
Proceeding of the International Conference on Computing, Communications and Control Technologies,
August 14-17, 2004, Austin, Texas, USA

Learning to Predict Life and Death with ANN in Computer Go

Julian WONG, Wai Hung & Andy CHUN, Hon Wai
Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Kowloon

Hong Kong SAR
50249864@plink.cityu.edu.hk & andy.chun@cityu.edu.hk

ABSTRACT

Tsumego (死活 – Life and Death) is a computer Go game
sub-problem that determines whether a group of stones is
safe and free from ever being captured – the “life” state,
or may potentially be captured after a sequence of moves,
no matter how he/she defenses it – the “death” state. The
ability to quickly and accurately determine “life and
death” is crucial to becoming an expert at Go. Humans
usually learn this skill by studying examples in classic Go
books written by professional players. Most examples
usually use only a corner of the Go board or a side of the
board to illustrate how to archive “alive” or “dead” state.
This paper shows how we designed and used an Artificial
Neural Network (ANN) to simulate this learning process.
We performed two different experiments – (1) stones in
“final position” and (2) stones not in “final position.
Using back propagation learning algorithm with a
training set of over a 1000 examples of 8x8 corner
positions, we were able to achieve a very high accuracy
rate of 97% for final position tests and 94.5% for non-
final position tests. This paper describes the design of our
ANN and algorithm as well as provides an analysis and
comparison of our experiment results.

Keywords: Computer Go, Artificial Neural Network,
Learning.

1. INTRODUCTION

Although not too many research projects dealt with the
Life and Death problem, we were able to find a few to
compare our work with. For example, Thomas Wolf
created a program call GoTools [3] which was
specifically designed to solve Life and Death. The GNU
Go [4] Documentation also has some explanation on how
GNU Go solves Life and Death. Horace Chan’s M.Phil

Thesis [5] also performed related ANN research on Life
and Death. The following compares our approach with
these three approaches.

Most of the publications related to Life and Death were
published by Thomas Wolf, the creator of GoTools [3], a
proprietary software that solves Life and Death problems.
From [6, 7], Wolf revealed that GoTools used a heuristic
approach. In the homepage of GoTools [3], it states that
GoTools has been ranked as 5-dan by a Nihon Ki-in
(Japan Go Association) ranked amateur 6-dan player, in
solving Life and Death. 5-dan is a fairly high ranking.
The ranking system in Go starts at 30 kyu (weakest) and
moves up to 1 kyu. After 1 kyu (1k) is 1 dan, with 7 dan
the highest ranking.

According to IntelligentGo.org [8], it claimed that
GoTools can actually solve higher dan-level tsumego
problems. However, we were not able to find the actual
data or performance statistics.

We tested our benchmark cases with the free Java applet
version of GoTools. We tested two 1k, one 4k and five
5k problems take from a tsumego book written by the
Japanese professional player Akinobu Chobi [9]. All
these problems were final Life and Death patterns. Out of
the eight problems, GoTools unfortunately only solved of
the 5k problems correctly. All others turn out to be miss
or timeout (300 sec. time out). When we selected the
medium speed search, it got the two questions correct,
one time out and all other missed. For the other two
slower search methods, it returned a wrong answer for
one of the patterns and timed out on all others. However
this is a test on the Java applet version of GoTools and
might not directly reflect the real strength of the actual
program.

On the other hand, GNUGo [4] uses one module to
extract the Life and Death patterns and passes it to
another module for evaluation. The pattern reading
program is called OWL (Optics with Limit Negotiation).
OWL depends on three pattern databases, which expend
and limit the moves in the OWL reading. Two different
modules can be used to evaluate the positions from
OWL. One is “optics” and the other is “life”. Both
perform the same job but “life” is more accurate and
slower than “optics”. However we cannot found any data
regarding the official ranking of the Life and Death
reading modules. For the overall strength of GNU Go
version 3.2, it was ranked at 6k* from the Legend Go
Server (LGS) [16].

LGS is an Internet Go Server which will estimate a
player’s rank when they play with other ranked players
for more than 15 games. Every player can set her/his
strength from 30k – 7d. After the system estimates the
player’s strength, there will be a ‘*’ after the rank. For
example, GNU Go Version 3.2 is ranked 6k* by LGS.

To the best of our knowledge, the only research related to
using ANN on Life and Death is from Horace Chan’s
M.Phil. thesis at the Chinese University of Hong Kong
[5]. He used a specially designed ANN to recognize
final-position life and death patterns and obtained a
96.9% accuracy rate from 387 test patterns of human-
selected training data set. Our first experiment is similar
to his experiments. However, we went beyond just
evaluating final position and conducted a second
experiment with non-final patterns. Our ANN design is
somewhat different from Chan’s in structure; it is
smaller. Our experiment results also show that our ANN
model seems to produce more accurate results.

2. OUR EXPERIMENTS

For ANN training and testing, game samples were taken
from amateur games as well as classic Go texts. The
amateur games were downloaded from the Legend Go
Server [16]. The final score requires both sides to agree
on the life status of every group on the board. However,
weaker players might not be able to determine life status
accurately, so only amateur games at the dan level with
final scores will be used for our experiments. Our
experiments use inputs within a corner smaller than 8x8.
“Seki” and “Ko” situations [4] are not included as
samples are too hard to collect (“seki” are special cases
where both sides need to sacrifice and “ko” are repeated
moves than never end). When a pattern exceeds the 8x8
corner size, it will be trimmed manually if possible while
not affecting the outcome of life and death.

Experiment 1 – Final Position
In the first experiment, we trained our ANN to determine
life/death status of stones in final position; resigned
games were not used. In final game position, the score
and life/death status for each group on board would have
been agreed upon by both players. Therefore, all
alive/dead stones are cleared specified. We then extract
those residing in the 8x8 corner for our experiments. Data
used in Experiment 1 is similar to the human-selected
training data set of Chan [5].

Experiment 2 – Not in Final Position
In the second experiment, new sample and test cases
were added to the data pool used in the first experiment.
Life and death problems were extracted from book
written by professional players [9, 10]. This includes
stone patterns that are not in final position. The life and
death problems that we used were below the 3-kyu level.
All dead patterns are considered final positions, since no
matter what move one makes, the opponent will always
be able to counter it, unless the opponent makes a
mistake.

There are significant differences in stone patterns not in
final positions compared with those in final positions.
Because of the differences, even if a “life and death”
program was successful in recognizing final positions, it
might not perform at all well during the actual game.
Hence we believe Experiment 2 is important in
measuring the performance of “life and death” software.

3. OUR ANN DESIGN

We used the FANN C-library [11] to construct our back-
propagation ANN. Two different ANN structures were
tested on both Experiments 1 and 2.

Fully Connected ANN
We used a 64-64-30-2 and 64-64-30-1 network for the
first and second experiment respectively, i.e. 64 input
nodes, 64 nodes in the first hidden layer and then 30 in
the second hidden layer. Both networks were fully
connected. The 64-64-30-2 network used threshold
function at the output layer where “1 0” means alive and
“0 1” means dead. The 64-64-30-1 network, on the other
hand, used a sigmoidal function where “0” means dead
and “1” means alive. Configuration like 64-128-50-2, 64-
128-50-20-2, and 64-128-50-30-2 were also tested. It was
found that increasing the network size might not
necessarily improve the accuracy rate while taking much
longer to train. We followed the general delta rule on
changing the link weights. Learning rate with 0.5 and 0.7
were used and the results were found to be similar.

Fig. 1. The input to our partially connected ANN

Partially Connected ANN
Beside the fully connected ANN, a 64-140-50-30-2 and a
64-140-50-30-1 network with specially designed partial
connections between the input and first hidden layer were
also used in experiments one and two respectively. The
board was first divided into subsections (see Fig. 1). Each
neuron in the first hidden layer only connects to a
particular subsection of input neuron. For example, the 9
neurons representing the inputs A1, A2, A3, B1, B2, B3,
C1, C2, and C3 formed a 3x3 subsection. One of the
neurons in first hidden layer will connect to these nine
neurons. We divided the board into 49 2x2 subsections,
36 3x3 subsections and so on. Therefore, in total there
are 49+36+25+16+9+4+1 = 140 neurons in the first
hidden layer with each represent a single subsection. Fig.
2 illustrates our partial connected ANN design.

49, 2x2
subsections

36, 3x3
subsections 4, 7x7

subsections
1, 8x8

 subsection

. . . total 64 input neurons . . .

connect to 4 inputs belong
to its 2x2 subsection

connect to 9 inputs belong
to its 3x3 subsection

connect to 49 inputs belong
to its 7x7 subsection

- 9 - - 49 -
fully connected

 to inputs

fully connected
 to inputs

Input Layer

First
Hidden Layer

Second
Hidden Layer

Third
Hidden Layer

Output Layer

. . . 50 neurons . . .

. . . 30 neurons . . .

2 ouput neuron for
experiment 1 and 1 output

neuron for experiment 2

fully connected

fully connected

fully connected

 Fig. 2. The structure of the partially connected ANN

By pre-encoding some domain knowledge of two-
dimensional proximity into the ANN structure, we
believe the network will perform better. A similar idea
was used for Checkers [12] and in Chan’s experiments
[5].

For Chan’s design, he used 128 neurons and 150 neurons
in the input and first hidden layer respectively. He also
used a similar subsection design [5] as we did. However,
he started at 3x3 instead of 2x2 like we did.

4. OUR PROGRAMS

We first downloaded test/learning board patterns from
Go Game servers in SGF format [17], a commonly used
format to store Go games. Additional patterns were
obtained from classic Go texts, also manually coded in
SGF format.

Perl scripts were then used to post-process the SGF files.
The scripts were used for several tasks. Firstly, the 8x8
corner of interest need to be rotated to the top left corner.
Secondly, we need all the test/training cases to use white
stones as the enclosing stones and black for the enclosed
stones. Thirdly is the isomorphic patterns generation (see
next section).

After this processing, the data files were then separated
into a file for training samples and another for the test
cases. The training data was then feed to our ANN, which
we coded in C using the FANN library [11].

5. RESULTS

We used 748 patterns for Experiment 1. It contained 298
dead patterns from Go books and 450 “life and death”
patterns from final game positions. We randomly selected
200 out from the pool as test cases. Then the remaining
548 patterns were “flipped” to obtain another 548
isomorphic patterns for training. Figures 3 and 4 illustrate
an example of an isomorphic pattern pair.

Fig. 3

Fig. 4

In Experiment 2, 252 alive patterns not in final position
were added. This time we randomly select 250 out from
the pool to be test cases. For Experiment 2, the ANN
need to recognize 3 types of patterns instead of 2 – alive
(final), dead, and alive (not final). There is 50 more test
cases compared with Experiment 1 as the ANN need to
classify an addition type of pattern. The additional tests
make sure the ANN’s recognition rate is a more accurate
measurement. Also, similar to Experiment 1, isomorphic
patterns of the remaining samples were used to generate
additional cases for training.

For our experiments, we used an approximation that if
(EXPECTED-OUTPUT – ANN-OUTPUT)2 < (0.25) 2 =
0.0625, we count it as correct. EXPECTED-OUTPUT
will be 1 for alive patterns (no matter it is in final
position or not) and 0 for dead patterns.

For the Experiment 1, we obtained a 97% accuracy rate,
which was almost identical to results obtained by Chan
[5], which was 96.9%. Chan further improved his results
by hand-selecting training cases. Unfortunately, we do
not have access to Chan’s hand-selected data set, so we
cannot make further comparisons.

On the other hand, we extended our research to not only
cover games in final position, but also non-final
positions. Performing “life and death” determination of
stone patterns not in final position is a much more
difficult problem but necessary to solve if the technique
was to be used to support actual game playing. For this
objective, we developed Experiment 2 and obtained a
94.8% accuracy rate. Unfortunately, we were not able to
find any other research papers that also performed similar
experiments to compare with. However, we believe the
94.8% accuracy rate is extremely high for this complex
task.

6. CONCLUSIONS

In this paper we presented the design of our ANN
structures to solve the “life and death” problem in
Computer Go games. We compared two types of
networks – fully connected and partially connected. We
used these two types of networks to perform learning on
two different data sets – patterns that were in final
positions (Experiment 1) and patterns not in final
positions (Experiment 2). In total, our ANN learned from
over a thousand examples and then tested on over 200
new test cases. The recognition rate for Experiment 1 was
94% and 97% for fully-connected and partial-connected
ANN respectively. The recognition rate for Experiment 2
was 89.6% and 94.8% for fully-connected and partial-
connected ANN respectively.

The partially-connected ANN performed much better
probably because of the domain knowledge of spatial
proximity that was already encoded into the ANN
structure.

We are encouraged by the results of these experiments to
continue to explore how the ANN might be used during
actual Computer Go game playing. The next step is to
explore whether the ANN can, besides just recognition,
be used to produce an actual sequence of moves for the a
life and death problem. For example, by using a mini-
max game tree, we can ask the ANN to generate a score
for each board position. A board position generating
function has already been created. We believe that even
though the ANN by itself might not be able to accurately
find the entire sequence of moves, if the ANN is accurate
enough to just provide the first move that will greatly
decrease the search space already and improve our
chances of winning.

7. ACKNOWLEDGEMENT

The work described in this paper was substantially
supported by a grant from the Research Grants Council
of the Hong Kong Special Administrative Region, China
(Project No. 9040517, CityU 1109/00E). The work
described in this paper was also partially supported by a
grant from the City University of Hong Kong (Project
No. 7001286 and 6980002).

8. REFERENCES

[1] Sensei’s Library, (n.d.) Retrieved 1 May 2004 from
http://senseis.xmp.net

[2] Yen, S.J. and Shun-Chin Hsu, “A Positional
Judgment System for Computer Go,” Advances in
Computer Games, Volume 9, Universiteit Maastricht,
2001, pp. 313-326.

[3] Wolf, T., (20 Nov 2001), GoTools - the Tsume-Go
program, Retrieved 1 May 2004 from
http://www.qmw.ac.uk/~ugah006/gotools/

[4] GNU Go 3.4 Documentation (3 Dec 2003), Retrieved
1 May 2004 from
http://www.gnu.org/software/gnugo/gnugo_toc.html

[5] Chan, W.K. Horace, “Application of Temporal
Difference Learning and Supervised Learning in the
Game of Go” M.Phil Thesis, Chinese University of Hong
Kong, 1996.

[6] Wolf, T., “The Program GoTools and its Computer-
Generated Tsumego Database” In the Proceedings of the
Game Programming Workshop in Japan'94,
Hakone/Japan, Oct. 1994, pp. 84-96.

Tests:

Experiment 1
Accuracy

Experiment 2
Accuracy

64-64-30-2/1 fully
connected ANN

94%
188 / 200

89.6%
224/250

64-140-50-30-2/1
partially connected
ANN

97%
196 / 200

94.8%
237/250

Chan [5] – human
selected training
data set

96.9% Nil

Chan [5] – mixed
training data set

98.45% Nil

[7] Pratola, M. and Thomas Wolf, (2003) “Optimizing
GoTools’ search heuristics using Genetic algorithms”
ICGA Journal, Volume 26, 2003, No 1, pp. 28-49.

[8] IntelligentGo.org Foundation (n.d.), “Overview of
Computer Go,” Retrieved 1 May 2004 from
http://www.intelligentgo.org/en/computer-
go/overview.html

[9] Akinobu Chobi (戸沢昭宣), “Go Game 9 kyu to 1
kyu,” (九級から一級までの詰碁), Seibido Shuppan
(成美堂出版), Japan, ISBN: 4415044239, 1992.

[10] Hayashi (林海峯), translated by Ng (吳仁),
“Fundamentals of Life and Death” (死活的基礎),
Mercury Publishing House (世界文物出版社), Taiwan
ROC, ISBN, 1982.

[11] Fast Artificial Neural Network Library (fann) (31
March 2004), Retrieved 1 May 2004 from
http://fann.sourceforge.net

[12] Fogel, D., Blondie 24, Morgan Kaufmann, ISBN
1558607838, October 2001.

[13] Chellapilla, K. and David Fogel, “Evolving Expert
Checkers playing Program without Using Human
Expertise,” IEEE Trans. Evolutionary Computation, 5(4):
2001, pp. 422-428.

[14] Chellapilla, K. and David Fogel, “Evolution, Neural
Networks, Games, and Intelligence” In the Proceedings
of the IEEE, September, 1999, pp. 1471-1496.

[15] Chellapilla, K. and David Fogel, “Evolving Neural
Networks to Play Checkers without Relying on Expert
Knowledge” In the IEEE Transactions on Neural
Networks, Volume 10, No. 6, November, 1999.

[16] The Legend Go Server, 傳奇圍棋網, (n.d.)
Retrieved 1 May 2004 from http://lgs.taiwango.net

[17] Hollosi, A. (n.d.) SGF File Format FF[4] – Smart
Game Format, Retrieved 1 May 2004 from
http://www.red-bean.com/sgf/

