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timal solution of (49), where the righthand side of the outage
constraints in (49) are replaced by

where and are given by (46) and (47) respectively, for all .
Proof: Theorem 1 proves the convergence of in Step

1 and 2 of Algorithm 3, and also
. From Corollary 4, con-

verges to a point that satisfies

which always satisfies . This proves
Corollary 5.
Remark 6: If for all

, then in Algorithm 3.
Remark 7: We remark that, whenever the total power min-

imization problem in (48) is infeasible, the output from Algo-
rithm 2 or AOPC only satisfies the power budget constraints,
e.g., in (5) and (6), but they do not satisfy the outage probability
specification constraint set in (48). We will numerically eval-
uate the performance of Algorithm 2 and AOPC in terms of the
total power consumption obtained by the algorithm output and
the number of users that do not satisfy the outage probability
specification constraint in Section VI.

C. Practical Implementation Issues and Extensions
In this section, we discuss practical implementation issues

related to Algorithm 1 and Algorithm AOPC. Algorithm 1
solves the worst outage probability problem in the general
setting. From an algorithm complexity viewpoint, this has
improved the state-of-art in [14], in which the algorithm de-
sign methodology is based on the interior point method to
solve convex optimization problems (particularly geometric
programs in convex form). From a practical perspective, Algo-
rithm 1 is more attractive than interior point methods in terms
of computational complexity and ease of decentralized imple-
mentation. This means that Algorithm 1 can handle large-scale
problem setting, which is a key feature of next-generation
heterogeneous wireless networks. It is interesting to study how
to obtain a fully-distributed Algorithm 1 and Algorithm AOPC,
i.e., without requiring message passing and normalization of
the iterates (in Step 2 of Algorithm 1 and Algorithm AOPC),
as future work.

VI. NUMERICAL EVALUATION
In this section, we evaluate the performance of Algorithms 1,

2 and AOPC. Fig. 3 illustrates the basic macro-small cell inter-
ference network model used in [2] for our simulations. A small
cell user is a link between the home access terminal and access
point (box of Fig. 3), and interference comes from the macrocell
base station/access terminals and other small cell users. We con-
sider a single macrocell base station with 50 access terminals
that consist of both macrocell and small cell users (closed-ac-
cessmodewith one user in each small cell). Each user communi-
cates with its respective base station over independent Rayleigh

Fig. 3. Amacro-small cell model. The parameter dB, dB and dB denote
path gain between MAP and HAP, between HAP and HAT and between HAP
and MAT respectively (cf. [2, Table 2] for values of ).

Fig. 4. Experiment 1. Convergence of power (in Watts and illustrated above
in logarithmic scale) from different initial points for five small cell users using
Algorithm 1.

fading channels, and experience interference between macro
and small cells. We use the dense-urban propagation parame-
ters in [2, Table 2]. Typical values of the channel coupling ( )
between the macro access point and the other network entities,
e.g., home access terminal and macro access terminal, ranges
from 100 dB to 140 dB, the channel coupling between the home
access point and the home access terminal ( ) or the coupling
between the home access point and the macro access terminal
( ) are typically 80 dB.

A. Experiment 1 (Convergence of Algorithm 1)
Fig. 4 shows the convergence of Algorithm 1 for five small

cell users from ten different initial points. To verify the opti-
mality correctness of the converged solution of Algorithm 1,
we have also solved (14) using an interior point method algo-
rithm for comparison purpose. Simulations show that conver-
gence happens in less than ten iterations even for thousands of
users and a large power range, e.g., 125 mW to 2 W (max-
imum output of UMTS/3G Power Class 4 to Class 1 mobile
phone, respectively).
From Theorem 3, Algorithm 1 can be viewed as a nonlinear

power method in linear algebra. It is well known that the con-
vergence rate of the power method is determined by the ratio of
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Fig. 5. Experiment 2. We plot the evolution of the total power consumption for two networks with 100 and 200 small cell users as we vary . A time slot on the
-axis of each graph refers to a power update iteration. Ten and fifty percent of the users are removed at time slot 30 and 70 respectively. The top left graph, top

right graph, bottom left graph and bottom right graph show the case for , , and respectively. The power consumption
difference between Algorithms 2 and AOPC, and the fraction of the number of users meeting the given threshold are in text form.

the second dominant eigenvalue to the Perron-Frobenius eigen-
value [24]. The method converges slowly if this ratio is close
to one. Now, this ratio for (cf. fourth and fifth row of
Table I) determines only the local convergence rate of Algo-
rithm 1 near the fixed point . Since the CEM solution is nu-
merically observed to give good approximation to (espe-
cially in the regime of low power and small , cf. Fig. 2), this
ratio is conceivably close to those computed using the CEM so-
lution (cf. second and third row of Table I), which on the other
hand determines a global convergence rate for the CEM case.
We empirically determine this ratio to be in the range of 0.2 –
0.4 using the parameters in [2]. The worst outage probability
bounds in Corollary 1 are thus useful for numerically analyzing
the overall convergence rate of Algorithm 1.

B. Experiment 2 (Comparison Between Algorithms 2 and
AOPC)
We next provide numerical examples to compare the total

power consumption using Algorithms 2 and AOPC to find a
power solution when (48) is infeasible. Fig. 5 shows the total

power evolution in a network with initially 100 and 200 small
cell users. Then, ten and fifty percent of the users are removed
at time slot 30 and 70 respectively. On each graph, the differ-
ence in total power and the fraction of users that satisfy their
outage probability threshold are recorded. As illustrated, in
comparison to AOPC, Algorithm 2 can lead to an increased
total power consumption of 50% or more in all cases at the ex-
pense of a smaller number of users meeting . On the other
hand, the infeasibility of (48) leads to the phenomenon that
some users who run Algorithm 2 are not able to achieve
and thus have to transmit at . By enforcing a worst outage
probability fairness across all users, AlgorithmAOPC computes
power that are typically smaller than , thus leading to a smaller
total power consumption.

C. Experiment 3 (Performance Comparison Between
Macrocell and Small Cell Users)
In this experiment, we evaluate the performance of Algo-

rithms 2 and AOPC in a macrocell network with a cell radius
of 1.4 km and with fifteen randomly located small cell users.
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Fig. 6. Performance comparison of the three scenarios in terms of the average
percentage of macrocell users meeting the outage constraints over 5000
simulations.

Each user in the small cell and macrocell network communi-
cates with its base station over channels with pass loss of

and ,
where is the distance in kilometers, respectively. Each user has
a maximum power constraint of 500 mW (27 dBm), and each
user is served one independent data stream from its base sta-
tion. The noise power spectral density is set to .
We assign an outage probability specification of 2% and SINR
thresholds of 5 dB to all the macrocell and small cell users.
We analyze the performance of three scenarios, namely Sce-

nario 1: when all the small cell basestations are switched off,
i.e., all the access terminals are macrocell users and use Al-
gorithm 2, Scenario 2: when all the small cell basestations are
switched on and all the users use Algorithm 2 and Scenario 3:
all macrocell users use Algorithm 2 and all small cell users use
Algorithm AOPC15. The normalization of at Step 2 of Al-
gorithm AOPC can be performed by the small cell users in a dis-
tributed manner assuming that there is perfect exchange of coor-
dination between the small cell base stations and the macrocel-
lular network. The three scenarios are run over 5000 numerical
simulations with the fifteen small cell users randomly placed in
the cell at each simulation run.
We compare the average percentage of macrocell users that

meet the given outage constraints among the three scenarios in
Fig. 6. Fig. 7 compares the total power consumption for the
three scenarios. By comparing Scenarios 1 and 2 as shown in
Figs. 6 and 7, the deployment of small cell improves the per-
centage of users meeting the given outage constraints, but the
total power consumption may not be appreciable. By comparing
the performance of Scenarios 2 and 3, we observe that, by al-
lowing small cell users to have a min-max outage probability

15By letting macrocell users and small cell users to run Algorithm 2 and Al-
gorithm AOPC respectively essentially places a higher priority on macrocell
users as compared to small cell users since the outage probability of macrocell
users should not deviate from given specification whereas that of the small cell
users can be higher than the given specification.

Fig. 7. Performance comparison of the three scenarios in terms of the average
total power consumption of all the users over 5000 simulations.

fairness, the power consumption difference between Algorithm
2 and AOPC can be as much as 50%. This saving of energy con-
sumption comes at the expense of a larger number of small cell
users not meeting their outage constraints as compared to that
of Algorithm 2.

VII. CONCLUSION
We studied the worst outage probability problem that have

power constraints in a multiuser Rayleigh-faded network using
tools from the nonlinear Perron-Frobenius theory and nonnega-
tive matrix theory. The optimal value and solution can be char-
acterized by the spectral property of matrices induced by a par-
ticular positive mapping. We then proposed a geometrically fast
convergent algorithm, free of parameter tuning, to solve it op-
timally in a distributed manner. As a by-product, we solved
an open problem of convergence for a previously proposed al-
gorithm in the interference-limited case. We also established a
tight relationship between the worst outage probability problem
and its certainty-equivalent margin counterpart, and utilized the
connection to find useful bounds and to evaluate the fairness
of resource allocation. We then addressed a total power mini-
mization problem with outage specification constraints and its
feasibility condition. We proposed a dynamic algorithm that
adapted its outage probability specification to minimize the total
power in a heterogeneous wireless network. Numerical results
showed that the dynamic algorithm can be effective for de-
ploying closed-access small cells in a macrocell in terms of total
power consumption and the percentage of users satisfying their
outage probability specification.
As future work, it is interesting to generalize our analysis and

algorithm design methodologies based on the nonlinear Perron-
Frobenius theory to solve the worst outage probability problem
for other practical fading channel models such as the Ricean,
Weibull and Nakagami distributions. It is also interesting to
solve this problem for more general nonlinear power constraints
or to extend it for other wireless utility objectives (see, e.g., re-
cent efforts in [32] on extending the nonlinear Perron-Frobe-
nius theory for this purpose). For the total power minimization
problem, the infeasibility issue can possibly be tackled using
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a joint admission control and power control scheme, i.e., re-
moving some constraints in (48) adaptively (see, e.g., [33]). In
other words, the AOPC algorithm can also be combined with
admission control protocols to overcome the barrier of infeasi-
bility in a system.
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