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Abstract—The wide availability of digital data in online social
networks such as the Facebook offers an interesting question on
finding the influential users based on the user interaction over
time. An example is the clicking of the Facebook “Like” button
to endorse a digital object (e.g., a post or picture) posted by
other user. This online interaction activity connects users sharing
similar opinions or disposition and spreads their influence. In
this paper, we study the estimation problem of finding a small
number of users in the online social network who are influential
in maximizing the reach of a digital message when it originates
from them. The digital interaction in the online social network
can be modeled using an interaction graph, e.g., associate users
through the past record of snapshot observations of Like’s activity
in Facebook. We propose a network centrality approach in which
we first use graph convexity to characterize the relative influential
level of users on the interaction graph. We then propose a
message passing algorithm to rank these users in order to identify
the influential spreaders who play a forward-engineering role in
catalyzing the spread of a new message. A useful application
is to schedule a cascade of endorsement of a digital marketing
message or for a business entity with a Facebook presence to
find a number of Facebook users to spread the word of new
commercial products. Lastly, we describe the performance of
our algorithm using a synthetic dataset.

I. INTRODUCTION

The wide availability of digital data in online social net-
works and the enormous user pool offers an interesting ques-
tion on estimating the influence of users based on the user
interaction over time. This online interaction over the online
social network gives rise to a real-time interaction network that
represents a fundamental medium for spreading and captures
important characteristics on how information can diffuse. A
prominent example is Facebook in which the digital contents
(e.g., user status updates, posts, photos, videos, links) of a
Facebook user are viewable on a Facebook Timeline by others
who can interact with them (such as clicking the Facebook
Like endorsement button for a post). These online interactions
are recorded on the Facebook Timeline that again lead to
more interaction. Here, the spreading process increases the
susceptibility of other users to the same; this results in the
successive spread of a digital message from a few users to
many more. It is interesting to study the spreading impetus of
a digital word-of-mouth engine starting from a selected few.
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It is reasonable to expect that a particular Facebook user
who has a digital message in the past that has garnered many
other Facebook users’ interaction (say using the Facebook
Like endorsement button) is likely to attract similar level of
interaction with future posting of similar digital messages. This
is because this digital interaction (e.g., the Facebook “Like”)
captures the desire to share similar opinions or disposition, and
typically comes from Facebook users who are already socially
close or displaying an interest to the particular Facebook user.
Also, it captures the connectivity relationship among users
in the online social network. This is useful such as when
this particular Facebook user wants to schedule a cascade of
endorsement for a digital marketing message or is a business
entity who maintains a Facebook presence and wants to spread
the word of new commercial products. By examining the
past record on Facebook Timeline, this particular Facebook
user can determine other Facebook users who are deemed
influential enough in a viral marketing strategy [1].

In this paper, we study how to maximize the reach of a
digital message in an online social network based on the past
digital interactions. The motivation of this work is similar
to prior work that analyze the effect of viral spreading and
influence maximization [2]–[5]. The goal is to to find a
small number of users (the seeding nodes in a graph) to
spread a digital message. In this paper, Facebook users are
modeled by nodes in a graph, and their associations of online
interaction activity are modeled as edges in the graph. There
can be many forms of digital interaction and we focus on
the clicking of the Facebook Like button for endorsement.
Snapshot records in the Facebook Timeline that capture this
past digital interaction activity is used to find this group of
users who then plays a forward-engineering role in catalyzing
the spread to maximize the reach of a new digital message
over time. When carefully selected, this initial number of users
are the influential spreaders whose impact of influence are in
turn recorded by the Facebook Timeline as past data that can
be further reused (to refine the selection of future influential
spreaders). This motivates a statistical inference of influential
spreaders in catalyzing a viral spread.

The contributions of this paper are as follows:
• We propose a network centrality approach to the statis-

tical inference of influential spreaders who are likely to
maximize the spread of a digital object to as many users
as possible in an online social network. This approach
is motivated by the rumor source detection problem
in which the center for a specially-constructed network
centrality corresponds to a maximum-likelihood estimator
for degree-regular tree graphs.
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• When the graph is a general tree, we provide a graph con-
vexity characterization to this network centrality approach
by showing that a good guess for this most influential user
is equivalent to the graph-theoretic centroid of the tree.
We give a result to ranking the users (nodes in the tree
graph) in terms of the branch weight centrality.

• We propose a message passing algorithm to identify the
influential spreaders by ranking the users when the tree
graph is constructed based on some form of digital inter-
action using past data record. A heuristic that combines
this with a breadth-first-search algorithm can address the
general graph case, and we apply this heuristic algorithm
to a synthetic dataset for preliminary evaluation.

This paper is organized as follows. In Section II, we give
an overview of the work on a rumor source detection problem
that specifically motivates the network centrality approach in
this paper to identify influential spreaders. In Section III, we
describe the basic problem and approach. In Section IV, we
describe the graph convexity results and a message passing
algorithm for ranking spreaders. In Section V, we evaluate the
performance of our message passing algorithm on a synthetic
dataset, and we conclude the paper in Section VI.

II. RELATED WORK

Epidemic-like spreading is an important network science
subject matter that has been extensively studied in the literature
[2]–[7]. Indeed, the rampant spreading of malicious informa-
tion has been identified as a major cyber-security challenge in
networks [6]. For example, the spread of a computer virus
in the Internet or a rumor in online social networks. This
motivates the need to detect these information sources. Given a
snapshot observation of the effect of spreading in the network
(e.g., who possesses the malicious information and who is
connected to whom), how to reliably identify the source of the
spreading? This is a challenging problem that is complicated
by the dynamics of the spreading and the problem size.

In the recent seminal work in [8], Shah and Zaman for-
mulated this as a maximum likelihood estimation problem
assuming a Susceptible-Infectious (SI) spreading model in [9].
A message is spread from a single initial node and thereafter
the nodes that possess this message are called the infected
nodes and those that do not are called the susceptible nodes.
The authors in [8] introduced a rumor centrality to solve this
problem exactly for degree-regular tree graphs. The rumor
centrality is proportional to the likelihood of an infected node
being the source and so the node with the maximum value (the
rumor center) coincides with the optimal solution of a maxi-
mum likelihood estimation. In particular, this rumor center can
be computed using message passing algorithms [10], and the
detection performance can be quantified asymptotically, i.e.,
when the number of infected nodes becomes very large.

For general graph topology, solving this maximum likeli-
hood estimation is still an open problem. Despite that, there are
several suboptimal heuristics based on the rumor centrality that
perform reasonably well (e.g., the breadth-first search heuristic
in [8]). Since the work in [8], other related work include
the generalization in [11] to random trees, the extension in

[12] to incorporate suspect sets, extensions to multiple source
detection and detection using multiple snapshot observations
in [13] and [14], [15] respectively.

The authors in [16] provided a probabilistic characterization
to the rumor boundary of the rumor spread data, and proposed
a message passing algorithm to compute the likelihood for
source estimation. The authors in [17] addressed the prob-
lem for the susceptible-infectious-susceptible spreading model
demonstrating that heuristics based on the rumor centrality can
work effectively. The authors in [18] provided an algebraic
combinatorial analysis to characterize the asymptotic regime
of the problem. The authors in [19] proposed a network cen-
trality approach and a message passing algorithm to compute
the harmonic influence centrality to measure the influence of
nodes on the average opinion in networks.

III. A NETWORK CENTRALITY APPROACH TO INFERENCE

We assume the spreading to occur over an infinite network
modeled as an undirected graph G = (V,E), where V =
{v1, v2, . . . } is a countably infinite set of nodes and E is the
set of edges of the form (i, j) for nodes vi and vj in V . In other
words, the users in the online social network are the nodes in
G, and the edges model the conduit for digital interaction. For
example, two Facebook users are connected by an edge due
to a Facebook Friend relationship or when they share similar
opinions or disposition (such as one user endorsing the digital
post of the other even when they are not Facebook Friend).
As such, G is a digital interaction graph. The degree of a node
vi is the number of its neighbors denoted by di.

We assume a basic spreading model known as the
Susceptible-Infectious (SI) model (e.g., see [9]) that is also
used for the rumor detection problem in earlier work [8], [11],
[12], [14], [15]. In this model, there are two types of nodes: (i)
susceptible nodes that are capable of being infected (i.e., not
yet possess the digital message); and (ii) infected nodes that
can spread the digital message to their immediate neighbors.
In this way, spreading occurs in a cascading manner, i.e., once
a susceptible node receives the message from its neighbor, it
retains the message forever and in turn may pass the message
to its other susceptible neighbors, i.e., when (i, j) ∈ E.
We also assume a memoryless property in spreading: let τij
be the spreading time for an infected node vi to infect its
susceptible neighbor vj for all (i, j) ∈ E, then τij’s are
mutually independent and have exponential distribution with
parameter λ (assume λ = 1).

A. Message Source Estimator

Let us suppose that the message originates from a node
v? ∈ V at a certain time t = 0 and spreads in the network G.
Then, at time t = T , we observe the network G and find n
infected nodes, which collectively constitutes a spread graph
that we denote by Gn. Note that n represents the cardinality of
the set of infected nodes in Gn. Obviously, the spread graph
Gn is a connected subgraph of the underlying graph G as
shown in Figure 1.

In the context of viral spreading, we have to choose the
spreaders (say a single spreader v? ∈ V ) at the outset t = 0
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Fig. 1. An example tree network topology of a spread graph and its underlying
graph. The grey and white circles in this figure represent respectively the
infected nodes and susceptible nodes. Note that the underlying graph can be
infinitely large, which is omitted due to page space.

without the hindsight of the spread graph Gn but with the
intention that this Gn is reached in the shortest T for a given
n (viral spreading means n to be typically large). As a first
step, we may ask, had we known Gn at the outset from an
oracle, then who is most likely to be the origin of the message,
i.e., the spreader? This is simply akin to the rumor source
detection in earlier work [8], [11], [12], [14], [15], and we
may work backwards to find this spreader. The next step is
then to leverage the structure of the estimator in the first step,
without a priori knowing this spread graph Gn and relying
only on past data to approximate one, to infer the spreaders.

In the following, we first focus on this first step (i.e., when
the spread graph Gn is given) and examine the property of
this estimator to identify a node v̂ as the most likely spreader,
assuming that Gn is a tree. From [8], the maximum-likelihood
estimator that maximizes the correct detection probability is
given by

v̂ ∈ arg max
v∈Gn

P (Gn | v), (1)

where P (Gn | v) is the probability of observing Gn supposing
that v is the original message source. Note that the solution
of (1) may not be unique and so ties are broken uniformly at
random. Solving (1) optimally is in general challenging. For
Gn that are degree-regular tree graphs, the optimal solution to
(1) is the rumor center [8], [11], [15].

IV. GRAPH CONVEXITY CHARACTERIZATION

We now use graph convexity to provide an equivalent
characterization to the rumor center in [8], [11], [12], [14], [15]
for general tree graphs. For degree-regular tree special case,
this means that, in the context of rumor source detection or
the viral spreading in online social networks, the respectively
most likely rumor culprit or the most influential spreader is
equivalent to the centroid (see, e.g., [20]). This characterization
is then extended to the relative ranking of nodes in a tree graph.

Let Gn be a rooted tree with the root at vr where
vr ∈ Gn. For a tree graph Gn, finding the rumor center,
i.e., maxiR(vi, Gn) where vi ∈ Gn, can be performed by
a message passing algorithm that recursively computes the
rumor centrality for each node starting from the leaves [8]. For
any vertex v in the rooted tree Gn, a parent of v is its neighbor
on the path connecting the vertex v and vr. The children of
v are its other neighbors, and we let child(v) denote the set
of children nodes of the vertex v. If v is a leaf, child(v) is an

empty set. A branch T r
v of this rooted tree is a subtree with

its root at v and we let trv denote the order of T r
v , i.e., the

size of T r
v in terms of the maximum number of children of v

allowed.
Now, suppose that vr is the message origin and the spread-

ing has initiated, i.e., G1 = vr. Then, in G2, this second
infected vertex may be any child of vr. Since there are d(v)
vertices in child(v) for any of this vertex, say ui, where
i = 1, 2, 3, . . . , d(v), we thus have [8]:

R(v,Gn) =
(n− 1)!

tvu1
! · tvu2

! · . . . · tvud(v)
!
·
d(v)∏
i=1

R(ui, T
v
ui

). (2)

This can be expanded recursively from the root vr to all the
leaves of Gn to yield [8]:

R(v,Gn) = n! ·
∏

u∈Gn

1

tvu
. (3)

Now, consider two adjacent vertices u and v in Gn and
a vertex w ∈ Gn − {u, v}, then we have tvu = n − tuv and
tvw = tuw, where tvu is the order of a subtree T v

u with v being
the message origin and u as the root containing all the children
of the tree. By using this recursion, it can be established that:

P (u|Gn)

P (v|Gn)
=
R(u,Gn)

R(v,Gn)
=

tvu
n− tuv

, (4)

which leads to the following result (see Proposition 1 in [8]).
Theorem 1: Given a tree Gn with n vertices, v ∈ Gn is a

rumor center if and only if

tvu ≤
n

2

for all u ∈ Gn − {v}.
In words, this result characterizes the rumor center in terms
of the sizes of its local subtrees.

We now introduce a graph-theoretic notion of Gn that
provides an alternative characterization of the rumor center
by using Theorem 1 as the link. Let us denote the branch
weight of a local sub-tree of a vertex v in Gn by

weight(v) = max
c ∈ child(v)

tvc .

The vertex of Gn with the minimum weight is called the
centroid of Gn [20]. By its definition, removing this centroid
from Gn results in disconnected components in which the size
of the biggest component is the smallest possible. Furthermore,
the size of the smallest component is the biggest possible. For
example, the centroid of the spread graph in Figure 1 is Node
2. Let us also define the distance centrality of v ∈ Gn as
D(v,Gn) =

∑
j∈Gn

d(v, j), where d(v, j) is the distance (in
terms of hop) between vertices v and j [8]. The vertex in Gn

with the minimum distance centrality is called the distance
center. We have the following result.

Theorem 2: Let Gn be a general tree graph and v is a vertex
in Gn. Then, the following statements are equivalent:

1) The vertex v is a rumor center of Gn and also a distance
center of Gn (proved in [8]).

2) The vertex v is a centroid of Gn.
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It has been established in graph theory that a tree has
either exactly one, or exactly two centroids joined by an edge
(see, e.g., [20]). This implies that, by using Theorem 2, there
are at most two rumor centers, and this scenario with two
rumor centers happens only when the maximum branch size
is exactly n/2. Furthermore, that the centroid and the distance
center coincides has been pointed out in [20].

Now, a practical implication of Theorem 2 is that this rumor
center in [8] for a given tree Gn can be found using alternative
algorithms (such as those proposed in [20]–[22]) based on the
notion of tree centroid (and to solve (1) optimally). All these
alternative algorithms have computational time complexity
O(n) similarly to the message passing algorithm in [8].

A. A Message Passing Algorithm to Rank Centrality

Suppose the tree Gn is given, we give a message passing
algorithm that ranks the users in terms of relative tree branch
weight (or equivalently the rumor centrality). The ranking of
the nodes makes use of the relative centrality measure between
adjacent nodes and is equivalent in the sense of the rumor
centrality, distance centrality or the branch weight centrality:

Theorem 3: Let Gn be a general tree with n vertices, and
u, v ∈ Gn are two adjacent nodes (neither u nor v needs to be
the centroid). Then, the following statements are equivalent:

1) R(v,Gn) ≥ R(u,Gn) .
2) D(v,Gn) ≤ D(u,Gn).
3) weight(v) ≤ weight(u).
Note that Theorem 3 implies Theorem 2. Another im-

plication of Theorem 3 is that ranking can be determined
using a message passing algorithm in which nodes exchange
messages of computation in a recursive manner to determine
this ranking. Suppose that all the nodes have a full knowledge
of its distance to all the other nodes in the tree and its own
degree. The network centrality computation can already be
performed using a message passing algorithm such as that
proposed in [8] or in [16]. As these messages are passed from
the leaf nodes to their parent nodes who in turn aggregate
the messages collected from their children nodes and pass the
aggregated result to their parent nodes, this process iterates
until all the nodes compute their network centrality.

In fact, a useful by-product of this recursive process is to
find the top-k network centrality for a given input integer
k as given in Algorithm 1 where we let K denote the set
of nodes with top-k rumor centrality, and CHS = {u|u ∈
child(K)}. The output are the k influential spreaders. For any
given integer k, Algorithm 1 has a computational complexity
O(k2 maxi di) to finding the top-k nodes, where maxi di is
the maximum degree in Gn.

V. BREADTH-FIRST-SEARCH HEURISTIC AND NUMERICAL
EVALUATION

Now, the spread graph, i.e., Gn, is unknown and so an
interaction graph has to be constructed from past data. Also,
in general, any interaction graph constructed using real data
in online social networks is not a tree graph. We propose a
top-k detection heuristic that first uses the breadth-first-search
algorithm to obtain a breadth-first-search tree rooted at each

Algorithm 1 Algorithm for top-k Centrality Nodes
Input k, Gn with the centroid v1 and branch weight cen-
trality of each node
Set K = {v1}, CHS = φ
for i = 1, . . . , k − 1 do

CHS = CHS + {u|u ∈ child(vi)}
set vi+1 = arg min

u∈CHS
{weight(u)}

K = K + {vi+1}
end for

user and then runs Algorithm 1 to find a number of highly-
ranked (top-L with L > k) candidates for each rooted tree.
The k candidates that appear the most frequently among all the
rooted trees are then deemed to be the influential spreaders.

We use a synthetic dataset from The Stanford GraphBase:
A Platform for Combinatorial Computing [23] that depicts
the network of fictional human characters in Victor Hugo’s
1862 novel Les Misérables. Each node of the interaction
graph is a fictional character in Victor Hugo’s 1862 novel Les
Misérables, and there is an edge between two characters if they
appear in the same chapter. There are some common features
shared between the Les Misérables dataset and the digital
interaction over a time-line. The Les Misérables dataset depicts
human social interaction over time (by their appearance over
the chapters). The novel consists of many chapters crisscrossed
by a number of characters, and each chapter is relatively
short (with few pages) and yet the correlation across chapters
is overall rich enough to portray the key players (i.e., the
protagonists).

We use this dataset as an initial evaluation of the effec-
tiveness of our heuristic (in detecting the protagonists). The
original interaction graph of seventy-seven characters for five
volumes is shown in Figure 2. From this dataset, another
subgraph is generated and this is the second interaction graph
of thirty-seven characters of the first three volumes. We run
the breadth-first search heuristic and Algorithm 1 using the
two datasets and plot the partial results. Figures 3 and 4 show
the top three candidates (shaded nodes) rooted at Valjean and
Cosette respectively for the first dataset, and Figures 5 and
6 show the respective case for the second dataset. The top
three protagonists identified from this methodology are the
characters Valjean, Gavroche and Cosette.

VI. CONCLUSION

In this paper, we studied a basic problem of finding influ-
ential spreaders in online social networks for viral spreading.
The goal was to maximize the reach of a digital message
originating from some spreaders. This problem was broken
down into two steps. The first step was to assume that
the spread graph were supposedly known and the message
origin to be estimated akin to the rumor source detection
problem. The structure of this estimator was characterized
using graph convexity to show that the centroid in graph theory
is equivalent to the rumor center in the rumor source detection
problem. This motivated a network centrality approach in
the second step. We proposed to use past data records to
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Fig. 2. The Les Misérables dataset from The Stanford GraphBase: A Platform
for Combinatorial Computing [23] that depicts the network of fictional
characters in Victor Hugo’s 1862 novel Les Misérables.

Fig. 3. Tree rooted at Valjean: the top-3 characters are Valjean, Gavroche
and Champmathieu.

construct an interaction graph as an approximation to the
spread graph. Examples can be snapshot observations recorded
in the Facebook Timeline to capture the association of users’
interaction (such as clicking the Facebook Like button). We
proposed a message passing algorithm to rank the users so
as to identify a number of spreaders that were deemed most
likely to maximize the reach of a new digital message.

There are several future work. We are currently working
on the software implementation using the Facebook Graph
to evaluate the algorithm. The algorithm and software can
be used to identify Facebook users who are most likely to
Like a given digital object when it shows up on the Facebook
Timeline. This can even lead to a useful approximation of
the expected number of Facebook Like’s for this new digital
message (useful for data analytics behind the newly-introduced
Facebook’s Boost Like marketing tool). In terms of modeling,

Fig. 4. Tree rooted at Cosette: the top-3 characters are Marius, Cosette,
Gavroche.

Fig. 5. Tree rooted at Valjean: the top-3 characters are Gavroche, Valjean,
Gillenormand.

we only looked at harnessing past records of Facebook Like’s
activity in the Facebook Timeline to associate users in the
online social network. How to harness past records and to
refine the user association process in order to build an accurate
interaction graph is important from a data analytics viewpoint.
The network centrality of the interaction graph proposed in this
paper is only a crude estimate of the influence in catalyzing
a spread. It can be interesting to refine this approach by
exploiting the correlation of user influence using different
interaction graphs that are correlated over time.

APPENDIX

A. Proof of Theorem 2

Let Gn be a tree of size n and v ∈ Gn. Observe the
following directions. Let us prove (1 ⇒ 2): We prove it by
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Fig. 6. Tree rooted at Cosette: the top-3 characters are Marius, Cosette,
Gavroche.

contraposition argument. Suppose v is not a rumor center, by
(2.2.1) there is a branch of v, say T v

u , with order > n/2
and u is adjacent to v. Now, we need a relationship between∑

s∈Gn
d(v, s) and

∑
s∈Gn

d(u, s) as described by∑
s∈Gn

d(v, s) =
∑

s∈Gn
d(u, s) + (tvu − 1)− (tuv − 1).

We have
∑

s∈Gn
d(v, s) >

∑
s∈Gn

d(u, s), since tvu > tvu.
This implies that v is not a distance center.

Next, let us prove (2 ⇒ 3): First, we need the following
fact: If all v’s branches are of order ≤ n/2, then v is the
centroid. Again, by contraposition argument, suppose v is not
a centroid, then there exists a branch of v whose order > n/2,
that is, v is not a rumor center by (2.2.1).

Lastly, let us prove (3 ⇒ 1): Suppose v is a centroid,
then each of all its branches is of order ≤ n/2. This
implies that v is a rumor center. Let u ∈ Gn, if u is
adjacent to v, then

∑
s∈Gn

d(v, s) <
∑

s∈Gn
d(u, s) and

we finish the proof. If u is not adjacent to v, then we can
partition all the vertices in Gn into three sets. The first
one is Tu

v , the second one is T v
u and the last one contains

all the vertices not in Tu
v and T v

u , say R. Let l denote
d(u, v). Now, consider

∑
s∈Gn

d(v, s) −
∑

s∈Gn
d(u, s) =

(
∑

s∈Tu
v
d(v, s) +

∑
s∈Tv

u
d(v, s) +

∑
s∈R d(v, s)) −

(
∑

s∈Tu
v
d(u, s) +

∑
s∈Tv

u
d(u, s) +

∑
s∈R d(u, s)).

Since v is the rumor center, we have :
(1) |R|+ tvu ≤ n/2, and tuv > n/2;
(2) (

∑
s∈Tv

u
d(v, s) +

∑
s∈Tu

v
d(v, s)) − (

∑
s∈Tv

u
d(u, s) +∑

s∈Tu
v
d(u, s)) = l · (tvu − tuv );

(3) |
∑

s∈R d(v, s)−
∑

s∈R d(u, s)| ≤ l · |R|.
Combining these three properties, we conclude that∑

s∈Gn
d(v, s) −

∑
s∈Gn

d(u, s) < 0, for any u ∈ Gn,
that is, v is the distance center. �

B. Proof of Theorem 3

Let Gn be a tree of size n, and u, v ∈ Gn. Observe the fol-
lowing directions. Let us prove (1⇒ 2): Suppose R(v,Gn) ≥
R(u,Gn), we have D(v,Gn) = D(u,Gn) − tuv + tvu and
tuv ≥ tvu, and so we conclude that D(v,Gn) ≤ D(u,Gn).

Next, let us prove (2⇒ 3): Suppose D(v,Gn) ≤ D(u,Gn),
we have D(v,Gn) −D(u,Gn) = tvu − tuv ≤ 0. This implies
that tvu ≤ tuv . Note that weight(u) = tuv . If not, then there is a
branch of u with size larger than tuv thereby implying tvu ≥ tuv ,
which is a contradiction. Hence, we have weight(u) = tuv ≥
weight(v).

Lastly, let us prove (3 ⇒ 1): Suppose weight(v) ≤
weight(u), and note that weight(u) = tuv . Since u is not the
rumor center, we have tuv > n/2 and so tvu ≤ n/2, this implies
that R(v,Gn) ≥ R(u,Gn). �
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