
Proceedings of the Seventh Int’l Conf. on Artificial Intelligence and Expert Systems Applications,
 San Francisco, November, 1995.

CHECK-IN COUNTER ALLOCATION USING GENETIC ALGORITHM

Bryan Kit Wang Yeung & Hon Wai Chun

City University of Hong Kong

Department of Electronic Engineering
Tat Chee Avenue

Kowloon, Hong Kong
email: eehwchun@cityu.edu.hk

ABSTRACT

This paper describes research in developing an airport check-in counter allocation
system using a genetic algorithm (GA) approach. The task is to allocate a set of
check-in counters for a particular duration such that all the passengers of each
departing flight are adequately serviced in time. We have formulated this problem as
a two-dimensional placement problem with time and counter as the dimensions. The
system was implemented with Koza’s genetic programming kernel in Common Lisp.
This paper describes how fitness-directed scheduling can be applied to airport
check-in counter allocation and the three knowledge representations that we have
experimented with.

KEYWORDS

genetic algorithm, constraint-based scheduling, resource allocation, expert system

1. INTRODUCTION

This paper describes research in developing an airport check-in counter allocation system
using a genetic algorithm (GA) approach [12]. The main objectives of our research is to
design and implement a system to automate and optimise check-in counter allocation in an
international airport where check-in counters are centrally allocated. The GA approach [4, 5,
6] was investigated as an alternative to other forms of scheduling, such as constraint-based
scheduling [1, 7, 8, 11, 13, 14]. Currently at this airport, the allocation schedule is
constructed by hand. This takes several days to more than a week during seasonal
planning. Due to increasing traffic, a new system is needed that can automatically create an
allocation plan based upon preset rules and criteria to more effectively utilise the somewhat
limited check-in counter resources. We implemented a system called CCAS using Koza’s
Common Lisp genetic programming kernel [9, 10].

 CCAS (see Fig. 1) is a planning tool to generate two key output - (1) an allocation
Gantt chart for each day of the week, and (2) reports to notify each airline of their check-in
counter assignments. The input to CCAS is a master seasonal schedule which lists all the
flights for the season and the check-in counter requirement for each flight. Information
includes the airline, departure time, destination, passenger load factor, type of check-in,
number of counters required, etc.

 Since knowledge representation is a key issue in GA work, this is a main focus in our
research. We have experimented with three different approaches to representing flights and
check-in counters within the GA framework.

Flight
information

CCAS

Counter Scheduler

Genetic algorithms Kernel

Graphical
output

Figure 1. The System Architecture of CCAS.

2. THE GENETIC ALGORITHM APPROACH

In GA, populations of individuals are genetically bred. This breeding is done using the
Darwinian principle of survival [2, 3], reproduction of the fittest, and a genetic recombination
(crossover) operation. An individual that solves (or approximately solves) a given problem
may emerge from this combination of Darwinian natural selection and genetic operations. In
CCAS, individuals represent alternative allocation plans for one day - a two-dimensional
Gantt chart of check-in counters versus time where check-in counter assignment blocks for
given flights are randomly placed. The fittest individual is the “best” allocation plan for that
day.

 Fitness measure - Each individual in the population is measured in terms of how
well it performs in the particular environment. This measure is called the fitness measure.
The CCAS fitness measure indicates the overall effectiveness of the allocation plan and how
well allocation criteria are met (see Section 3 for details).

 Reproduction - As the first step in GA, a population of individuals is randomly
created - this is generation 0. Unless the problem is so small and simple that it can be easily
solved by blind random search, the individuals in generation 0 will have very poor fitness.
Nonetheless, some individuals in the population will turn out to be somewhat fitter than
others. These differences in performance are then exploited. The fittest individual will be
selected for reproduction.

 The Darwinian principle of reproduction, survival of the fittest, and the genetic
operation of sexual recombination (crossover) are used to create a new offspring population
of individuals from the current population. The reproduction operation involves selecting, in
proportion to fitness, an individual from the current population, and allowing it to survive by
copying it into the new population. In CCAS, good allocation plans will continue to survive,
reproduce, and hopefully result in better offspring.

 Crossover - The genetic process of reproduction between two parental individuals is
used to create new offspring from two allocation plans selected in proportion to fitness.
Intuitively, if two allocation plans are somewhat effective in solving the check-in counter
problem, then some of their check-in counter assignments probably good. By recombining
randomly chosen assignments of somewhat effective allocation plans, we may produce new
allocation plans that are even more optimised in solving the problem.

 After the operations of reproduction and crossover are performed on the current
population, the population of offspring (i.e. the new generation) replaces the old population

(i.e. the old generation). Each individual in the new population is then measured for fitness,
and the process is repeated over many generations.

 Algorithm - The GA used by CCAS (see Fig. 2) can be summarised to solve the
check-in counter allocation problem by executing the following three steps:

Step 1: Generate an initial population of allocation plans (GA individuals) consisting
of random assignments of check-in counters to flights.

Step 2: Iteratively perform the following sub-steps until the termination criterion has
been satisfied:

(a) Evaluate each allocation plan and assign to it a fitness value according

to how well it fulfils the allocation criteria.

(b) Create a new population of allocation plans by applying the following

two primary operations. The operations are applied to allocation plans in
the population chosen with a probability based on fitness.

(i) Copy existing allocation plan to the new population.
(ii) Create new allocation plans by genetically recombining randomly

chosen parts of two existing plans.

Step 3: The best allocation plan that appeared in any generation (i.e. the best-so-

far individual) is designated as the result of CCAS.

Randomly
generate an initial

population of
individuals

Execute each
individual in the

population

Assign fitness
value according
to how well it

solves the
problem

Create new
individual by
genetically

recombining
randomly chosen

parts of two
existing

individuals

Based on the
fitness value,
copy existing

individuals to the
new population

The best-
so-far

individual

Figure 2. Flowchart of GA used by CCAS

3. CCAS FITNESS MEASURE

Each GA individual in CCAS is represented as an two dimensional plan in which check-in
counters act as the vertical axis versus the time. In the Fig. 3 example, J1, J2, J3 and etc.,
are the check-in counters in the airport and the horizontal axis is the regular opening time of
all counters.

Check-in
counters

Time
0400 0500 0600 0700 0800

J1
J2

J3

J4

J5

J6

Flight #1

Flight #2

Flight #3

Flight #4

Flight #5

Figure 3. Logical representation of an GA individual in CCAS

 CCAS allocates and optimises check-in counters allocation by fulfilling the following
allocation rules and criteria. Firstly, the system should allocate check-in counters to each
flight in accordance to the number of counter required by the flight as well as the opening
and the closing times of the check-in counters for a flight. Secondly, the system should
satisfy the requested number of counter of each flight as much as possible. Thirdly, the
system should consider the passengers arrival profile whenever conflicts happen.

 Conflicts occur whenever there are overlapping of blocks in the allocation plan. It is
a time conflict in which a counter is assigned to more than one flight at the same time. Very
often, the number of check-in counter is inadequate to satisfy the demand from the flights,
especially in the peak hour of the airport. Therefore, overlaps may be unavoidable.
Statistics are provided by the airport to indicate when passengers will usually arrive to
check-in during the check-in time duration of a flight. Very often, the peak is somewhere in
the middle of the check-in duration. Therefore, conflicting counters are allowed in periods
where less passengers are expected to check-in. The number of check-in counters to be
assigned to the overlapping flights will be reduced during the overlapping period.

 Fitness measure is the driving force behind GA; it defines which individual can
survive and successfully reproduce. In CCAS, fitness is measured in terms of the number of
overlaps found in the allocation plan (individual). In other words, it is desirable for an
individual to have less number of overlap of blocks of flight so as to satisfy the allocation
rules and criteria mentioned before.

 In CCAS, two types of overlap are defined: the homogeneous overlap and the
heterogeneous overlap. Homogeneous overlap is the time conflict between flights of the
same airline companies while heterogeneous overlap is the time conflict between flights of
different airline companies. In airport, it is common for flights of the same airline to share the
same counters so as to spare more counters for the use by other flights of different airline
especially in the peak hours of the airport. However, it is impossible for the flights of
different airline to commonly use the same counters allocation. Therefore, the goal of the
optimisation of the check-in counter allocation is to, whenever there exists unavoidable
overlap in the individual, minimise the heterogeneous overlap by allowing minimum amount
of the homogeneous overlap in the individual.

4. THREE CCAS REPRESENTATIONS

Representation is a key issue in genetic algorithm work because GA directly manipulate a
coded representation of the problem and the representation scheme can severely limit the
window by which a system observes its world.

 In CCAS, an individual is a two dimensional plan, with check-in counters plotted
versus time, into which blocks of flight are placed. In GA, an individual is randomly created
according to pre-defined structure of the representation. Therefore, apart from the GA
kernel, a counter set is defined so that elements in the set are chosen randomly to build the
individual. Obviously, the counter set is the set of all check-in counters to be used. Three
encodings of the CCAS representation were tried and evaluated.

4.1. Version 0

When an individual was encoded, apart from the counter set, a flight set was also defined to
contain all flights to be scheduled. An individual was then created by randomly choosing
flights from the flight set. In accordance with the number of counter required by that flight,
counters from the counter set were assigned to the flight at random. However, the problem
of this approach is that duplicated flights would appear in the same individual which is illegal
since no flight should be scheduled more than once in an individual. It is caused by the
random assignment of flights in the flight set.

4.2. Version 1

To amend the deficiency of Version 0, Version 1 does not use flight set. Instead, flights to
be scheduled are stored in an array. Like Version 0, according to the number of counter
required by the flight, counters are assigned to the flight randomly from the counter set.
Under this approach, only the counters are chosen at random; flights are scheduled one at a
time. Nonetheless, when using Version 1, additional function is required to check the
adjacency of check-in counters assigned as one of the fitness-value assignment functions.
Certainly, the search space is very large for this encoding scheme which results in
inefficiency and large time consumption.

4.3. Version 2

To improve the performance of Version 1, Version 2 was implemented. Version 2 differs in
that no matter how many counters are requested by the flight, only one counter is chosen
randomly at first. Automatically, consecutive counters will be assigned to the flight by CCAS.
Under this approach, the adjacency of the counters is ascertained. For instance, counter
‘J6’ is chosen to ‘Flight #1’. Assuming that four counters are required in ‘Flight #1’,
automatically, three consecutive counters after ‘J6’, namely, ‘J7’, ‘J8’ and ‘J9’ are assigned
to the ‘flight #1’. This scheme greatly reduce the search space of the problem and, by all
means, improve the efficiency of the system.

5. CONCLUSION

A check-in counter allocation system using genetic algorithms was successfully designed
and implemented. It is used to amend the deficiency of the current manual approach by
providing automation and optimisation for check-in counter allocation and a graphical user
interface. In applying genetic algorithms, fitness-directed scheduling was derived and was
used to achieve the goal of optimisation. Moreover, three knowledge representations was
tried and evaluated.

REFERENCES

1. Atabakhsh, H., “A survey of constraint based scheduling systems using an artificial

intelligence approach”, Artificial Intelligence in Engineering, 1991, Vol 6, No 2,
2. Booker, B., D.E. Goldberg and J.H. Holland, “Classifier Systems and Genetic

Algorithms”, Artificial Intelligence 40 (1-3):235-282, September 1989,
3. Davis, Lawrence(editor), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New

York, 1991,
4. Davis, Lawrence, editor, Genetic Algorithms and Simulated Annealing, Morgan

Kaufmann, 1989,
5. Filho, Jose L. Ribeiro, Philip C. Treleaven, and Cesare Alippi, “Genetic-Algorithm

Programming Environments”, IEEE Computer 27(6):28-43, July 1994,
6. Goldberg, David E., Genetic Algorithms in Search, Optimization, and Machine learning,

Addison-Wesley, Reading, MA, 1989,
7. Kempf, Karl, Claude le Pape, Stephen F. Smith and Barry R. Fox, “Issues in the Design

of AI-Based Schedulers: A Workshop Report”, AI Magazine, 11(5):37-46, 1991,
8. Kempf, Karl, Bruce Russell, Anjiv Sidhu and Stu Barrett, “AI-Based Scehdulers in

Manufacturing Practice: Report of a Panel Discussion”, AI Magazine, 11(5): 46-55, 1991,
9. Koza, John R., Genetic Programming: On the Programming of Computers by Means of

Natural Selection, MIT Press, 1992,
10. Koza, John R., Genetic ProgrammingII: Automatic Discovery of Reusable Subprograms,

MIT Press, 1994,
11. Kumar, Vipin, “Algorithms for Constraint-Satisfaction Problems: A Survey”, AI Magazine,

12(2):32-44, 1992,
12. Srinivas, M. and Lalit M. Patnaik, “Genetic Algorithms: A Survey”, IEEE Computer 27(6):

17-26, July 1994,
13. Steffen, Mitchell S., “A Survey of Artificial Intelligence-Based Scheduling System”,

Institute of Industrial Engineers, 1986 Fall Industrial Engineering Conference
Proceedings, 1986.

14. Suresh, V. and Dipak Chaudhuri, “Dynamic scheduling - Survey of research”,
International Journal of Production Economics, 32(1993) 53-63,

