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ABSTRACT 
 
Tsumego (死活 – Life and Death) is a computer Go game 
sub-problem that determines whether a group of stones is 
safe and free from ever being captured – the “life” state, 
or may potentially be captured after a sequence of moves, 
no matter how he/she defenses it – the “death” state. The 
ability to quickly and accurately determine “life and 
death” is crucial to becoming an expert at Go. Humans 
usually learn this skill by studying examples in classic Go 
books written by professional players. Most examples 
usually use only a corner of the Go board or a side of the 
board to illustrate how to archive “alive” or “dead” state. 
This paper shows how we designed and used an Artificial 
Neural Network (ANN) to simulate this learning process. 
We performed two different experiments – (1) stones in 
“final position” and (2) stones not in “final position. 
Using back propagation learning algorithm with a 
training set of over a 1000 examples of 8x8 corner 
positions, we were able to achieve a very high accuracy 
rate of 97% for final position tests and 94.5% for non-
final position tests. This paper describes the design of our 
ANN and algorithm as well as provides an analysis and 
comparison of our experiment results. 
 
Keywords: Computer Go, Artificial Neural Network, 
Learning. 
 
 

1. INTRODUCTION 
 
Although not too many research projects dealt with the 
Life and Death problem, we were able to find a few to 
compare our work with. For example, Thomas Wolf 
created a program call GoTools [3] which was 
specifically designed to solve Life and Death. The GNU 
Go [4] Documentation also has some explanation on how 
GNU Go solves Life and Death. Horace Chan’s M.Phil 

Thesis [5] also performed related ANN research on Life 
and Death. The following compares our approach with 
these three approaches. 
 
Most of the publications related to Life and Death were 
published by Thomas Wolf, the creator of GoTools [3], a 
proprietary software that solves Life and Death problems. 
From [6, 7], Wolf revealed that GoTools used a heuristic 
approach. In the homepage of GoTools [3], it states that 
GoTools has been ranked as 5-dan by a Nihon Ki-in 
(Japan Go Association) ranked amateur 6-dan player, in 
solving Life and Death. 5-dan is a fairly high ranking. 
The ranking system in Go starts at 30 kyu (weakest) and 
moves up to 1 kyu. After 1 kyu (1k) is 1 dan, with 7 dan 
the highest ranking. 
 
According to IntelligentGo.org [8], it claimed that 
GoTools can actually solve higher dan-level tsumego 
problems. However, we were not able to find the actual 
data or performance statistics.  
 
We tested our benchmark cases with the free Java applet 
version of GoTools. We tested two 1k, one 4k and five 
5k problems take from a tsumego book written by the 
Japanese professional player Akinobu Chobi [9]. All 
these problems were final Life and Death patterns. Out of 
the eight problems, GoTools unfortunately only solved of 
the 5k problems correctly. All others turn out to be miss 
or timeout (300 sec. time out). When we selected the 
medium speed search, it got the two questions correct, 
one time out and all other missed. For the other two 
slower search methods, it returned a wrong answer for 
one of the patterns and timed out on all others. However 
this is a test on the Java applet version of GoTools and 
might not directly reflect the real strength of the actual 
program. 
 



 

On the other hand, GNUGo [4] uses one module to 
extract the Life and Death patterns and passes it to 
another module for evaluation. The pattern reading 
program is called OWL (Optics with Limit Negotiation). 
OWL depends on three pattern databases, which expend 
and limit the moves in the OWL reading. Two different 
modules can be used to evaluate the positions from 
OWL. One is “optics” and the other is “life”. Both 
perform the same job but “life” is more accurate and 
slower than “optics”. However we cannot found any data 
regarding the official ranking of the Life and Death 
reading modules. For the overall strength of GNU Go 
version 3.2, it was ranked at 6k* from the Legend Go 
Server (LGS) [16]. 
 
LGS is an Internet Go Server which will estimate a 
player’s rank when they play with other ranked players 
for more than 15 games. Every player can set her/his 
strength from 30k – 7d. After the system estimates the 
player’s strength, there will be a ‘*’ after the rank. For 
example, GNU Go Version 3.2 is ranked 6k* by LGS.   
 
To the best of our knowledge, the only research related to 
using ANN on Life and Death is from Horace Chan’s 
M.Phil. thesis at the Chinese University of Hong Kong 
[5]. He used a specially designed ANN to recognize 
final-position life and death patterns and obtained a 
96.9% accuracy rate from 387 test patterns of human-
selected training data set. Our first experiment is similar 
to his experiments. However, we went beyond just 
evaluating final position and conducted a second 
experiment with non-final patterns. Our ANN design is 
somewhat different from Chan’s in structure; it is 
smaller. Our experiment results also show that our ANN 
model seems to produce more accurate results. 
 
 

2. OUR EXPERIMENTS 
 
For ANN training and testing, game samples were taken 
from amateur games as well as classic Go texts. The 
amateur games were downloaded from the Legend Go 
Server [16]. The final score requires both sides to agree 
on the life status of every group on the board. However, 
weaker players might not be able to determine life status 
accurately, so only amateur games at the dan level with 
final scores will be used for our experiments. Our 
experiments use inputs within a corner smaller than 8x8. 
“Seki” and “Ko” situations [4] are not included as 
samples are too hard to collect (“seki” are special cases 
where both sides need to sacrifice and “ko” are repeated 
moves than never end). When a pattern exceeds the 8x8 
corner size, it will be trimmed manually if possible while 
not affecting the outcome of life and death. 
 
 
 

Experiment 1 – Final Position 
In the first experiment, we trained our ANN to determine 
life/death status of stones in final position; resigned 
games were not used. In final game position, the score 
and life/death status for each group on board would have 
been agreed upon by both players. Therefore, all 
alive/dead stones are cleared specified. We then extract 
those residing in the 8x8 corner for our experiments. Data 
used in Experiment 1 is similar to the human-selected 
training data set of Chan [5]. 
 
Experiment 2 – Not in Final Position 
In the second experiment, new sample and test cases 
were added to the data pool used in the first experiment. 
Life and death problems were extracted from book 
written by professional players [9, 10]. This includes 
stone patterns that are not in final position. The life and 
death problems that we used were below the 3-kyu level. 
All dead patterns are considered final positions, since no 
matter what move one makes, the opponent will always 
be able to counter it, unless the opponent makes a 
mistake. 
 
There are significant differences in stone patterns not in 
final positions compared with those in final positions. 
Because of the differences, even if a “life and death” 
program was successful in recognizing final positions, it 
might not perform at all well during the actual game. 
Hence we believe Experiment 2 is important in 
measuring the performance of “life and death” software. 

 
 

3. OUR ANN DESIGN 
 
We used the FANN C-library [11] to construct our back-
propagation ANN. Two different ANN structures were 
tested on both Experiments 1 and 2.  
 
Fully Connected ANN 
We used a 64-64-30-2 and 64-64-30-1 network for the 
first and second experiment respectively, i.e. 64 input 
nodes, 64 nodes in the first hidden layer and then 30 in 
the second hidden layer. Both networks were fully 
connected. The 64-64-30-2 network used threshold 
function at the output layer where “1 0” means alive and 
“0 1” means dead. The 64-64-30-1 network, on the other 
hand, used a sigmoidal function where “0” means dead 
and “1” means alive. Configuration like 64-128-50-2, 64-
128-50-20-2, and 64-128-50-30-2 were also tested. It was 
found that increasing the network size might not 
necessarily improve the accuracy rate while taking much 
longer to train. We followed the general delta rule on 
changing the link weights. Learning rate with 0.5 and 0.7 
were used and the results were found to be similar. 
 



 

 
Fig. 1. The input to our partially connected ANN 

 
Partially Connected ANN 
Beside the fully connected ANN, a 64-140-50-30-2 and a 
64-140-50-30-1 network with specially designed partial 
connections between the input and first hidden layer were 
also used in experiments one and two respectively. The 
board was first divided into subsections (see Fig. 1). Each 
neuron in the first hidden layer only connects to a 
particular subsection of input neuron. For example, the 9 
neurons representing the inputs A1, A2, A3, B1, B2, B3, 
C1, C2, and C3 formed a 3x3 subsection. One of the 
neurons in first hidden layer will connect to these nine 
neurons. We divided the board into 49 2x2 subsections, 
36 3x3 subsections and so on. Therefore, in total there 
are 49+36+25+16+9+4+1 = 140 neurons in the first 
hidden layer with each represent a single subsection. Fig. 
2 illustrates our partial connected ANN design. 
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 Fig. 2. The structure of the partially connected ANN 
 
By pre-encoding some domain knowledge of two-
dimensional proximity into the ANN structure, we 
believe the network will perform better. A similar idea 
was used for Checkers [12] and in Chan’s experiments 
[5]. 
 
For Chan’s design, he used 128 neurons and 150 neurons 
in the input and first hidden layer respectively. He also 
used a similar subsection design [5] as we did. However, 
he started at 3x3 instead of 2x2 like we did. 
 

 
4. OUR PROGRAMS 

 
We first downloaded test/learning board patterns from 
Go Game servers in SGF format [17], a commonly used 
format to store Go games. Additional patterns were 
obtained from classic Go texts, also manually coded in 
SGF format. 
 
Perl scripts were then used to post-process the SGF files. 
The scripts were used for several tasks. Firstly, the 8x8 
corner of interest need to be rotated to the top left corner. 
Secondly, we need all the test/training cases to use white 
stones as the enclosing stones and black for the enclosed 
stones. Thirdly is the isomorphic patterns generation (see 
next section).  
 
After this processing, the data files were then separated 
into a file for training samples and another for the test 
cases. The training data was then feed to our ANN, which 
we coded in C using the FANN library [11].  
 
 

5. RESULTS 
 
We used 748 patterns for Experiment 1. It contained 298 
dead patterns from Go books and 450 “life and death” 
patterns from final game positions. We randomly selected 
200 out from the pool as test cases. Then the remaining 
548 patterns were “flipped” to obtain another 548 
isomorphic patterns for training. Figures 3 and 4 illustrate 
an example of an isomorphic pattern pair.  
 

 
Fig. 3 

 
Fig. 4 

 
In Experiment 2, 252 alive patterns not in final position 
were added. This time we randomly select 250 out from 
the pool to be test cases. For Experiment 2, the ANN 
need to recognize 3 types of patterns instead of 2 – alive 
(final), dead, and alive (not final). There is 50 more test 
cases compared with Experiment 1 as the ANN need to 
classify an addition type of pattern. The additional tests 
make sure the ANN’s recognition rate is a more accurate 
measurement. Also, similar to Experiment 1, isomorphic 
patterns of the remaining samples were used to generate 
additional cases for training.  
 



 

For our experiments, we used an approximation that if 
(EXPECTED-OUTPUT – ANN-OUTPUT)2 < (0.25) 2 = 
0.0625, we count it as correct. EXPECTED-OUTPUT 
will be 1 for alive patterns (no matter it is in final 
position or not) and 0 for dead patterns.  

 
For the Experiment 1, we obtained a 97% accuracy rate, 
which was almost identical to results obtained by Chan 
[5], which was 96.9%. Chan further improved his results 
by hand-selecting training cases. Unfortunately, we do 
not have access to Chan’s hand-selected data set, so we 
cannot make further comparisons.  
 
On the other hand, we extended our research to not only 
cover games in final position, but also non-final 
positions. Performing “life and death” determination of 
stone patterns not in final position is a much more 
difficult problem but necessary to solve if the technique 
was to be used to support actual game playing. For this 
objective, we developed Experiment 2 and obtained a 
94.8% accuracy rate. Unfortunately, we were not able to 
find any other research papers that also performed similar 
experiments to compare with. However, we believe the 
94.8% accuracy rate is extremely high for this complex 
task. 
 
 

6. CONCLUSIONS 
 
In this paper we presented the design of our ANN 
structures to solve the “life and death” problem in 
Computer Go games. We compared two types of 
networks – fully connected and partially connected. We 
used these two types of networks to perform learning on 
two different data sets – patterns that were in final 
positions (Experiment 1) and patterns not in final 
positions (Experiment 2). In total, our ANN learned from 
over a thousand examples and then tested on over 200 
new test cases. The recognition rate for Experiment 1 was 
94% and 97% for fully-connected and partial-connected 
ANN respectively. The recognition rate for Experiment 2 
was 89.6% and 94.8% for fully-connected and partial-
connected ANN respectively. 
 

The partially-connected ANN performed much better 
probably because of the domain knowledge of spatial 
proximity that was already encoded into the ANN 
structure.  
 
We are encouraged by the results of these experiments to 
continue to explore how the ANN might be used during 
actual Computer Go game playing. The next step is to 
explore whether the ANN can, besides just recognition, 
be used to produce an actual sequence of moves for the a 
life and death problem. For example, by using a mini-
max game tree, we can ask the ANN to generate a score 
for each board position. A board position generating 
function has already been created. We believe that even 
though the ANN by itself might not be able to accurately 
find the entire sequence of moves, if the ANN is accurate 
enough to just provide the first move that will greatly 
decrease the search space already and improve our 
chances of winning. 
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