit, u
ðm0þ1Þ
2jm0þ1

u
ðm0þ1Þ
2jm0þ1�1 ¼ u

ðm0Þ
2jm0þ1

u
ðm0Þ
2jm0þ1�1 ¼ 00,

and u
ðm0þ1Þ
i0 ¼ uðm

0Þ
i0 for all

i0 2 f0; 1; . . . ; n� 1g � f2jm0þ1 � 1; 2jm0þ1g:

Then, we have hdðuðlÞ; vÞ ¼ 1 and there is an integer i00

such that uðlÞ ¼ ð00Þi
00
ð01Þ0n�2i00�1. Since

fðuðlÞ; n� 2i00 � 2Þ ¼ 0;

by Definition 1, ðuðlÞ; vÞ 62 EðTQnÞ. However, since P : u ¼
uð0Þ; uð1Þ; . . . ; uðlÞ; uðlþ1Þ ¼ v is a path, we should have

ðuðlÞ; vÞ 2 EðTQnÞ, a contradiction.
According to the above discussion, there does not

exist a path of length lþ 1 between u and v in TQn. tu
Theorem 5. For any n � 3 and any l with 2 � l � dnþ1

2 e � 1,
there exist two nodes u, v 2 V ðTQnÞ such that

distðTQn; u; vÞ ¼ l

and the path of length lþ 1 can be embedded between u and v
with dilation 1 in TQn.

Proof. Let u ¼ ð11Þl�10n�2lþ11 and v ¼ 0n. Then, hdðu; vÞ ¼ l.
First, we prove distðTQn; u; vÞ ¼ l. Let

uð1Þ ¼ ð11Þl�10n�2lþ2;

uðiÞ ¼ 02i�2ð11Þl�i0n�2lþ2, i ¼ 2; 3; . . . ; l. By Definition 1,
we can easily verify that P : u ¼ uð0Þ; uð1Þ; . . . ; uðlÞ ¼ v is a
path of length l between u and v in TQn. Hence,
distðTQn; u; vÞ � lenðP Þ ¼ l. By Lemma 5,

distðTQn; u; vÞ � hdðu; vÞ ¼ l:

Consequently, distðTQn; u; vÞ ¼ l.
Next, we prove that there is a path of length lþ 1

between u and v in TQn. Let vð1Þ ¼ ð11Þl�2ð01Þ0n�2lþ11,

vð2Þ ¼ ð11Þl�20n�2lþ31, vð3Þ ¼ ð11Þl�20n�2lþ4,

vðiÞ ¼ ð11Þl�iþ10n�2lþ2i�2;

i ¼ 4; 5; . . . ; lþ 1. By Definition 1, we can easily verify
that P : u ¼ vð0Þ; vð1Þ; . . . ; vðlþ1Þ ¼ v is a path of length lþ 1
between u and v in TQn. tu

Theorem 6. For any n � 3 and any u; v 2 V ðTQnÞ, if
distðTQn; u; vÞ ¼ dnþ1

2 e, then there is a path of length
dnþ1

2 e þ 1 between u and v in TQn.

Proof. We still use induction on n.
By Lemma 2, TQ3 is isomorphic to CQ3. Further, by

Lemma 3, when n ¼ 3, the theorem holds.
Supposing that the theorem holds for n¼ � � 2ð� � 5Þ,

we consider the case for n ¼ � .
Let u and v be any two nodes with distðTQ� ; u; vÞ ¼

d�þ1
2 e in TQ� .
Clearly, for any a; b 2 f0; 1g, both u and v are not in

TQab
��2. Without loss of generality, we separately deal

with the following cases:
Case 1. There exist a; b; c; d;2 f0; 1g and

w 2 V ðTQcd
��2Þ;

such that u 2 V ðTQab
��2Þ, v 2 V ðTQcd

��2Þ, ðu;wÞ 2 EðTQ� Þ,
and ab 6¼ cd.

By the AP algorithm, w is in a shortest path between u
and v in TQ� and

distðTQ� ; w; vÞ ¼ distðTQ� ; u; vÞ � distðTQ� ; u; wÞ

¼ � þ 1

2

� �
� 1 ¼ � � 1

2

� �
:

Considering that w; v 2 V ðTQcd
��2Þ, by Lemma 1, item 1,

distðTQcd
��2; w; vÞ ¼ distðTQ� ; w; vÞ ¼ d��1

2 e. By the induc-

tion hypothesis, there is a path P of length d��1
2 e þ 1

between w and v in TQcd
��2. Then,

u; P

is a path of length d��1
2 e þ 2 ¼ d�þ1

2 e þ 1 between u and v

in TQ� .
Case 2. For any a; b; c; d 2 f0; 1g with ab 6¼ cd, all of the

following three conditions hold:

1. u 2 V ðTQab
��2Þ, v 2 V ðTQcd

��2Þ.
2. For any s 2 V ðTQcd

��2Þ, ðu; sÞ 62 EðTQ�Þ.
3. For any y 2 V ðTQab

��2Þ, ðv; yÞ 62 EðTQ� Þ.
For simplicity, we only consider the case for

u 2 V ðTQ00
��2Þ, v 2 V ðTQ01

��2Þ. For other cases, similarly
discuss. By Definition 1, there exists a node w 2
V ðTQ11

��2Þ such that ðu;wÞ 2 EðTQ� Þ. By Lemma 5, we
deal with the following subcases.

Case 2.1. distðTQ� ; u; vÞ ¼ hdðu; vÞ. By Definition 1, we

can let x be the neighbor, in TQ11
��2, of v (see Fig. 6a).

Then, bitðx; iÞ ¼ bitðv; iÞ for all i 2 f0; 1; . . . ; � � 3g. Simi-

larly, since w 2 V ðTQ11
��2Þ and ðu;wÞ 2 EðTQ� Þ, by

Definition 1, bitðw;iÞ ¼ bitðu;iÞ for all i 2 f0;1; . . . ; � � 3g.
Obviously, bitðw; iÞ ¼ bitðx; iÞ for i 2 f� � 1; � � 2g.
Therefore, hdðw; xÞ ¼ hdðu; vÞ � 1 ¼ d�þ1

2 e � 1 ¼ dð��2Þþ1
2 e.

By Lemma 6,

distðTQ� ; w; xÞ ¼ hdðw; xÞ ¼
ð� � 2Þ þ 1

2

� �
¼ � � 1

2

� �
:

By Lemma 1, item 1, distðTQ11
��2;w;xÞ ¼ distðTQ� ;w;xÞ ¼

d��1
2 e:Hence, we can letP be a path of length d��1

2 e between

w and x in TQ11
��2. Then,

u; P ; v

is a path of length d��1
2 e þ 2 ¼ d�þ1

2 e þ 1 between u and v

in TQ� .
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Case 2.2. distðTQ� ; u; vÞ ¼ hdðu; vÞ þ 1. Then, there is a
unique same double bit between u and v. We assume the
jth double bit is this same double bit between u and v.
Clearly, 0 � j � dn�1

2 e. Let u ¼ un�1un�2 . . .u0. Further, let
z ¼ un�1un�2 . . .u2jþ1u2ju2j�1u2j�2 . . .u0 if 1 � j � dn�1

2 e
and z ¼ un�1un�2 . . .u2u1u0 if j ¼ 0. By Definition 1,
ðu; zÞ 2 V ðTQ00

��2Þ and

hdðz; vÞ ¼ hdðu; vÞ þ 1 ¼ distðTQ� ; u; vÞ ¼ d�þ1
2 e

(see Fig. 6b). Since Condition 2 holds, there exists a w 2
V ðTQ11

��2Þ such that ðu;wÞ 2 EðTQ� Þ. By Definition 1,

fðz; � � 3Þ ¼ 1� fðu; � � 3Þ ¼ 1. Thus, z has a neighbor

in TQ01
��2. Let the neighbor, in TQ01

��2, of z be t. Then,

hdðt; vÞ ¼ hdðz; vÞ � 1 ¼ hdðu; vÞ ¼ distðTQ� ; u; vÞ � 1

¼ � � 1

2

� �
¼ ð� � 2Þ þ 1

2

� �
:

By Lemma 6, distðTQ00
��2; t; vÞ ¼ hdðt; vÞ ¼ d��1

2 e. Let P 0 be

a path of length d��1
2 e between t and v in TQ00

��2. Then,

u; z; P 0

is a path of length d��1
2 e þ 2 ¼ d�þ1

2 e þ 1 between u and v

in TQ� . tu

5 CONCLUSIONS

Twisted cubes are variants of hypercubes. In this paper, we

have studied the optimal embeddings of paths of all possible

lengths between arbitrary two distinct nodes with dilation 1

in twisted cubes. We have proved the following desirable

results of TQn: 1) For any two distinct nodes u and v and any

integer l with distðTQn; u; vÞ þ 2 � l � 2n � 1, a path of

length l can be embedded between u and v with dilation 1

ðn � 3Þ. 2) There exist two nodes u and v such that no path of

length distðTQn; u; vÞ þ 1 can be embedded between u and v

with dilation 1 ðn � 3Þ. The special cases for the nonexis-

tence and existence of embeddings of paths between nodes u

and v and with length distðTQn; u; vÞ þ 1 have also been

discussed.
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