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ABSTRACT 
 
This paper describes research in developing an airport check-in counter allocation 
system using a genetic algorithm (GA) approach.  The task is to allocate a set of 
check-in counters for a particular duration such that all the passengers of each 
departing flight are adequately serviced in time.  We have formulated this problem as 
a two-dimensional placement problem with time and counter as the dimensions.  The 
system was implemented with Koza’s genetic programming kernel in Common Lisp.  
This paper describes how fitness-directed scheduling can be applied to airport 
check-in counter allocation and the three knowledge representations that we have 
experimented with. 
 
KEYWORDS 
 
genetic algorithm, constraint-based scheduling, resource allocation, expert system 

 
 
1.  INTRODUCTION 
 
This paper describes research in developing an airport check-in counter allocation system 
using a genetic algorithm (GA) approach [12].  The main objectives of our research is to 
design and implement a system to automate and optimise check-in counter allocation in an 
international airport where check-in counters are centrally allocated.  The GA approach [4, 5, 
6] was investigated as an alternative to other forms of scheduling, such as constraint-based 
scheduling [1, 7, 8, 11, 13, 14].  Currently at this airport, the allocation schedule is 
constructed by hand.  This takes several days to more than a week during seasonal 
planning.  Due to increasing traffic, a new system is needed that can automatically create an 
allocation plan based upon preset rules and criteria to more effectively utilise the somewhat 
limited check-in counter resources.  We implemented a system called CCAS using Koza’s 
Common Lisp genetic programming kernel [9, 10]. 
 
 CCAS (see Fig. 1) is a planning tool to generate two key output - (1) an allocation 
Gantt chart for each day of the week, and (2) reports to notify each airline of their check-in 
counter assignments.  The input to CCAS is a master seasonal schedule which lists all the 
flights for the season and the check-in counter requirement for each flight.  Information 
includes the airline, departure time, destination, passenger load factor, type of check-in, 
number of counters required, etc. 

 
 Since knowledge representation is a key issue in GA work, this is a main focus in our 
research.  We have experimented with three different approaches to representing flights and 
check-in counters within the GA framework. 
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Figure 1.  The System Architecture of CCAS. 
 
 
2.  THE GENETIC ALGORITHM APPROACH 
 
In GA, populations of individuals are genetically bred.  This breeding is done using the 
Darwinian principle of survival [2, 3], reproduction of the fittest, and a genetic recombination 
(crossover) operation.  An individual that solves (or approximately solves) a given problem 
may emerge from this combination of Darwinian natural selection and genetic operations.  In 
CCAS, individuals represent alternative allocation plans for one day - a two-dimensional 
Gantt chart of check-in counters versus time where check-in counter assignment blocks for 
given flights are randomly placed.  The fittest individual is the “best” allocation plan for that 
day. 
 
 Fitness measure - Each individual in the population is measured in terms of how 
well it performs in the particular environment.  This measure is called the fitness measure.  
The CCAS fitness measure indicates the overall effectiveness of the allocation plan and how 
well allocation criteria are met (see Section 3 for details). 
 
 Reproduction - As the first step in GA, a population of individuals is randomly 
created - this is generation 0.  Unless the problem is so small and simple that it can be easily 
solved by blind random search, the individuals in generation 0 will have very poor fitness. 
Nonetheless, some individuals in the population will turn out to be somewhat fitter than 
others.  These differences in performance are then exploited.  The fittest individual will be 
selected for reproduction. 
 
 The Darwinian principle of reproduction, survival of the fittest, and the genetic 
operation of sexual recombination (crossover) are used to create a new offspring population 
of individuals from the current population.  The reproduction operation involves selecting, in 
proportion to fitness, an individual from the current population, and allowing it to survive by 
copying it into the new population.  In CCAS, good allocation plans will continue to survive, 
reproduce, and hopefully result in better offspring.   
 
 Crossover - The genetic process of reproduction between two parental individuals is 
used to create new offspring from two allocation plans selected in proportion to fitness.  
Intuitively, if two allocation plans are somewhat effective in solving the check-in counter 
problem, then some of their check-in counter assignments probably good.  By recombining 
randomly chosen assignments of somewhat effective allocation plans, we may produce new 
allocation plans that are even more optimised in solving the problem.   
 
 After the operations of reproduction and crossover are performed on the current 
population, the population of offspring (i.e. the new generation) replaces the old population 



(i.e. the old generation).  Each individual in the new population is then measured for fitness, 
and the process is repeated over many generations. 
 
 Algorithm - The GA used by CCAS (see Fig. 2) can be summarised to solve the 
check-in counter allocation problem by executing the following three steps: 
 

Step 1:  Generate an initial population of allocation plans (GA individuals) consisting 
of random assignments of check-in counters to flights. 
 

Step 2:  Iteratively perform the following sub-steps until the termination criterion has 
been satisfied: 

 
(a)  Evaluate each allocation plan and assign to it a fitness value according 

to how well it fulfils the allocation criteria. 
 
(b)  Create a new population of allocation plans by applying the following 

two primary operations. The operations are applied to allocation plans in 
the population chosen with a probability based on fitness. 

(i)  Copy existing allocation plan to the new population. 
(ii)  Create new allocation plans by genetically recombining randomly 

chosen parts of two existing plans. 
 
Step 3: The best allocation plan that appeared in any generation (i.e. the best-so-

far individual) is designated as the result of CCAS. 
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Figure 2.  Flowchart of GA used by CCAS 
 
  



3.  CCAS FITNESS MEASURE 
 
Each GA individual in CCAS is represented as an two dimensional plan in which check-in 
counters act as the vertical axis versus the time.  In the Fig. 3 example, J1, J2, J3 and etc., 
are the check-in counters in the airport and the horizontal axis is the regular opening time of 
all counters. 
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Figure 3. Logical representation of an GA individual in CCAS 
 
 CCAS allocates and optimises check-in counters allocation by fulfilling the following 
allocation rules and criteria.  Firstly, the system should allocate check-in counters to each 
flight in accordance to the number of counter required by the flight as well as the opening 
and the closing times of the check-in counters for a flight.  Secondly, the system should 
satisfy the requested number of counter of each flight as much as possible.  Thirdly, the 
system should consider the passengers arrival profile whenever conflicts happen. 
 
 Conflicts occur whenever there are overlapping of blocks in the allocation plan.  It is 
a time conflict in which a counter is assigned to more than one flight at the same time.  Very 
often, the number of check-in counter is inadequate to satisfy the demand from the flights, 
especially in the peak hour of the airport.  Therefore, overlaps may be unavoidable.  
Statistics are provided by the airport to indicate when passengers will usually arrive to 
check-in during the check-in time duration of a flight.  Very often, the peak is somewhere in 
the middle of the check-in duration.  Therefore, conflicting counters are allowed in periods 
where less passengers are expected to check-in.  The number of check-in counters to be 
assigned to the overlapping flights will be reduced during the overlapping period. 
 
 Fitness measure is the driving force behind GA; it defines which individual can 
survive and successfully reproduce.  In CCAS, fitness is measured in terms of the number of 
overlaps found in the allocation plan (individual).  In other words, it is desirable for an 
individual to have less number of overlap of blocks of flight so as to satisfy the allocation 
rules and criteria mentioned before. 
 
 In CCAS, two types of overlap are defined: the homogeneous overlap and the 
heterogeneous overlap. Homogeneous overlap is the time conflict between flights of the 
same airline companies while heterogeneous overlap is the time conflict between flights of 
different airline companies.  In airport, it is common for flights of the same airline to share the 
same counters so as to spare more counters for the use by other flights of different airline 
especially in the peak hours of the airport.  However, it is impossible for the flights of 
different airline to commonly use the same counters allocation.  Therefore, the goal of the 
optimisation of the check-in counter allocation is to, whenever there exists unavoidable 
overlap in the individual, minimise the heterogeneous overlap by allowing minimum amount 
of the homogeneous overlap in the individual. 



 
 
4.  THREE CCAS REPRESENTATIONS 
 
Representation is a key issue in genetic algorithm work because GA directly manipulate a 
coded representation of the problem and the representation scheme can severely limit the 
window by which a system observes its world. 
 
 In CCAS, an individual is a two dimensional plan, with check-in counters plotted 
versus time, into which blocks of flight are placed.  In GA, an individual is randomly created 
according to pre-defined structure of the representation.  Therefore, apart from the GA 
kernel, a counter set is defined so that elements in the set are chosen randomly to build the 
individual.  Obviously, the counter set is the set of all check-in counters to be used.  Three 
encodings of the CCAS representation were tried and evaluated. 
 
4.1.  Version 0 
 
When an individual was encoded, apart from the counter set, a flight set was also defined to 
contain all flights to be scheduled.  An individual was then created by randomly choosing 
flights from the flight set.  In accordance with the number of counter required by that flight, 
counters from the counter set were assigned to the flight at random.  However, the problem 
of this approach is that duplicated flights would appear in the same individual which is illegal 
since no flight should be scheduled more than once in an individual.  It is caused by the 
random assignment of flights in the flight set.  
 
4.2.  Version 1 
 
To amend the deficiency of Version 0, Version 1 does not use flight set.  Instead, flights to 
be scheduled are stored in an array.  Like Version 0, according to the number of counter 
required by the flight, counters are assigned to the flight randomly from the counter set.  
Under this approach, only the counters are chosen at random; flights are scheduled one at a 
time.  Nonetheless, when using Version 1, additional function is required to check the 
adjacency of check-in counters assigned as one of the fitness-value assignment functions.  
Certainly, the search space is very large for this encoding scheme which results in 
inefficiency and large time consumption. 
 
4.3.  Version 2 
 
To improve the performance of Version 1, Version 2 was implemented. Version 2 differs in 
that no matter how many counters are requested by the flight, only one counter is chosen 
randomly at first.  Automatically, consecutive counters will be assigned to the flight by CCAS.  
Under this approach, the adjacency of the counters is ascertained.  For instance, counter 
‘J6’ is chosen to ‘Flight #1’.  Assuming that four counters are required in ‘Flight #1’, 
automatically, three consecutive counters after ‘J6’, namely, ‘J7’, ‘J8’ and ‘J9’ are assigned 
to the ‘flight #1’.  This scheme greatly reduce the search space of the problem and, by all 
means, improve the efficiency of the system. 
 
 



5.  CONCLUSION 
 
A check-in counter allocation system using genetic algorithms was successfully designed 
and implemented.  It is used to amend the deficiency of the current manual approach by 
providing automation and optimisation for check-in counter allocation and a graphical user 
interface.  In applying genetic algorithms, fitness-directed scheduling was derived and was 
used to achieve the goal of optimisation.  Moreover, three knowledge representations was 
tried and evaluated. 
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